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We study the effects of lepton flavor violation (LFV) in the scalar lepton sector of the MSSM on
precision observables such as the W-boson mass and the effective weak leptonic mixing angle, and on the
Higgs-boson mass predictions. The slepton mass matrices are parametrized in a model-independent way by
a complete set of dimensionless parameters which we constrain through LFV decay processes and the
precision observables. We find regions where both conditions are similarly constraining. The necessary
prerequisites for the calculation have been added to FeynArts and FormCalc and are thus publicly available
for further studies. The obtained results are available in FeynHiggs.
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I. INTRODUCTION

Lepton flavor violating (LFV) processes provide one of
the most interesting probes to physics beyond the Standard
Model (SM) of particle physics. All SM interactions preserve
lepton flavor number and therefore a measurement of any
(charged) LFV process would be an unambiguous signal of
physics beyond the SM and provide interesting information
on the involved flavor mixing, as well as on the underlying
origin for this mixing (for a review see Ref. [1], for instance).

The data from past and ongoing neutrino oscillation
experiments, as well as from cosmology and astrophysics,
have confirmed that neutrinos have different nonzero masses
and that the three neutrino flavors v,, v, v, mix to form three
mass eigenstates. This implies nonconservation of lepton
flavor, clearly beyond the SM. Thus, lepton-flavor-violating
processes are expected in the lepton sector just as quark-
flavor-violating processes arise in the quark sector.

Within the minimal supersymmetric Standard Model
(MSSM) [2], LFV can occur in the scalar lepton sector. The
most general way to introduce slepton flavor mixing within
the MSSM is through the off-diagonal soft-SUSY-breaking
parameters (both mass parameters and trilinear couplings)
in the slepton sector. The off-diagonality in the slepton
mass matrix reflects the misalignment (in flavor space)
between lepton and slepton mass matrices, which cannot be
diagonalized simultaneously. This misalignment can have
various origins; for instance, off-diagonal slepton mass
matrix entries can be generated by renormalization group
equations running from high energies, where heavy right-
handed neutrinos are assumed to be active, down to low
energies where LFV processes can occur [3.,4].
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In this work we do not investigate the possible dynamical
origin of this lepton-slepton misalignment, nor particular
predictions for off-diagonal slepton soft-SUSY-breaking
mass terms in specific SUSY models, but instead para-
metrize the slepton mass matrix and explore the phenom-
enological implications of LFV on various observables.

Specifically, we write the off-diagonal slepton mass

matrix elements in terms of a complete set of generic
SULLLR.RL.RR}
{12,13,23}

to the left-/right-handed SUSY partner of the corresponding
leptonic degree of freedom and 1, 2, 3 are the involved
generation indices, and we explore the sensitivity of several
precision observables to the 6?]-3 ’s, extending a program
carried out for flavor violation in the scalar quark sector [5].

Besides direct searches, which have not turned up
evidence for any additional particles so far, SUSY can also
be probed through its effects on precision observables via
virtual particles; see Ref. [6] for a review. Electroweak
precision observables (EWPO) like the W-boson mass or the
effective weak leptonic mixing angle have been measured to
a very high precision, and the anticipated improved pre-
cision in current and future experiments for these observ-
ables makes them very sensitive to physics beyond the SM.

Besides EWPO we also explore the effects of LFV on the
MSSM Higgs sector, again extending existing analyses on
flavor violation in the scalar quark sector [5,7]. The MSSM
Higgs sector consist of two Higgs doublets and predicts
five physical Higgs bosons, the light and heavy CP-even h
and H, the CP-odd A, and the charged Higgs boson H*.
At tree level the Higgs sector is described with the help of
two parameters: the mass of the A boson, M,, and
tan f := v,/v;, the ratio of the two vacuum expectation
values. After the spectacular discovery of a Higgs particle
at the LHC, the precision of the measured mass value is
already below the GeV level [8,9], and at a future ILC, a

dimensionless parameters , where L, R refer
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precision even below ~50 MeV is anticipated [10]. We
evaluate the effects of LFV on the predictions of the masses
of the light and heavy CP-even Higgs bosons, M;, and My,
as well as on the charged Higgs-boson mass M ;:. Based on
the evaluations in the scalar quark sector [5], theoretical
uncertainties from LFV effects on the evaluation of the
Higgs-boson masses are substantially larger than the future
experimental accuracy that could be expected, motivating
the analytical calculation of these corrections.

For our calculations we prepared (and thoroughly tested)
an add-on model file for FeynArts [11,12] which adds LFV
effects to the existing MSSM model file. No renormaliza-
tion as in Ref. [13] is included yet (and also it is not
necessary for the present work since the SM is lepton-flavor
conserving and hence there is no tree-level contribution).
The FormCalc [14] driver files were also modified accord-
ingly. We checked that the LFV Feynman rules yield finite
results for all our calculations. The results derived with this
setup, the Higgs-boson masses as well as the EWPO, were
added to FeynHiggs 2.10.2.

This paper is organized as follows: First we review the
main features of the MSSM with general slepton flavor
mixing and set the relevant notation for the 5;‘]5 ’s in Sec. II.
The selection of specific MSSM scenarios and their
experimental restrictions from LFV processes are presented
in Sec. III. The numerical analysis is given in Sec. 1V,
showing for the first time the LFV effects on the MSSM
Higgs boson masses and on the EWPO. Section 5 summa-
rizes our conclusions.

II. CALCULATIONAL BASIS

We work in MSSM scenarios with general flavor mixing
in the sleptons. Within these MSSM-FV scenarios, lepton
flavor violation is induced by the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix of the neutrino sector
and transmitted by the small neutrino Yukawa couplings
which we ignore here. Flavor mixing in the slepton mass
matrix is the main generator of LFV. In the following we
give a brief overview about the relevant sectors of the
MSSM with LFV.

