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Gamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective
residual interactions. The nuclear GT excitations were studied for the mass number A ¼ 42, 46, 50, and 54
“f-shell” nuclei in (3He, t) charge-exchange reactions. In the 42Ca → 42Sc reaction, most of the GT
strength is concentrated in the lowest excited state at 0.6 MeV, suggesting the existence of a low-energy GT
phonon excitation. As A increases, a high-energy GT phonon excitation develops in the 6–11 MeV region.
In the 54Fe → 54Co reaction, the high-energy GT phonon excitation mainly carries the GT strength. The
existence of these two GT phonon excitations are attributed to the 2 fermionic degrees of freedom in nuclei.
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Atomic nuclei are the “quantum finite many-body
system” consisting of correlated nucleons, i.e., protons
and neutrons. However, the independent particle model
called the shell model (SM), has succeeded in describing
single “particle (p)” or single “hole (h)” properties of a
proton (π) or a neutron (ν). By introducing a spin-orbit
(L · S) force, whose effect is stronger than in atoms, the
shell closures at “magic numbers” (the proton number Z or
neutron number N of 2, 8, 20, 28, and so forth [see, e.g.,
Ref. [1] ]) were reproduced. The “doubly magic nuclei”
such as 4He with N ¼ Z ¼ 2, 16Owith N ¼ Z ¼ 8, or 40Ca
with N ¼ Z ¼ 20 behave like an atomic inert gas, and can
work as inert cores.

Nucleons can also form strongly correlated pairs [2,3].
These nuclear correlations can be treated as effective
residual interactions (ERIs). The collective excitations
caused by ERIs are commonly observed in many-body
systems. In nuclei, giant resonances (GRs) with specific
total angular momentum and parity (Jπ values) are exam-
ples. They are visualized as one-phonon vibrations from
a macroscopic view point, or as collective excitations of
particle-hole (p-h) or particle-particle (p-p) configurations
from a microscopic view point [4]. Note that nucleons have
a spin degree of freedom. In addition, they have two
“faces,” i.e., π and ν. In 1932, Heisenberg introduced the
isospin quantum number T to describe phenomena caused
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by the 2 fermionic degrees of freedom. Therefore, GRs as
well as ERIs can be specified by their spin nonflip and
spin flip nature and, also, by the isoscalar (IS) and the
isovector (IV) characters. In IV excitations, πs and νs
vibrate out of phase. Note that they are found only in
systems having 2 fermionic degrees of freedom. In this
respect, Gamow-Teller (GT) excitations specified by both
spin and IV excitations are characteristic of nuclei.
Only a few configurations are involved in GT transitions

caused by the GT operator στ having no radial or angular
momentum component [5,6]. In a SM picture, where the
nucleons are in an orbit with angular momentum l and spin
s ¼ �1=2, GT transitions can connect only the orbits
with the j> (¼ lþ 1=2) and j< (¼ l − 1=2) values, where
the former is energetically lower than the latter due to the
L · S force. Therefore, without ERIs, a transition between
j> orbits causes an excitation at zero energy, while a
j> → j< transition occurs at 3 to 7 MeV [1].
Absolute values of GT transition strength B(GT) can be

obtained in β-decay studies. The accessible excitation
energy (Ex), however, is limited by the decay Q value
[6]. In the 1980s, it was found that charge-exchange
(CE) reactions at intermediate incident energies (E >
100 MeV=nucleon) and the scattering angle Θ ¼ 0° are
good tools for the study of GTexcitations [4]. In the studies
using (p, n) reactions [7], bumplike GT resonances (GTRs),
i.e., high-energy GT phonon excitations, with a few MeV
width were commonly observed at Ex ¼ 9–18 MeV in
nuclei with mass A larger than about 60 [7,8]. The main
part of the GT strength was carried by the GTRs containing
≈ 50–60% of the GT sum-rule strength [8]. Note that GTRs
were always observed at Exs higher than the energy differ-
ence of the j< and j> orbits. Because of the neutron excess in
these nuclei, the main configurations of the GTRs are ofp-h
nature. It is well established that the ERIs among the p-h
configurations in IVexcitations, such as the GTor IV dipole
excitations, have a repulsive nature, and thus, IV GRs are
pushed up relative to the unperturbed p-h energies [4]. On
the contrary, in lighter nuclei with mass number A ≤ 40,
prominent high-energy GTRs are not observed; the GT
strength is mainly carried by states at lower energies [6,7].
This raises a question of how these two features of GT
strength distributions can be understood consistently.
In order to reconcile these observations, we studied the

GT excitations for the “f-shell” nuclei in the transitional
mass region of 40 < A < 60 using the (p, n)-type (3He, t),
CE reaction. The orbits f5=2 and f7=2 with l ¼ 3 represent
the j< and j> orbits, respectively, where the single particle
energy of the former is about 6 MeV higher than that of the
latter [1]. For a systematic study, we selected target nuclei
with even Z and N numbers and neutron excesses of two,
i.e., Tz ¼ þ1, where Tz ¼ ðN − ZÞ=2 is the z component
of isospin T. They were 42Ca, 46Ti, 50Cr, and 54Fe. The
final nuclei are 42Sc, 46V, 50Mn, and 54Co with odd Z andN
numbers and Tz ¼ 0, respectively.

