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Dear Editor, 

  

We are submitting the revised version of the manuscript 2014-BJP-0951-RP entitled 

“FM19G11 reverses endothelial dysfunction in rat and human arteries through 

stimulation of the PI3K/Akt/eNOS pathway, independently of mTOR/HIF-1α 

activation” by El Assar, Royo, López-Hernández, Sánchez-Ferrer, Aceña, Rodríguez-

Mañas, Angulo, and myself to be considered for publication in the British Journal of 

Pharmacology. 

After having fulfilled most of the questions raised by the additional reviewer in the 

previous revision, we have now generated a point by point response to the new 

comments raised by the Editor and the reviewer and modified the manuscript 

accordingly (changes are highlighted). We think we have reasonably addressed the 

comments of the reviewer and the Editor and we hope that our work would be now 

adequate for publication in the British Journal of Pharmacology. 

  

 

Sincerely yours, 

 

 

 

  

José M. Sánchez-Puelles, PhD 

Molecular Pharmacology Group, Cellular and Molecular Medicine Dept., Centro de 

Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas. 

c/ Ramiro de Maeztu 9  

28040 Madrid, Spain. 

jm.spuelles@csic.es 
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Answers to Reviewer and Editor – Manuscript BJP-0951-RP.R1 

 

Editor's Comments to Author: 

The revised manuscript is now much improved but there are some important points 

raised by the final reviewer that still require attention. Addressing these matters may not 

require further experimentation if the authors a) decide change their stated conclusions 

to match the data and b) discuss the points raised with respect to the data presented in 

figure 5. However, doing so would change the conclusions of the paper somewhat and 

such changes may not be acceptable to the reviewer/editor. Of course, within the scope 

of a revision, it is possible to include additional data to address the points raised by the 

reviewer should the authors decide to do so. 

 

Although we were confident about the accuracy of the results presented in previous 

figure 5, in order to expedite acceptance, we have performed new determinations using 

immunofluorescence techniques to further support our conclusions. As expected, these 

new results presented in Figure 5 are confirmatory of our previous data and overcome 

the criticisms raised by the reviewer regarding previous Figure 5. Moreover, we have to 

note that our conclusions are not merely based in results shown in Figure 5; at this 

respect, we have provided Western blot and functional data with selective inhibitors 

(Figures 3 and 4) supporting that phosphorylation of Akt and eNOS is increased by 

FM19G11 and this effect is required for the improvement driven by this drug on 

endothelial vasodilation under endothelial dysfunction conditions.  

 

Please ensure that your drug/molecular target nomenclature (e.g. receptors, ion channels 

and so on) conforms to BJP's Concise Guide to Pharmacology, and add a comment to 

this effect in the Methods section, citing the source 'Concise Guide to 

PHARMACOLOGY citation', e.g. Alexander SPH, Benson HE, Faccenda E, Pawson 

AJ, Sharman JL, Spedding M, Peters JA and Harmar AJ, CGTP Collaborators. (2013) 

The Concise Guide to PHARMACOLOGY 2013/14: G Protein-Coupled Receptors. Br 

J Pharmacol. 170: 1459-1581. 

 

We have ensured that nomenclature used for designating drugs and molecular targets 

conforms to BJP's Concise Guide to Pharmacology and we have introduced a sentence 

in this sense in the Methods section (page 14, lines 11-12). 

 

Reviewers' Comments to Author: 

 

Reviewer: 2 

Comments to the Author 

The authors have adequately addressed most of the points raised. 

However, it is still not clear that phosphorylation of eNOS and Akt were actually 

increased in FM19G11-treated aorta (Fig. 5).  In particular:-  

1. Fig. 5A: The nuclei of endothelial cells are too faint. Only two or three nuclei can be 

seen. Moreover,  phospho-Akt-positive nuclei cannot be discriminated from Akt-

positive ones. 