A. Scalar lepton sector with LFV

For the slepton sector of the MSSM including LFV
contributions we use the same notation as Ref. [15]. The
most general hypothesis for flavor mixing in the slepton
sector assumes a nondiagonal mass matrix for both charged
sleptons and sneutrinos. For the charged sleptons this is a
6 x 6 mass matrix since there are six electroweak inter-
action eigenstates, £; g with £ = e, u, 7, while for the
sneutrinos the matrix is only 3 x 3 corresponding to the
three states v, with v =v,, v, v;.

The nondiagonal entries in the 6 x 6 general matrix for
charged sleptons can be described in a model-independent
way in terms of a set of dimensionless parameters 5?]-3 (A,
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B=L,R;i,j=1,2,3,i # j), where L, R refer to the left-/
right-handed SUSY partners of the corresponding leptonic
degrees of freedom, and the indices i, j run over the three
generations. These scenarios with general sfermion flavor
mixing lead generally to larger LFV rates than in the so-
called minimal flavor violation scenarios, where the mixing
is induced exclusively by the Yukawa coupling of the
corresponding fermion sector. This is true for both squarks
and sleptons but it is obviously of special interest in the
slepton case due to the extremely small size of the lepton
Yukawa couplings, suppressing LFV processes from this
origin. Hence in the present case of slepton mixing we
assume that the 6?!-3 ’s provide the sole source of LFV
processes with potentially measurable rates.

The nondiagonal 6 x 6 slepton mass matrix, which we
order here as (e;, jiy, 71, €r, g, Tr), is usually decomposed
into left- and right-handed 3 x 3 blocks M; g 38

M2 M2
2 Z.LL Z,.LR
Mz = (Mgf "2 ) (1)
Z,LR Z.RR

where

1
(M?LL)U = (mi)u -+ (m?i + <—§+ s&)M% cos 2ﬁ> Sijs

(ME,RR)U = (m3),; + (m3, — s3,M7 cos 23)5;,
(MéLR)ij = UlAifj — myg ptan fi6;;, (2)

with flavor indexes i, j =1, 2, 3, s, = \/1 —c3, with
cw = My /My, lepton masses (m,,) = (m,,m,,m,), and
Higgsino mass parameter u. The off-diagonal elements
arise exclusively from the soft-SUSY-breaking parameters:
the doublet mass parameters m?, the singlet mass param-
eters m3, and the trilinear couplings .A”, which are all 3 x 3
matrices in flavor space.

The sneutrino mass matrix contains only a single 3 x 3
block [ordered as (U,r, Uy, Uz )] to start with since the
singlet components are absent:

1
(M%)ij = (M%.LL)ij = (mi)z, +§M% cos 2[36;;. (3)
Note that, due to SU(2), gauge invariance, the same
doublet mass parameters mzz enter the slepton and sneutrino
LL mass matrices.

If neutrino masses and neutrino flavor mixings (oscil-
lations) were taken into account, the soft-SUSY-breaking
parameters for the sneutrinos would differ from the ones for
charged sleptons by a rotation with the PMNS matrix.
Taking the neutrino masses and oscillations into account in
the SM leads to LFV effects that are extremely small; for
instance, in u — ey they are of O(107*) in the case of
Dirac neutrinos with mass around 1 eV and maximal
mixing F[1,16,17], and of O(107*°) in the case of
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Majorana neutrinos [1,17]. Consequently we do not
expect large effects from the inclusion of neutrino mass
effects here.

The dimensionless parameters allow for a unified
description of the off-diagonal soft-SUSY-breaking param-
eters to which they are related as follows:

AB
5

2 5LL

- - LL ., . -
m; pmpmyp, o713 mp mjy,
) LL,,_ . 2 L,
m; = 03 mi mj m; 1) mpmi |, (4)
LL 0 o R 2
53 myp mp 03 my my, m;i.
2 RR . RR 0 0
mg Sppy mg my, Sy3mp, mg,
) RR . 2 RR . 0
msy = 6y my,mp, mg Sympmp |, (5)
RR,\ 2
O3 mi mp. 5 30 M, M, my
LR, . LR, -
m,A, o my mg, 073 mp mp.
¢ _ LR, LR, .
0 A" = | &y mj m m,A, 633 mp mg, . (6)
LR LR, .
031 mi mp 05, mp mg, m,A,

This parametrization is purely phenomenological and does
not rely on any specific assumptions on the origin of the
soft-SUSY-breaking parameters.

The next step is to rotate the sleptons and sneutrinos
from the electroweak interaction basis into the physical
mass eigenstate basis,

(3
2 AL . By
; 2 13 VeL
Bl =re| ], b | =R .| ()
lxﬂ4 €Rr ~ ~
- - U3 1299
fs MR
Ze TR

where R? and R” are the unitary matrices resulting from
diagonalizing the mass matrices,

A2 RET — 2 2 o2 2 0
R MZR dlag{m g g m L mg mf}
REMER™ = diag{mZ ,m? ,m}, (8)

B. Higgs masses and mixing

In this section we shortly review the relevant features
of the MSSM Higgs sector at tree level. Unlike the SM,

'We restrict ourselves to the case of real parameters. For the
case of complex parameters see Refs. [18,19] and references
therein.
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the MSSM requires two Higgs doublets. The Higgs

potential [20],

V = mi|H,|* + m3|Ha|* — miy (e H{HS + Hoc.)

1
+ (g + BH -

1
] M| +§9%|HTH2|2’ )

contains mjp, m,, m, as soft-SUSY-breaking parameters;
92, g1 are the SU(2) and U(1) gauge couplings, and € is

the spinor metric with €, = —1.
The doublet fields H; and H, are decomposed as

o — (H?) _ <v1+ 75 (¢ = ix?))’
Hy =)

() (i)

The Higgs potential is thus characterized at tree level by
only two independent parameters: tanf = v,/v; and
M3 = —m3,(tan 8 + cot 8), where M, is the mass of the
CP-odd Higgs boson A.