It has been shown that GT excitations dominate the
spectra of the (3He, t), CE reaction at 0° and an intermediate
beam energy of 140 MeV=nucleon [6]. In addition,
although there were exceptions, a close proportionality
between the cross sections at 0° and the BðGTÞ values

σð0°Þ≃ σ̂GTð0°ÞBðGTÞ; (1)

has been empirically established [6,9–13], where σ̂GTð0°Þ is
the unit GT cross section at 0°.
The (3He, t) experiments were performed at the high

resolution facility of RCNP, consisting of a beam line WS
course [14] and the Grand Raiden spectrometer [15] using
the 3He beam from the K ¼ 400 Ring Cyclotron [16].
The targets consisted of enriched self-supporting 42Ca,
46Ti, 50Cr, and 54Fe metal foils with thicknesses of
0.8–1.8 mg=cm2. The outgoing tritons were momentum
analyzed within the full acceptance of the spectrometer at
0° and detected with a focal-plane detector system [17].
Energy resolutions of ΔE ¼ 21–33 keV (FWHM),

much better than the energy spread of the beam of about
120 keV, were realized by applying both dispersion
matching and focus matching techniques [6,18,19].
These resolutions are about 1 order of magnitude better
than those in the pioneering (p, n) works [7,20,21]. This
high energy resolution makes a detailed study of GT
excitations possible. A good angular resolution of ΔΘ ≤
5 mr (FWHM) was achieved by applying the angular
dispersion matching technique [18] and the overfocus
mode of the spectrometer [22].
The acceptance of the spectrometer was subdivided into

four scattering-angle regions of Θ ¼ 0°–0.5°, 0.5°–1.0°,
1.0°–1.5°, and 1.5°–2.0° using the tracking information.
The Jπ ¼ 1þ, GT states excited by ΔL ¼ 0, GT transitions
can be identified by their maximum intensity at Θ ¼ 0° (for
detail, see [23]). Figure 1 shows the “0° spectra” that
include the events with Θ ≤ 0.5°. The 46V, 50Mn, and 54Co
spectra are from Refs. [23–25], and the 42Cað3He; tÞ42Sc
spectrum was newly measured in this study. The angular
distribution analysis shows that most of the prominent
states are excited with ΔL ¼ 0. Among them, the ground
states are all Jπ ¼ 0þ isobaric analog states (IASs), each
forming an isospin multiplet with the target ground state.
Therefore, it is suggested that the ΔL ¼ 0 excited states
are Jπ ¼ 1þ, GT states [6]. The BðGTÞ values were derived
using Eq. (1). The σ̂GT values were deduced by using the
information on the Tz ¼ −1 → 0, βþ decay [25,26] assum-
ing that Tz ¼ �1 → 0 mirror GT transitions have the
same BðGTÞ values on the basis of isospin symmetry [6].
The gradual decrease of σ̂GT as a function of Ex [9]
was corrected using distorted wave Born approximation
calculations (see, e.g., [23]).
The remarkable feature in Fig. 1 is the completely

different strength distributions in these four systems
although the neutron excess in the initial nuclei is always
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two. In 42Sc, most of the GT strength, in agreement with
[20], is concentrated in the excitation of the lowest GT state
at 0.611 MeV. In 46V and 50Mn, however, the low-energy
strength becomes fragmented and at the same time the
bumplike structure of the GTR in the 6–11 MeV region
begins to develop [Figs. 1(b) and 1(c)]. A fragmentation of
GT strength was also observed in the 44Ca → 44Sc reaction
[27], suggesting that the concentration of the strength is
also hampered by a larger neutron excess of four in 44Ca.
Finally in 54Co [Fig. 1(d)], the GT strength is mainly in
the GTR.
The cumulative sum of the experimental BðGTÞ values

is shown in Fig. 2(a) up to Ex ¼ 12 MeV. A shift in the
strength to higher energy with increasing A is again clearly
seen. The total sum in 42Sc is 2.7(4), with 80% of the GT
strength carried by the lowest GT state. The observed sum
gradually increases with A and it is 3.9(6) in 54Co [23],
where ≈75% of the GT strength is found in the high-energy
GTR structure.
In a SM picture, the j> valence orbits, πf7=2 and νf7=2,