 

To further confirm our data, we have performed new determinations using 

immunofluorescence techniques to confirm the increase in phosphorylation of Akt and 

eNOS in aortae treated with FM19G11 either in vivo or ex vivo. These additional 

results support those originally provided by using immunohistochemistry approach 
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since almost complete absence of red fluorescence signal is obtained in untreated IRR 

aortae while a clear fluorescence is observed in FM19G11 treated aortae. Nuclei are 

clearly visible after counterstaining with DAPI in all samples. Due to inclusion of the 

new method for detection phospho-Akt and phospho-eNOS as shown in new Figure 5, 

we have modified accordingly Methods section (page 12, first paragraph) and 

corresponding figure legend. 

Moreover, we would like to note that the results shown in Figure 5 reinforce those we 

have provided by Western blot and functional data with selective inhibitors (Figures 3 

and 4) supporting that phosphorylation of Akt and eNOS is increased by FM19G11 in 

aorta from IRR and this effect is required for the improvement driven by this drug on 

endothelial vasodilation under endothelial dysfunction conditions. Taking all this data 

as a whole, we do feel that there is strong experimental support sustaining our 

hypothesis. 

 

 

2. Fig. 5B: Although the authors indicated phospho-eNOS positive cells in the 

endothelial lining, there is no difference between phospho-eNOS positive and negative 

cells. If phospho-eNOS form is stained in the cytosol as in Fig5D, there seem to be no 

phospho-eNOS positive cells in Fig. 5B. 

 

New immunofluorescence assays show a clear line of positive endothelial cells only in 

FM19G11-treated aortae (Figure 5C and 5E). In fact, the difference with an untreated 

aorta from IRR (Figure 5A) is now more evident. 

 

3. Fig. 5E: The phospho-Akt staining was too faint to be discriminated as positive 

staining. 

 

In the same sense, we think that the new immunofluorescence assays shown in the new 

Figure 5 provide a better support to the conclusions than the previously shown figure. 

Although positive signal for p-Akt is less intense and localized than that of p-eNOS, 

there is no doubt that only after treatment with FM19G11 a clear fluorescence signal is 

appreciated in the aortae from IRR (Figure 5D and 5F). Although, more intense in 

endothelium, positive signal is also observed in smooth muscle cells. This is not 

unexpected since Akt is also expressed in smooth muscle cells. However, the increase in 

p-Akt translates into eNOS phosphorylation only in the endothelium where it is 

expressed (Figure 5C and 5E). 

 

4. Fig. 5G: why did the authors not present the quantification of phospho-Akt data in 

Fig. 5A, 5C, 5E? 

 

Following reviewer’s suggestion we also provide quantification of the percentage of 

endothelial cells positive for phospho-Akt (New Figure 5G). 
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Summary 

BACKGROUND AND PURPOSE 

FM19G11 up-regulates mTOR/HIF-1α and PI3K/Akt pathways which are involved in 

endothelial function. We evaluated the effects of FM19G11 on defective endothelial 

vasodilatation in arteries from rats and humans and investigated the contributing 

mechanism. 

EXPERIMENTAL APPROACH: 

The effects of chronic in vivo administration of FM19G11 on aortic endothelial 

vasodilatation were evaluated together with ex vivo treatment in aortic and mesenteric 

arteries from control (CR) and insulin-resistant rats (IRR) as well as in human penile 

arteries (HPRA) and corpus cavernosum (HCC) from men with vasculogenic erectile 

dysfunction (ED) as a model of human endothelial dysfunction. Vascular expression of 

phosphorylated-endothelial NO synthase (p-eNOS), phosphorylated-Akt (p-Akt) and 

HIF-1α was determined by immunodetection while cGMP was monitored by ELISA. 