The bilinear part of the Higgs potential is diagonalized

by orthogonal transformations
H cosa sina 0
()= G ) () o0
h —sina cosa/ \ ¢9
G\ _ (cosp sinp\ (A (12)
A —sinf cosf )\ xS )

G*\ [ cosp sinp )\ [t
()= (S &) () o

where the tree-level mixing angle a is given by

o — aretan [ —(M3 + M%) sin fcos 3 }
M%cos?f + Masin® —mj .|

—g<a<0. (14)

The Higgs spectrum is thus

2 neutral bosons, CP = +1: h, H,

1 neutral boson, CP = —1: A,
HY H™,
G,G",G.

2 charged bosons:

3 unphysical Goldstone bosons:

At tree level the neutral CP-even Higgs-boson masses are
determined from
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A2 _ M? sin? 3 + MZcos* 3 —(M?% + M2)sin 3 cos 3 @) m%,jtree 0
Higgs —(M?% + M%)sinBcos 3 M3 cos? 3+ M2 sin® 3 0 M} iee)
(15)
which yields
1
()i = |3 M 25 4 08 = 400330729 (16)
|
and the charged Higgs-boson mass is given by su2 sms  Smi,
Higes ™ \ 52 sm2 )’
Miyps oo = M3 + M. (17) hH "

C. Calculation of higher-order corrections
in the Higgs sector

We briefly review the procedure of Refs. [18,21] for the
computation of one-loop corrections to the Higgs-boson
masses. The parameters appearing in the Higgs potential,
Eq. (9), are renormalized as follows:

M% — M2 + M3, T, — T),+ 6Ty,
M3, — M3, + 5M3,, Ty — Ty + 6Ty,

M%iggs - Mlz-liggs + 5M12-Iiggs’ tan# — tan (1 + Stan f3).
(18)

Mﬁiggs denotes the tree-level Higgs-boson mass matrix of
Eq. (15), and T, and Ty are the tree-level tadpoles, i.e. the
terms linear in 4 and H in the Higgs potential.

In the CP-even sector the mass and field renormalization
can be set up symmetrically,

) e
o, = 6Mjeos™(a — ) + Mjsin’ (a + ) + 73—

h 1+1s2 V4 h
()= o o) () 09
H 16Zyy  14+36Zyy /) \H

The renormalized self-energies i( p?) are expressed
through the unrenormalized self-energies X(p?), the field
renormalization constants, and the mass counterterms as
follows:

2(P?) = 2 (p?) + 6Zyy(p* — M3 o) — 63,

A 1
ZhH(pz) = z“hH(pz) + 5ZhH <p2 - 5 (m%z,tree + m%-l,tree))

2
— omyy,

2un(p?) = Zuu(p?) + 6Zyu(p® - m%{,tree) —omy;. (20)

Inserting the renormalization transformation into the Higgs
mass terms gives the following Higgs-mass counterterms:

(8T cos(a — B)sin’(a — fB) + 8T, sin(a — B)(1 + cos*(a — B)))

+ Stan fsin fcos f(M? sin 2(a — ) + MZsin2(a + f3)),

1
Smi, = 5 (6M? sin2(a — ) — M2 sin2(a + fB)) +

2M 7s,Cy,

(8T ysin®(a — B) — 8T co8* (a — B))

— Stan B sin f cos (M3 cos 2(a — ) + M% cos2(a + f)),

om?, = SM3sin(a — B) + SM%cos* (a + ) — ﬁ (8T cos(a — B)(1 + sin?(a — B)) + 8T, sin(a — B)cos*(a — f))
Zowbtw
— Stan fsin fcos f(M?3 sin2(a — ) + MZsin2(a + ). (21)

We give the Higgs doublets one renormalization constant
each,

1 1
H] bd <1 +252H|>H1’ H2 b <1 +252'H2>H2’
(22)

|
which leads to the field renormalization constants

8Zyy, = sin*adZy, + cos’adZy,,
6Zyy = sinacos a(6Zy, — 6Zy,,),
8Zyy = cos’adZy, + sin*adZy,. (23)
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The counterterm for tan f can be expressed in terms of the
vacuum expectation values as

—

P
(02, — 6Z3) + 2 =20 (24)

otanff = —
b 2 Vs vy

where the Jv; are the renormalization constants of the v;:

vy = (1 +6Zy,)(v) + 6vy),
Uy — (1 + 5ZH2><U2 + 5712). (25)

It can be shown that the divergent parts of év;/v, and
bv, /v, are equal [21,22]; thus we set v,/ vy — 60, /vy to
Zero.

In the charged Higgs sector, the renormalized self-energy
is written similarly as

ﬁH-m (P*) =Zp-n+(P*) +6Zp-n+(P* = m%_[i.tree) - 5’"12#7

(26)
where

ém7,. = M3 + My, (27)

8Zy-p+ = SIN*BSZyy, + cos*PSZy,. (28)

(AHiggs)_1 =

Determining its poles is thus equivalent to solving the
equation

[pZ - m%t,tree + ihh (p2)] [p2 - m%],lree + iHH(pz)]
— Ew (PP = 0. (33)

The corrected charged Higgs mass is analogously
derived as the position of the pole of the charged-Higgs
propagator,

PP+ S (p?) = 0, (34)