outside the inert 40Ca core (Z ¼ N ¼ 20) will be gradually
filled in the Tz ¼ þ1, A ¼ 42–54 nuclei as A increases (see
Fig. 3). On the other hand, the j<, πf5=2 and νf5=2 orbits

remain unpopulated. In this picture, without ERIs, we
expect a low-energy GT excitation originating from the
νf7=2 → πf7=2 transition and a high-energy one from the
νf7=2 → πf5=2, where the latter is expected≈6 MeV higher
than the former due to the strong L · S force [1]. The single
particle strengths of these GT excitations are similar,
namely BðGTÞ ¼ 9=7 and 12=7, respectively [9]. Taking
into account the occupation and vacancy factors of the f7=2
and f5=2 shells, the relative strengths between the νf7=2 →
πf7=2 and νf7=2 → πf5=2 transitions are 9∶12 and 9∶48 in
the 42Ca → 42Sc and 54Fe → 54Co reactions, respectively.
Therefore, we can, to some extent, understand the larger
high-energy strength in the A ¼ 54 system. However, from
this simple picture, we cannot understand the concentration
of GT strength to the low-energy 0.611 MeV state in the
42Ca → 42Sc reaction.
Figure 2(b) shows the cumulative sum of the GT

strengths from SM calculations. The modern GXPF1J
interaction used in the calculation was derived to reproduce
various experimental data [28]. We see that the A dep-
endence of the GT strength distribution, including the
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FIG. 1 (color online). High energy-resolution spectra of (3He, t)
reaction on A ¼ 42–54, Tz ¼ þ1 target nuclei. The vertical
scales are normalized so that the heights of all GT peaks are
approximately proportional to the BðGTÞ values. The GT strength
is concentrated in one low-energy state in 42Sc [panel (a)]. The
fine structures of GTRs in the 6–11 MeV region are observed in
panels (c) and (d).

4 6V
5 0Mn

0

1

2

3

4

0 2 4 6 8 10 12

Σ
 

G
T

 s
tr

en
gt

h

Ex (MeV)

5 4Co

(a) Experiment

4 2Sc 4 2Sc

(b) SM calculation

4 6V
5 0Mn

0 2 4 6 8 10 12
Ex (MeV)

5 4Co

FIG. 2 (color online). (a) Cumulative-sum strengths of the
experimental BðGTÞ values in the final nuclei 42Sc, 46V, 50Mn,
and 54Co. They are shown by dotted-dashed, dashed, dotted,
and solid lines, respectively. (b) Cumulative sums from SM
calculations [28] including the quenching factor of ð0.74Þ2.

42Ca 42Sc 46Ti 46V 50Cr 50Mn 54Fe 54Co

f7/2

f5/2
p3/2

p1/2

π    ν π    ν π    νπ    ν

28

20

(a) (b) (C) (d)

FIG. 3. The SM configurations before and after the β−-type GT
transitions in A ¼ 42–54, f-shell nuclei. Positions occupied by
protons (π) and neutrons (ν) are shown by open crosses. Positions
that are newly occupied by protons and unoccupied by neutrons
after making GT transitions (shown by the arrows) are indicated
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concentration of the GT strength in the lowest GT state in
42Sc, is well reproduced. However, we notice that this
concentration of the GT strength is reproduced even in a
SM calculation using the classical Kuo-Brown interaction
[29], suggesting that it contains the essential ERI compo-
nents that make the GT strength concentrate in the lowest
GT state of 42Sc.
Further calculations were performed using a quasiparti-

cle random phase approximation (QRPA) framework based
on a self-consistent Hartree-Fock mean field with Skyrme
interactions. First, we performed standard calculations
including proper IV ERIs in both the p-h and the p-p
configurations. Within this framework, GT strengths and
GTR structures in nuclei heavier than A ≈ 60 have been
well reproduced [30]. As an extension, the observed GT
strength in the GTR region of 54Co was well reproduced.
Note that closed shells are formed at Z or N ¼ 28. Then,
the main transition νf7=2 → πf5=2 makes a p-h type (πf5=2,
νf−17=2) configuration in 54Co [see Fig. 3(d)]. Here, we see
the established scenario that the main part of the GT
strength is pushed up to the GTR region, higher than the
p-h energy of ≈6 MeV, by the repulsive IV interaction that
is active in p-h configurations. However, the concentration
of GT strength in one low-energy state in 42Sc could not
be reproduced; about half of the total GT strength always
remained in the GTR region.
In the SM picture, the final nucleus 42Sc has one π and