KEY RESULTS: 

Chronic administration of FM19G11 reversed the impairment of endothelial 

vasodilatation in IRR. Ex vivo treatment with FM19G11 also significantly improved 

endothelium-dependent vasodilatation in aorta and mesenteric arteries from IRR. These 

effects were accompanied by the recovery of p-eNOS and cGMP levels in IRR aorta 

and were prevented by either NOS or PI3K inhibition. p-Akt and p-eNOS contents were 

increased by FM19G11 in aortic endothelium of IRR. Improvement of endothelial 

vasodilatation by FM19G11 remained despite mTOR/HIF-1α inhibition. Finally, 

FM19G11 completely recovered endothelial vasodilatation in HPRA and HCC from ED 

patients. 
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CONCLUSIONS AND IMPLICATIONS: 

Stimulation of the PI3K/Akt/eNOS pathway with FM19G11 relieves impaired NO-

mediated endothelial vasodilatation in rat and human arteries independently of 

mTOR/HIF-1α activation. This pharmacological strategy could be beneficial for 

managing pathological conditions associated with endothelial dysfunction, such as 

erectile dysfunction.  

 

Keywords: endothelial dysfunction – insulin resistance – FM19G11 – endothelial nitric 

oxide synthase – phosphatidylinositol-3 kinase/Akt pathway – hypoxia inducible factor-

1 – human penile resistance arteries – erectile dysfunction 

Abbreviations 

ACh, acetylcholine; cGMP, cyclic guanosine monophosphate; CR, control rats; ED, 

erectile dysfunction; eNOS, endothelial NO synthase; HCC, human corpus cavernsoum; 

HIF-1α, hypoxia inducible factor-1α; HPRA, human penile resistance arteries; IRR, 

insulin-resistant rats; L-NAME, N
G
-nitro-L-arginine methyl ester; mTOR, mammalian 

target of rapamycin; p-eNOS, phosphorylated eNOS; p-Akt, phosphorylated Akt; PI3K, 

phosphatidylinositol-3 kinase; SNP, sodium nitroprusside. 
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Introduction 

Endothelial dysfunction is a key process in the pathogenesis of cardiovascular disease. 

It precedes the disease’s clinical manifestations and predicts future cardiovascular 

events (Green et al., 2011). Situations increasing cardiovascular disease risk, such as 

diabetes, hypertension and aging, are clearly associated with the presence of endothelial 

dysfunction. Therapeutic strategies targeted at preserving or recovering endothelial 

function are key to the prevention of cardiovascular disease. Nitric oxide (NO) 

participates in many functions of the endothelium and is a key mediator of endothelium-

dependent vasodilatation. In fact, the main risk factors for cardiovascular disease in 

humans share the characteristic of defective NO-mediated vasodilation (Paniagua et al., 

2001; Rodríguez-Mañas et al., 2009; Angulo et al., 2010). Thus, the recovery of NO 

signaling is an adequate strategy for overcoming endothelial dysfunction and preventing 

cardiovascular disease. 

The enzyme responsible for NO generation from the endothelium is endothelial NO 

synthase (eNOS). Its activity is triggered by a rise in intracellular calcium in response to 

various stimuli (acetylcholine, bradykinin, thrombin, shear stress, etc.) and is also 

regulated by post-translational mechanisms such as acylation, S-nitrosylation and 

phosphorylation (Michel and Vanhoutte, 2010). Among these, phosphatidyl-inositol-3-

kinase (PI3K)/Akt-dependent phosphorylation at Ser1177 is an important mechanism 

for enhancing NO synthesis by eNOS (Fisslthaler et al., 2000; Hisamoto et al., 2001; 

Symons et al., 2009). Furthermore, defective PI3K/Akt-dependent phosphorylation of 

eNOS contributes to the impairment of NO-mediated vasodilatation in pathological 

circumstances, including insulin resistance (Kobayashi et al., 2004; Li et al., 2010; 