We calculated the LFV contribution originating from the
mixing in the slepton sector in a model-independent
approach to the Higgs-boson masses. The present exper-
imental uncertainty at the LHC for M, the mass of the light
neutral Higgs boson, is about 350 MeV [8,9]. This can
possibly be reduced by about 50% at the LHC and below
the level of ~50 MeV at the ILC [10]. Similarly, for the
masses of the heavy neutral Higgs My and charged Higgs
boson M=, an uncertainty at the 1% level could be
expected at the LHC [23]. This sets the goal for the

i<p2 - m%l.tree + i“1-1H (p2)
ihH(pz)
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We apply on-shell conditions for the masses

SM% = ReXl, (M%), M3 =Rexlh, (M3),
SM% = ReZ 4 (M3). (29)

Since the tadpole coefficients are chosen to vanish in all
orders, their counterterms follow from 7'y, g7y + 67 (j, gy =0:

5Th — _Th’ 6TH — _TH' (30)
DR renormalization is the most convenient choice for the
remaining renormalization constants

s

8Zy, = 6ZBR = —[ReX;

]div
HH|a=0

82y, = 6ZPR = —[ReX

]div
hhla=0

’

1 _
Stanff = 5 (6Zy,, — 6Zy,) = Stan DR, (31)

We choose a renormalization scale of pupr = m, in all
numerical evaluations.

Finally, in the Feynman-diagrammatic approach we are
following here, the higher-order-corrected CP-even Higgs-
boson masses are derived by finding the poles of the
(h, H)-propagator matrix. The inverse of this matrix is

2 (p?) > (32)

pZ - m%t.tree + ihh(pz)

|
theoretical uncertainty, which should be reduced to the
same (or higher) level of accuracy.

The generic Feynman diagrams for the one-loop Higgs-
boson self-energies relevant for our work are shown in
Fig. 1. The diagrams were generated with FeynArts and
further evaluated using FormCalc; see Sec. ITE.

D. Calculation of EWPO

EWPO that are known with an accuracy at the per-mille
level or better have the potential to allow a discrimination
between quantum effects of the SM and SUSY models; see
Ref. [6] for a review. Examples are the W-boson mass My,
and the Z-boson observables, such as the effective leptonic
weak mixing angle sin’f.;, whose present experimental
uncertainties are [24]

SMEP Y ~ 15 MeV,
Ssin25 % 15 % 1073, (35)

The experimental uncertainty will further be reduced [25]
to
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FIG. 1. Generic Feynman diagrams for the Higgs-boson self-

energies and tadpoles. ¢ denotes any of the Higgs bosons, &, H, A
or H*; ¢ stands for e, u, 7; £, are the six mass eigenstates of
charged sleptons; and 7, are the three sneutrino states z,, 7, U;.

SMEPMU® L4 MeV,  5sin207P M L 13 %1075, (36)

at the ILC and at the GigaZ option of the ILC, respectively.
The W-boson mass can be evaluated from

M3 na
M3, 1 ——W> = 1+ Ar 37
V(-5 At @)

where « is the fine-structure constant and G, the Fermi
constant. This relation arises from comparing the prediction
for muon decay with the experimentally precisely known
Fermi constant. The one-loop contributions to Ar can be
written as

2
Ar = Aa - i—;’Ap + (A7) ems (38)
w
where Aa is the shift in the fine-structure constant due to
the light fermions of the SM, Aa « log(Mz/m ), and Ap is
the leading contribution to the p parameter [26] from
(certain) fermion and sfermion loops. The remainder part
(Ar),.,, contains in particular the contributions from the
Higgs sector.

The effective leptonic weak mixing angle at the Z-boson
resonance, sin’@,, is defined through the vector and axial-
vector couplings (¢ and g4 ) of leptons (¢) to the Z boson,
measured at the Z-boson pole. If this vertex is written as
iy (g5 — gars)€Z, then

ga

- 1 9
iy = 1 (l —Re —) (39)
At tree level this coincides with the sine of the weak mixing
angle, sin’0y =1 —M%,/M%, in the on-shell scheme.
Loop corrections enter through higher-order contributions
to g% and ¢.
Both of these (pseudo)observables are affected by shifts
in the quantity Ap according to

2 2

C . C

2—WzAP’ Asin*@gy m——~
W Sw

S&
2
w

M
AMy, zTW Ap.  (40)

2 _
w

The quantity Ap is defined by the relation

PHYSICAL REVIEW D 90, 074016 (2014)

27(0) _ Zy(0)
Ap = YR (41)
z (14

with the unrenormalized transverse parts of the Z- and
W-boson self-energies at zero momentum, X7, (0). It
represents the leading universal corrections to the electro-
weak precision observables induced by mass splitting
between partners in isospin doublets [26]. Consequently,
it is sensitive to the mass-splitting effects induced by
nonminimal flavor mixing.

Beyond the Ap approximation, the shifts in My and
sin?@,4 originate from the complete sfermion contributions
to the quantity Ar and to other combinations of the various
vector-boson self-energies. It has been numerically verified
that Ap yields an excellent approximation for the full
calculation in the case of NMFV effects [6,7], however.

We calculated the LFV contribution to the above-
mentioned observables entering the Z- and W-boson
self-energies at the one-loop level through the p parameter
(but neglect effects entering via vertex or box corrections).
The generic Feynman diagrams contributing to our calcu-
lation are shown in Fig. 2. The diagrams were generated
with FeynArts and further evaluated using FormCalc; see
Sec. I1E. The resulting evaluation of Ap has been made
publicly available in FeynHiggs. Using Eq. (40) the shifts
in My, and sin’f. induced by LFV have been evaluated;
see Sec. IV.