one ν outside the inert 40Ca core. As shown in Fig. 3(a),
p-p configurations of (πf7=2, νf7=2) and (πf5=2, νf7=2), are
formed after the transitions νf7=2 → πf7=2 and νf7=2 →
πf5=2, respectively. Taking the antisymmetrization into
account, a π-ν pair can couple to the spin S ¼ 0 and
T ¼ 1 (spin-singlet, IV) or S ¼ 1 and T ¼ 0 (spin-triplet,
IS) states, and the analysis of ERIs in these states shows
that the spin-triplet IS ERI is attractive and stronger than the
spin-singlet IV ERI [31]. Note that the IS, ERI cannot act
in the IV-type π-π or ν-ν pairs. In addition, it is discussed
that p-p type configurations are sensitive to the IS pairing
interaction [32,33], and the attraction is strong if both
nucleons of the π-ν pair are in the same shell [3,31]. It is
known that this attractive IS ERI makes the deuteron
bound [34].
In newly performed spherical QRPA calculations [35],

the spin-triplet IS ERI was also included, which changed
the results drastically; in the 42Ca → 42Sc calculation, a
strong concentration of the GT strength in the lowest
GT state appeared as the IS coupling constant f [35]
was increased from null to f ¼ 1. In addition, at f ¼ 1 the
contributions of the main p-p type configurations (πf5=2,
νf7=2) and (πf7=2, νf7=2) of the lowest 1þ state were in
phase, increasing the collectivity [35].
As discussed, the configurations of GTRs are p-h type in

heavier nuclei with neutron excess. Since ERIs of p-h
configurations are repulsive in IVexcitations, the GTRs are
pushed to a higher Ex region. However, we observed that

the GT excitations can be shifted to a lower energy if the
configurations of the final nucleus have πp-νp nature
where the attractive IS ERI can be active. We saw that
the 0.611 MeV GT state in 42Sc collects 80% of the total
GT strength in the region up to 12 MeV. The GT transition
to this state has a large BðGTÞ value of 2.2, which can be
deduced from the small log ft value of 3.25 of the isospin
analogous GT transition in the 42Ti β decay to 42Sc [36].
Therefore, in the sense that this low-energy GT state has
the collective nature and carries most of the observed GT
strength, it is comparable to the high-energy GTR in heavy
N > Z nuclei.
In the limit of null L · S force, Wigner proposed the

existence of SU(4) symmetry and the “super-multiplet
state” [37]. In this limit, (a) the GT strength is concentrated
in a low-energy GT state, and, also, (b) excitation energies
of both the IAS and the GT state are identical. From Fig. 1,
we see a broken SU(4) symmetry in the A ¼ 54 system,
while a good symmetry is observed in the A ¼ 42 system.
We found that the attractive IS ERI plays the role of
restoring the SU(4) symmetry and the 0.611 MeV GT state
in 42Sc has a character close to that of a super-multiplet
state. Therefore, we can call this state the “low-energy
super GT” (LESGT) state. Note that “zero-energy”
πp-νp configurations that are essential for the formation
of LESGT states are realized only in CE excitations (and β
decays).
TheLESGTstate is expected if the relevant configurations

of the final GT state are of πp-νp nature. Indeed, strong GT
transitionstothegroundstatesof theN ¼ Znuclei6Liand18F
have been observed in the β-decay studies of 6He and 18Ne,
respectively [38,39]. The transitions have very small log ft
values of 2.9 and 3.1. In addition, we can confirm the
concentration of the main GT strength in the ground state
of 18F from the 18Oðp; nÞmeasurement [40]. Since 4He and
16O can act as inert cores, we expect that these ground
states in 6Li and 18F have πp-νp configurations, and
thus, they are also LESGT states.
In summary, in the high-resolution (3He, t) measure-

ments for f-shell nuclei, we observed low- and high-energy
collective GT excitations, i.e., two kinds of GT phonon
states. In 42Sc, a concentration of the GT strength was
observed in the lowest GT state, which we call the LESGT
state. We found that the attractive IS ERI that is active in
πp-νp configurations pulls the GT strength to a lower
excitation energy and that LESGT states are the extreme
structure carrying most of the GT strength. In 46V and
50Mn, transitional features were observed; the low-energy
phonon strength became fragmented and weaker, while the
strength in the high-energy GTR region increased. In 54Co,
the main part of the GT strength was concentrated in the
GTR phonon structure. As is known, GTRs are formed by
the repulsive IV ERI that is active in the πp-νh configura-
tions. Note that the existence of IS and IV ERIs, and thus,
low- and high-energy GT phonon excitations, are attributed
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to the 2 fermionic degrees of freedom, which is a unique
feature in atomic nuclei.
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