Zhang et al., 2012). 
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Insulin resistance is a pathological situation defined by a defective action of insulin in 

target organs, compensated for by increased insulin secretion to maintain circulating 

glucose concentrations in normal range. In addition to predicting type-2 diabetes, 

insulin resistance represents an important risk for the development of cardiovascular 

disease (Hanley et al., 2002; Thacker et al., 2011; Reaven, 2012). This is probably 

related to the impact of insulin resistance on endothelial function, since impairment of 

endothelial vasodilatation has been demonstrated in different vascular areas in humans 

with this condition (Lteif et al., 2005; Suzuki et al., 2007; Fujii et al., 2008). In fact, 

induction of insulin resistance by feeding rats with high fructose results in defective 

endothelium-dependent relaxation in both macro- and micro-vessels (Shinozaki et al., 

1999; Katakam et al., 1999), providing a well-characterized model of endothelial 

dysfunction (Tran et al., 2009). 

Erectile dysfunction (ED) is an indicator of the existence of several peripheral 

vasculopathies (Goksu et al., 2014) and even predicts the presence of subclinical 

coronary artery disease (Jackson, 2013). In fact, ED is actually considered an indicator 

of systemic endothelial dysfunction and a sentinel symptom of silent generalized 

cardiovascular disease (Gandaglia et al., 2014). Vascular ED in men is indeed 

associated to a defective endothelium-dependent relaxation in key vascular structures 

involved in penile erection: penile arteries and corpus cavernsoum (Angulo et al., 

2010), representing an appropriate model of human endothelial dysfunction. 

Hypoxia transcription factor (HIF) has a prevalent position in the context of 

angiogenesis and pathological processes of cancer, inflammation and cardiovascular and 

neurodegenerative diseases (Majmundar et al., 2010; Royo et al., 2011). HIF-1α is 

thought to mediate cardio- and neuro-protection, in part by reprogramming cell 

metabolism. Therefore, it is conceivable that HIF-1α therapies could treat vascular and 
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metabolic diseases. Growing evidence supports a role for HIF-1α activity in the 

neoangiogenic response to tissue ischemia (Bosch-Marce et al., 2007). 

Therapies targeted to overcome the endothelial dysfunction associated with aging and 

other cardiovascular risk factors are definitely needed. FM19G11 is a novel compound 

that modulates transcriptional activity of HIF-α proteins under hypoxic conditions 

(Moreno-Manzano et al., 2010), while in normoxia it up-regulates protein expression of 

HIF-1α through rapid activation of the transcription factor, mammalian target of 

rapamycin (mTOR) (Rodriguez-Jimenez et al., 2010; 2012). Mechanistic analysis 

revealed that FM19G11 facilitates glucose availability and metabolism in ependymal 

stem cells by activating the PI3K/Akt pathway (Rodríguez-Jiménez et al., 2012).  

The aim of the present study was to evaluate the capacity of FM19G11 to reverse the 

impairment of endothelium-dependent vasodilatation in insulin-resistant rats, 

determining the involvement of PI3K/Akt/eNOS and mTOR/HIF-1α pathways. The 

validity of this pharmacological strategy to overcome endothelial dysfunction in a  

human model of endothelial dysfunction was evaluated in penile resistance arteries 

(HPRA) and corpus cavernosum (HCC) from patients with vasculogenic ED.   
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Methods 

Animal model for insulin resistance 

Studies were performed in accordance with the Declaration of Helsinki and with the 

Guide for the Care and Use of Laboratory Animals, as adopted and promulgated by 

National Institutes of Health, and were approved by the local Ethics Committee for 

Animal Experimentation of the Hospital Universitario de Getafe. All studies involving 

animals are reported in accordance with the ARRIVE guidelines for reporting 

experiments involving animals (McGrath et al., 2010). A total number of 90 male 

Wistar rats (Harlan, Barcelona, Spain) under 12 h light/dark cycles with free access to 

food and water were used. Fructose-fed rats were used as a model of insulin resistance. 