E. Changes in FeynArts, FormCalc, and FeynHiggs

FeynArts [11] and FormCalc [14] provide a high level
of automation for perturbative calculations up to one loop.
This is particularly important for models with a large
particle content such as the MSSM [12]. Here we briefly
describe the recent extension of the implementation of
the MSSM in these packages to include LFV. Details
on the previous inclusion of NMFV can be found in
Refs. [11,27]. This involves firstly the modification of the
slepton couplings in the existing FeynArts model file for
the MSSM and secondly the corresponding initialization
routines for the slepton masses and mixings, i.e. the 6 X 6

~ - l 1%
ls Vi ,*S\ —
\ \
N Z TN Z - L
7 e 7 e Z Z Z Z
A Vj
~ és 171
V; - .
ST W ) )
ot f ey N ‘
| 1% 14 1% 14
b

FIG. 2. Generic Feynman diagrams for the W- and Z-boson
self-energies containing sleptons in loops. The six mass eigen-
states of charged sleptons are denoted by #,, and r, stands for the
three sneutrino states 7, Uy, U;.
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and 3 x 3 diagonalization of the mass matrices in
FormCalc.

1. FeynArts model file

FeynArts’ add-on model file FV.mod applies algebraic
substitutions to the Feynman rules of MSSM.mod to
upgrade minimal to nonminimal flavor mixing in the
sfermion sector. The original version modified only the
squark sector, i.e. NMFYV, and needed to be generalized to
include LFV. We solved this by allowing the user to choose
which sfermion types to introduce nonminimal mixing for
through the variable $FV (set before model initialization, of
course). For example,

$FV = {11, 12, 13, 14};
InsertFields|..., Model — {MSSM, FV}]

sets nonminimal mixing for all four sfermion types, with
11=0, 12=¢, 13=u, and 14 =d as usual in
MSSM.mod. For compatibility with the old NMFV-only
version, the default is $FV = {13, 14}.

FV.mod introduces the following new quantities:

UASf[s;, s,,t] the slepton mixing matrix R, where
S1,8, = 1...6,
1= 1(0),2(2).3(). 4(d),

MASH(s, 7] the slepton masses, where

s=1...6,
1= 1(0),2(2).3(). 4(d).

Entries 4...6 are unused for the sneutrino.

2. Model initialization in FormCalc

The initialization of the generalized slepton-mixing
parameters MASf and UASf is already built into
FormCalc’s regular MSSM model-initialization file
model_-mssm.F but not turned on by default. It must be
enabled by adjusting the FV preprocessor flag in run.F:

#define FV 2

where 2 is the lowest sfermion type ¢ for which flavor
violation is enabled, i.e. Z.

The flavor-violating parameters 63-3 are represented in
FormCalc by the deltaSf matrix:

double complex deltasf(s;, s,,7) the matrix(5,); i,
where
51,8, =1...6(1...3 for 1),

t=2(2),3(ir), 4(d).

PHYSICAL REVIEW D 90, 074016 (2014)

Since ¢ is an Hermitian matrix, only the entries above the
diagonal are considered. The &\ are located at the
following places in the matrix o:

o | - s

| o
ot o

ot o

ot

The trilinear couplings A, acquire nonzero off-diagonal
entries in the presence of LFV through the relations

myi(Ag);; = (MJ%_LR),,, ij=1..3; (42)

see Eq. (2). These off-diagonal trilinear couplings (and
hence the &’s) appear directly in the Higgs-slepton-slepton
couplings, whereas all other effects are mediated through
the masses and mixings.

The described changes are contained in FeynArts 3.9
and FormCalc 8.4, which are publicly available from
feynarts.de.

3. Inclusion of LFYV into FeynHiggs

As discussed above, the new corrections to the (renor-
malized) Higgs-boson self-energies (and thus to the Higgs-
boson masses), as well as to Ap (and thus to My and
sin’f.¢) have been included in FeynHiggs [18,28-31].

The corrections are activated by setting one or more of
the 537 to nonzero values. All &7 that are not set are
assumed to be zero. The nonzero value can be set in
three ways:

(i) by including them in the input file, e.g.

deltalLLL23 0.1
where the general format of the identifier is

deltaFXYij, F =LEQU,D,
XY = LL,LR,RL,RR, ij = 12,23,13

(i) by calling the subroutine FHSetLFV(...) from your
Fortran/C/C++ code.
(iii) by calling the routine FHSetLFV]|...] from your
Mathematica code.
The detailed invocation of FHSetLFV is given in the
corresponding manual page included in the FeynHiggs
distribution. The LFV corrections are included starting
from FeynHiggs version 2.10.2, available from

feynhiggs.de.
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III. SELECTION OF INPUT PARAMETERS
A. MSSM scenarios

For the following numerical analysis we chose the
MSSM parameter sets of Ref. [15]. This framework
contains six specific points S1...S6 in the MSSM param-
eter space, all of which are highly compatible with present
data, including recent LHC searches and the measurements
of the muon anomalous magnetic moment. The values of
the various MSSM parameters as well as the values
of the predicted MSSM mass spectra are summarized in
Table I. They were evaluated with the program FeynHiggs
[18,28-31].

mp, = mp,, M
Mo, =Mmgp, Mo,
A=Ay, A,

M, =2M, = Ms/4, u,
My, tan f.

The specific values of these ten MSSM parameters in
Table I are chosen to provide different patterns in the
various sparticle masses, but all leading to rather heavy
spectra and thus naturally in agreement with the absence of
SUSY signals at the LHC. In particular, all points lead to
rather heavy squarks and gluinos above 1200 GeV and

PHYSICAL REVIEW D 90, 074016 (2014)

For simplicity, and to reduce the number of independent
MSSM input parameters, we assume equal soft masses for
the sleptons of the first and second generations (similarly
for the squarks), and for the left and right slepton sectors
(similarly for the squarks). We choose equal trilinear
couplings for the top and bottom squarks and for the
sleptons consider only the stau trilinear coupling; the others
are set to zero. We assume an approximate GUT relation for
the gaugino soft-SUSY-breaking parameters. The pseudo-
scalar Higgs mass M, and the u parameter are taken as
independent input parameters. In summary, the six points
S1...S6 are defined in terms of the following subset of ten
input MSSM parameters:

(with mp =mpg,i= 1,2,3)

(with my =my = mb,»i =1,2,3)

|

heavy sleptons above 500 GeV (where the LHC limits
would also permit substantially lighter sleptons). The
values of M, within the interval (500, 1500) GeV, tanfj
within the interval (10, 50) and a large A, within (1000,
2500) GeV are fixed such that a light Higgs boson / within
the LHC-favored range (123, 127) GeV is obtained.

TABLE L. Selected points in the MSSM parameter space (upper part) and their corresponding spectra (lower part).
All dimensionful quantities are in GeV.

S1 S2 S3 S4 S5 S6
mi 500 750 1000 800 500 1500
mj. 500 750 1000 500 500 1500
M, 500 500 500 500 750 300
A, 500 750 1000 500 0 1500
u 400 400 400 400 800 300
tan 20 30 50 40 10 40
M, 500 1000 1000 1000 1000 1500
my,, 2000 2000 2000 2000 2500 1500
mey, 2000 2000 2000 500 2500 1500
A, 2300 2300 2300 1000 2500 1500
my 489-515 738-765 984-1018 474-802 488-516 1494-1507
my, 496 747 998 496-797 496 1499
My 375-531 376-530 377-530 377-530 710-844 247-363
myp 244-531 245-531 245-530 245-530 373-844 145-363
M, 126.6 127.0 127.3 123.1 123.8 125.1
My 500 1000 999 1001 1000 1499
M, 500 1000 1000 1000 1000 1500
My 507 1003 1003 1005 1003 1502
my, . 1909-2100 1909-2100 1908-2100 336-2000 2423-2585 1423-1589
my 1997-2004 1994-2007 19902011 474-2001 2498-2503 1492-1509
m; 2000 2000 2000 2000 3000 1200
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TABLE II.  Present upper bounds on the slepton mixing parameters |5§>B| for the MSSM points S1...S6 defined in
Table 1. The bounds for |5%"| are similar to those of |5;F].

J

S1 S2 S3 S4 S5 S6
|65E ] ax 10 x 1073 7.5 %1073 5% 1072 6x107° 42 x 107 8 x 107°
|05 | 2x10°° 3x10°° 4x107° 3x10°° 2x10°° 1.2x107°
|O8R | o 1.5x 1073 1.2x 1073 1.1 x1073 1x1073 2x1073 52x1073
|68 ax 5% 1072 5x 1072 3 %1072 3x1072 23 x 1072 5% 1072
| 61K s 2 x 1072 3x1072 4 %1072 2.5 %1072 2x 1072 11 x 1072
|ORR | o 5.4 x 107! 5x 107! 4.8 x 107! 5.3 x 107! 7.7 x 107! 7.7 x 107!
|65E ] ax 6x 1072 6 x 1072 4x 1072 4x1072 27 x 1072 6x 1072
|65R ] ax 2x 1072 3% 1072 4x1072 3% 1072 2x 1072 12 x 1072
| SRR e 5.7 x 107! 52x 107! 5% 107! 5.6 x 107! 8.3 x 107! 8 x 107!

The large values of M, > 500 GeV place the Higgs
sector of our scenarios in the so-called decoupling regime
[32], where the couplings of & to gauge bosons and
fermions are close to the SM Higgs couplings, and the
heavy H couples like the pseudoscalar A, and all heavy
Higgs bosons are close in mass. With increasing M, the
heavy Higgs bosons tend to decouple from low-energy
physics and the light 4 behaves like Hgy. This type of
MSSM Higgs sector seems to be in good agreement with
recent LHC data [33]. We checked with the code
HiggsBounds [34] that this is indeed the case (although
S3 is right “at the border”).

Particularly, the absence of gluinos at the LHC so far
forbids too low M5 and, through the assumed GUT relation,
also a too low M. This is reflected by our choice of M, and
w1 which give gaugino masses compatible with present LHC
bounds. Finally, we required that all our points lead to a
prediction of the anomalous magnetic moment of the muon
in the MSSM that can fill the present discrepancy between
the Standard Model prediction and the experimental value.

B. Selection of §;® mixings

Finally, we need to set the range of values for the
explored 6;‘]5 ’s. We use the constraints of Ref. [15],
calculated from the following LFV processes:

(1) Radiative LFV decays: u — ey, — ey,and 7 — uy.
These are sensitive to the §)%’s via the (£,£7)
vertices with a real photon.

Leptonic LFV decays: 4 — 3e,7 — 3e,and 7 — 3pu.
These are sensitive to the §)%’s via the (£,£7)
vertices with a virtual photon, via the (¢,£;Z)
vertices with a virtual Z, and via the (£,7;h)
(¢it iH) 1 100p and (£:7;A)
Higgs bosons.
Semileptonic LFV tau decays: 7 — un and 7 — en.
These are sensitive to the &%’s via the (¢£A)| 100,
vertex with a virtual A and the (7£Z),,, vertex
with a virtual Z, where ¢ = pu, e, respectively.

1-loop

@)
1-loop
1-loop
1-loop>

1-loop Vertices with virtual

3

(4) Conversion of u into e in heavy nuclei: These are
sensitive to the 57’s via the (uey) o, vertex with a
virtual photon, the (ueZ),,,, vertex with a virtual
Z, and the (ueh), 1o, and (ueH) vertices with a
virtual Higgs boson.

Applying the most recent constraints from the LFV
processes listed above yields up-to-date limits on the
&% [15]. Using these upper bounds on &% given in
Table II, we calculate the corrections to the Higgs boson
masses and the EWPO. For each explored nonvanishing
delta, the corresponding physical sfermion masses and
mixings, as well as the EWPO and Higgs masses were
numerically computed with FeynHiggs 2.10.2, which
includes the analytical results of our calculations. A shift
in the soft-SUSY-breaking parameters in the slepton sector
could yield slightly shifted results; however we do not
consider such a variation here.