This is a widely characterized model (Tran et al., 2009) that has been shown to be 

associated with impairment of endothelial vasodilatation (Shinozaki et al., 1999). Four 

to five week-old rats were fed with fructose (20%) in drinking water for 8 weeks. Age-

matched rats maintained in the same conditions but not receiving fructose in drinking 

water were used as controls (non-insulin-resistant). Insulin-resistant rats continuing on 

high-fructose diet were treated intraperitoneally (1 ml·kg
-1

) with FM19G11 (10 mg·kg
-

1
·day

-1
) or vehicle (25% dimethylsulfoxide) for 7 days. This duration of treatment was 

chosen based on previously reported functional benefits in spinal cord injury 

regeneration in rats after one week of FM19G11 administration (Rodríguez-Jiménez et 

al. 2012).  Then, rats were killed and aortae and mesenteric arteries were obtained for 

vascular reactivity experiments. Rats were fasted overnight before death and serum was 

obtained for determination of glucose and insulin concentrations. 

Serum glucose and insulin determinations 
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Circulating levels of insulin were determined in rat serum by ELISA, following the 

manufacturer’s instructions (Mercodia AB, Sweden, cat. # 10-1250-01). Serum glucose 

concentrations were determined by a colorimetric commercial kit (Biolabo SA, Maizy, 

France, cat. # LP80209). All samples were assessed in duplicate. Homeostasis Model 

Assessment of Insulin Resistance (HOMA-IR) index was calculated as described by 

Mathews et al. (1985) and normalized to the value obtained in control rats. 

Relaxation of aortic segments 

Rats were anesthetized with ketamine (50 mg·kg
-1

) and diazepam (4 mg·kg
-1

) and killed 

by bleeding. The thoracic aorta was carefully excised, cleaned of surrounding fat and 

connective tissue and placed in a Petri dish with Krebs-Henseleit solution (KHS) at 4ºC. 

Composition of KHS was (in mM): NaCl 119, KCl 4.6, CaCl2 1.5, MgCl2 1.2, NaHCO3 

24.9, glucose 11, KH2PO4 1.2 and EDTA 0.027. Aortae were cut into 4 to 5 mm-long 

cylindrical segments. For circular isometric tension recording, each vascular cylinder 

was set up in an organ bath containing KHS at 37ºC continuously bubbled with 95% O2/ 

5% CO2 mixture, which gave a pH of 7.4, according to the method described elsewhere 

(Angulo et al., 1996). Tension was continuously recorded in a data acquisition system 

(MP100A BIOPAC System, Santa Barbara, CA, USA). Aortic segments were 

contracted with norepinephrine (NE, 10-30 nM) and, when a stable plateau was reached, 

increasing concentrations of acetylcholine (ACh, 0.01 to 10 µM), insulin (0.01 nM to 1 

µM) or sodium nitroprusside (SNP; 1 nM to 10 µM) were added and vasodilatory 

responses were determined. For evaluation of the acute effects of experimental 

treatments on endothelial vasodilatation, treatments were randomly assigned to different 

segments from the same animal and the experiments were systematically performed in 
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parallel for each series of experiments. Each vascular segment received only one of the 

treatments. 

Determination of Cyclic Guanosine Monophosphate Content in Rat Aorta  

Rat aortic segments treated for 30 min with vehicle, FM19G11 (1 µM), L-NAME (100 

µM) or FM19G11 plus L-NAME, were exposed for 5 min to 10 µM ACh, immediately 

frozen in liquid nitrogen and then stored at -80ºC till extraction for cyclic nucleotide 

assay. Cyclic nucleotides were extracted by homogenization in 6% trichloroacetic acid, 

followed by ether (H2O-saturated) extraction and lyophilization. cGMP concentration 

was determined by enzyme-linked immunosorbent assay, using a kit from Cayman 

Chemical Company (Ann Arbor, MI, USA, cat. # 581021) (Angulo et al., 2010). 

Vascular reactivity of rat mesenteric arteries 

Second to third order branches of mesenteric arterial tree (lumen diameter 200-400 µm) 

were obtained from omentum specimens and dissected by carefully removing the 

adhering fat tissue. Arterial ring segments (2 mm long) were subsequently mounted on 

microvascular wire myographs (J.P. Trading, Aarhus, Denmark) for circular isometric 

tension recordings, as described elsewhere (Rodríguez-Mañas et al., 2003). The vessels 

were allowed to equilibrate for 30 min in KHS continuously bubbled with 95% O2/5% 

CO2 mixture to maintain a pH of 7.4. The passive tension and internal circumference of 

vascular segments when relaxed in situ under a transmural pressure of 100 mmHg 

(L100), were determined. The arteries were then set to an internal circumference 

equivalent to 90% of L100, at which the force development is close to maximal 

(Mulvany and Halpern, 1977). Preparations were then exposed to 125 mM K
+
 (KKHS, 

equimolar substitution of NaCl for KCl in PSS) and the contractile response was 

measured. After a stabilization period, rat arteries were contracted with 1-3 µM NE 
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(80% of KKHS-induced contraction, approximately) and relaxation responses were 

evaluated by cumulative additions of ACh (1 nM to 10 µM) to the chambers. 

Experiments were run in parallel. Concentration-response curves to the agents in arterial 

segments from the same animal that previously received only vehicle (0.01% DMSO) 

were considered as controls for the evaluation of the effects of the different treatments. 

Western Blot analysis 

Total protein extracts were obtained by homogenization of aortic tissue with a MagNA 

Laser electric homogenizer using T-PER extraction reagent (Pierce Biotechnology, Inc., 

Rockford, IL) according to the manufacturer’s recommendations, with the addition of 

1x Protease Inhibitor Cocktail and 1x Phosphatase Inhibitor Cocktail (Roche 

Diagnostics, IN). Equal amounts of protein extracts (20 µg) were loaded onto a 10% 

SDS-polyacrylamide gel and resolved by standard SDS-PAGE. Proteins were 

electrophoretically transferred onto PVDF membranes. Membranes were blocked with 

5% skimmed milk in phosphate-buffered saline containing 0.1% Tween 20 for 60 min 

and tested overnight with specific antibodies at 1:500 dilution against eNOS, phospho-

eNOS (Ser1177) (Abcam, Cambridge, UK, cat # ab66127 and ab75639, respectively), 

HIF-1α, HIF-2α (Novus, Littleton, CO, USA, cat. # NB100-105 and NB-100-122, 

respectively), Akt, phospho-Akt (Ser473) (Cell Signaling, Danvers, MA, cat # 2920S 

and 4060S, respectively) and at 1:5,000 dilution against β-actin (Sigma, St. Louis, MO, 

cat. # A1978), which was used as loading control. Subsequently, membranes were 

incubated with rabbit anti-mouse or goat anti-rabbit horseradish peroxidase-conjugated 

secondary antibody (1:5,000) (Sigma). Blots were visualized by the ECL detection 

system (Amersham Biosciences, Piscataway, NJ). Results were quantified by 

densitometry, using QuantityOne/Chemi-Doc Software (Bio-Rad, Barcelona, Spain). 
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Immunofluorescence 

Rat aortic segments were fixed in 4% paraformaldehyde and included in paraffin 

blocks. Antigen retrieval was achieved by heating deparaffinized tissue sections (5 µm) 

in citrate buffer (pH 6). Following blockade with 5% bovine serum albumin (BSA) plus 

0.3% Triton X-100 in phosphate-buffered saline (PBS) for 1 hour at 37ºC, sections were 

incubated with antibodies against phospho-Akt (1:100 dilution) or against phospho-

eNOS (1:200 dilution) overnight at 4 ºC. After washout in PBS plus 0.3% Triton X-100, 

the sections were incubated with a secondary Alexa Fluor 546-conjugated goat anti-

rabbit antibody (dilution 1:250; Life Technologies, Alcobendas, Spain) and with 

diamidino-2-phenylindole (DAPI, Life Technologies) to counterstain nuclei for 1 hour 

at room temperature. Sections were mounted and viewed by fluorescence microscopy 

(Olympus BX51, Japan). Controls without primary antibodies showed no unspecific 

reactivity (data not shown).  Images from each aortic specimen were captured and the 

total number of endothelial cells as well as the number of those positive for p-eNOS and 

p-Akt were determined and the percentages of endothelial cells positive for p-eNOS and 

p-Akt were calculated.  