1-loop

IV. RESULTS AND DISCUSSION

We implemented the full one-loop results including all
LFV mixing terms for the W-, Z-, and Higgs-boson self-
energies in FeynHiggs 2.10.2. The analytical results are
lengthy and not shown here. For the numerical study we
analyzed all 12 53-3 for the MSSM scenarios defined in
Table 1. For a better view of the LFV effects we shall plot
only the differences

ApHY = Ap — APV, (43)
SMYEY = My, — MYISSM, (44)
Ssin* 0" = sin*Oeqr — sin® OGN, (45)

where ApMSSM_ pfMSSM “and gin? 9MSSM are the values with
8% = 0 [the latter two evaluated with the help of Eq. (40)].
Furthermore we use

AMEY = M, — MYISSM, (46)
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TABLE III.  The values of Ap, My, sin? ., M}, My and M- for the selected S1-S6 MSSM points defined in
Table I (i.e. with all 6{3-3 = 0). Mass values are in GeV.
S1 S3 S4 S5 S6
Ap 2.66 x 1073 1.72 x 1073 1.39 x 1073 2.35x 1074 2.36 x 1073 2.14 x 1073
My 80.362 80.361 80.375 80.364 80.363
sin? O 0.23151 0.23152 0.23152 0.23143 0.23150 0.23151
M, 126.257 126.629 126.916 123.205 123.220 124.695
My 500.187 999.580 999.206 1001.428 1000.239 1499.365
My 506.888 1003.182 1003.005 1005.605 1003.454 1501.553
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FIG. 3 (color online). EWPO and Higgs masses as a function of slepton mixing 554 for the six points defined in Table L.
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AMYY = My — MYSSM, (47)

AMYY = My — MYSSM, (48)
where again M}SSM, MYSSM and MYSSM are the values for
8 = 0. The SM results for My, and sin* O are My, =

80.361 GeV and sin’ O,y = 0.23152 as evaluated with
FeynHiggs (using the approximation formulas given in

0.0014

S1 + 4 o
52 S5
S3  x  S6
0.0012

0.001

0.0008

A /)LF\"

0.0006
0.0004

0.0002

\ 4
0 78
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Refs. [35,36]). The numerical values of Ap, My, sin’ O,
M, My and My in the MSSM with all &% =0 are
summarized in Table III.

Our numerical results are shown in Figs. 3—10. The six
plots in each figure are ordered as follows: upper left
Ap*Y, upper right SMEFY, middle left §sin® OLFY, middle
right AMEEY lower left AMEFY, and lower right AM ?{FQ’, as
a function of 8 (Fig. 3), 85& (Fig. 4), 6tF (Fig. 5), 65F
(Fig. 6), 68 (Fig. 7), 55 (Fig. 8), 58 (Fig. 9) and 55
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FIG. 4 (color online). EWPO and Higgs masses as a function of slepton mixing 85 for the six points defined in Table I. Solid red

(blue) line shows the present (future) experimental uncertainty.
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FIG. 5 (color online). EWPO and Higgs masses as a function of slepton mixing §F for the six points defined in Table L.

on the &% are very strict (see Table II) and hence it does not
contribute sizably. The bounds on the other §\’s are less
strict but in most cases we still do not get appreciable
contributions to the EWPO (but now can quantify their
corresponding sizes). The only significant contribution
comes from &5F. The upper left plot in Fig. 4 shows our
results for Ap as functions of 84¢ under the presently
allowed experimental range given in Table II. Depending
on the choice of scenario (S1...S6), values of O(107%) can
be reached. The largest values are found in S5, where the
values of 85 of up to +0.3 are permitted. For the same

(Fig. 10). The legends are shown only in the first plot of
each figure. We do not show results for LFV effects
involving only the first and second generation. While they
are included for completeness in our analytical results, they
are expected to have a negligible effect on the observables
considered here. The latter is confirmed by the numerical
analysis presented in the next subsections.

A. EWPO

We start with the investigation of the LFV effects on the
electroweak precision observables. Experimental bounds
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FIG. 6 (color online). EWPO and Higgs masses as a function of slepton mixing 85F for the six points defined in Table L.

value of 65F we find the largest contributions in S6, which
possesses the relatively largest values of soft-SUSY-break-
ing parameters in the slepton sector. This indicates that in
general large contributions to the EWPO are possible as
soon as heavy sleptons are involved. Conversely, while
such heavy sleptons are in general difficult to detect
directly at the LHC or the ILC, their presence could be
visible in case of large LFV contributions via a shift in
the EWPO.

Turning to the (pseudo)observables My, and sin® 6,
respectively shown in the upper right and middle left plot

of Fig. 4, we can compare the size of the LFV contribu-
tions to the current and future anticipated accuracies in
these observables. The black line in both plots indicates
the result for 55 = 0. The red line shows the current level
of accuracy, Eq. (35), while the blue line indicates the
future ILC/GigaZ precision, Eq. (36). We refrain from
putting the absolute values of these observables since their
values strongly depend on the choice of the top squark or
sbottom sector (see Ref. [6] and references therein), which
is independent on the slepton sector under investigation
here. While the current level of accuracy only has the
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FIG. 7 (color online). EWPO and Higgs masses as a function of slepton mixing &% for the six points defined in Table L.

potential to restrict 65 in S5 and S6, the future accuracy
(particularly in sin® f.¢) can set stringent bounds in all six
scenarios.

The overall conclusion for the EWPO is that, while 53¢ is
the most difficult one to restrict using “conventional” LFV
observables (see Sec. III B), it has (by far) the strongest
impact on EWPO. Depending on the top squark or sbottom
sector, new bounds beyond the conventional LFV observ-
ables can be obtained even with the current precision, and
still better with the (anticipated) future accuracies.

B. Higgs masses

We now turn to the effects of the LFV contributions on
the prediction of the neutral CP-even and the charged
MSSM Higgs-boson masses. As discussed in Sec. II C, the
theoretical accuracy should reach a precision of ~50 MeV
in the case of M, and about ~1% in the case of the heavy
Higgs bosons. The calculation of M), in the presence of
nonminimal flavor violation (NMFV) in the squark sector
[5] indicated that corrections as large as O(10 GeV) are
possible (for the NMFV &% in agreement with all other
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FIG. 8 (color online). EWPO and Higgs masses as a function of slepton mixing 65F for the six points defined in Table L.

precision data). Similar or even larger corrections were
found for the heavy Higgs bosons, in particular for the
charged Higgs boson. Large corrections were associated
especially with nonzero values of 555 <"

Even though the corrections from the slepton sector are
naturally much smaller than from the squark sector, the
LFV contributions could be expected to exceed future and
possibly even current experimental uncertainties. Indeed,
the estimated theoretical uncertainties for the LFV con-

tributions of at least O(100 MeV) for M, and O(10 GeV)

for My= were at the level of or exceeding the future
anticipated accuracies. Thus, the LFV had to be evaluated
and analyzed in order to reach the required level of
precision.

The Higgs-boson masses are shown in the middle right
plot (M,,), the lower left (My) and the lower right plot
(M =) of each figure. As expected from the NMFV analysis
in the squark sector [5], the largest effects are found for
SERRL but similarly for 5-%RE, indicating that only the
electroweak, not the Yukawa couplings, play a relevant role
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FIG. 9 (color online). EWPO and Higgs masses as a function of slepton mixing 588 for the six points defined in Table L

in these corrections. Contrary to expectations, the correc-
tions to M), always stay below the level of a few MeV.
Though this result obviates the above-mentioned uncer-
tainty of O(100 MeV), these contributions are too small to

yield a sizable numerical effect.

Turning to the heavy Higgs bosons, the contributions to
My (most sizable again for 6§§1§L) do not exceed

O(100 MeV) and are thus effectively negligible. Sub-
stantially larger corrections are found, in agreement with
the expectations from Ref. [5] for the charged Higgs-
boson mass. They can reach the level of nearly —2 GeV;

see Figs. 5-8. For the chosen values of M, (or M) this
stays below the level of 1%. The absolute size of
the corrections is not connected to the value of M= in
S1...S6, however. Choosing starting values of M, some-
what smaller (requiring a new evaluation of the corre-
sponding bounds on the LFV 5@3) could yield relative
corrections to M= at the level of 1%. Furthermore, as in
the case of the light Higgs-boson mass, the explicit
calculation of the LFV effects eliminates the theory
uncertainty associated to these effects, thus improving

the theoretical accuracy.
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V. CONCLUSIONS

We extended lepton flavor violation in the MSSM into
the setup of FeynArts and FormCalc; the corresponding
model file is part of the latest release of these programs.

The LFV effects are parametrized in a complete set of
5{‘1-3 (A,B=L,R;i, j=1,2,3)without any assumption on
the physics at the GUT scale. The inclusion of LFV into
FeynArts/FormCalc allowed us to calculate the one-loop
LFV effects on electroweak precision observables (via the
calculation of gauge-boson self-energies) as well on the

Higgs-boson masses of the MSSM (via the calculation of
the Higgs-boson self-energies). The corresponding results
have been included in the code FeynHiggs and are publicly
available from version 2.10.2 on.

The numerical analysis was performed on the basis of six
benchmark points defined in Ref. [15]. These benchmark
points represent different combinations of parameters in the
sfermion sector. The restrictions on the various 5{}3 in these
six scenarios, provided by experimental limits on LFV
processes (such as pu — ey), have been taken from
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Ref. [15], and the effects on EWPO and Higgs-boson
masses have been evaluated in the experimentally allowed
ranges. In this way we provide a general overview about the
possible size of LFV effects and potential new restrictions
on the 5‘3-3 from EWPO and Higgs-boson masses.

The LFV effects in the EWPO turned out to be sizable for
S5E but (at least in the scenarios under investigation)
negligible for the other &\°. The effects of varying &)
in the experimentally allowed ranges turned out to exceed
the current experimental uncertainties of My, and sin® O
in the case of heavy sleptons. No new general bounds could
be set on 653’“ however, since the absolute values of My, and
sin? 04 strongly depend on the choices in the top squark or
sbottom sector, which is disconnected from the slepton
sector presently under investigation. Such bounds could be
set on a point-by-point basis in the LFV MSSM parameter
space, however. Looking at the future anticipated accu-
racies, also lighter sleptons yielded contributions exceeding
that precision. It may therefore be possible in the future to
set bounds on 651 from EWPO that are stronger than those
from direct LFV processes.

In the Higgs sector, based on evaluations for flavor
violation in the squark sector, non-negligible corrections to

PHYSICAL REVIEW D 90, 074016 (2014)

the light CP-even Higgs mass as well as to the charged
Higgs-boson mass could be expected. The associated
theoretical uncertainties exceeded the anticipated future
precision for M, and M:. Taking the existing limits on
the 5§}B from LFV processes into account, however, the
corrections mostly turned out to be small. For the light CP-
even Higgs mass they stay at the few-MeV level. For the
charged Higgs mass they can reach O(2 GeV), which,
depending on the choice of the heavy Higgs-boson mass
scale, could be at the level of the future experimental
precision. More importantly, the theoretical uncertainty
from LFV effects that previously existed for the evaluation
of the MSSM Higgs-boson masses has been reduced below
the level of future experimental accuracy.
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