Human tissues 

Human penile tissue biopsies were obtained from 9 men with erectile dysfunction (ED) 

who gave informed consent at the time of penile prosthesis insertion. The patients had 

an average age of 59.0±2.3 years (range 46-71). Five were hypertensive, three had 

dyslipidemia, two had type 2 diabetes, two had manifested cardiovascular disease, one 

suffered from atrial fibrillation, one was obese and two had a smoking habit. The 

etiology of ED was considered as vascular in all patients. Healthy cavernosal specimens 

were obtained from 10 organ donors (without history of ED or vascular risk factors) at 
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the time of organ extraction for transplantation (average age 48.7±5.3 years, range 23-

62). The study was approved by the Ethics Committee of Hospital Santo Antonio, Porto 

(081/10(059-DEFI/077-CES)), where the samples were collected. Tissues were 

maintained at 4º to 6ºC in M-400 solution (composition in mM: mannitol, 230; KH2PO4, 

15; K2HPO4·3H2O, 43; KCl, 15; NaHCO3, 10) until used, which was between 16 and 24 

hours after extraction (Angulo et al., 2002; Angulo et al., 2010; González-Corrochano 

et al., 2013). 

Experiments with human penile resistance arteries 

Small penile arteries — helicine arteries (lumen diameter 150 µm to 400 µm), which are 

the terminal branches of deep penile arteries — were dissected by carefully removing 

the adhering trabecular tissue. Then arterial ring segments (2-mm long) were mounted 

on microvascular wire myographs for circular isometric tension recordings, as described 

elsewhere (González-Corrochano et al., 2013). The arteries were then set to an internal 

circumference equivalent to 90% in the same way as described above for rat mesenteric 

arteries. The preparations were then exposed to 125 mM K
+
 (KKHS) and the contractile 

response was measured. The arteries were contracted with 1 to 3 µM of NE (80% of 

KKHS-induced contraction, approximately), and relaxation response was evaluated by 

cumulative additions of ACh to the chambers. After extensive washout and 

equilibration period, FM19G11 (1 µM) or vehicle (0.01% DMSO) were added 30 min 

before contraction with NE for re-evaluating ACh-induced responses. 

Experiments with human corpus cavernosum tissue 

Strips of corpus cavernosum tissue (3 x 3 x 7 mm) obtained from human penile tissue 

specimens were immersed in 8 ml organ chambers containing PSS, maintained at 37ºC 
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and aerated with 5% CO2/95% O2, pH 7.4.  Each tissue strip was incrementally 

stretched to optimal isometric tension, as determined by maximal contractile response to 

1 µM phenylephrine (PE). The preparations were then exposed to KKHS and the 

contractile response was measured.  After an equilibration period, tissues were 

contracted with 1 - 3 µM PE (80% of KKHS induced contraction) and relaxation 

responses were evaluated by cumulative additions of ACh to the chambers. After 

extensive washout and equilibration period, FM19G11 (1 µM) or vehicle (0.01% 

DMSO) were added 30 min before contraction with PE for re-evaluating ACh-induced 

responses. 

Drugs and Materials 

Nomenclature used for designating drugs and molecular targets conforms to BJP's 

Concise Guide to Pharmacology (Alexander et al. 2013). Norepinephrine (arterenol), 

phenylephrine, acetylcholine, sodium nitroprusside, N
G
-nitro-L-arginine methyl ester 

(L-NAME), wortmannin and rapamycin were obtained from Sigma Chemical Co. (St. 

Louis, MO). Human insulin (Humulin
®

) was obtained from Lilly España (Alcobendas, 

Madrid, Spain). FM19G11 (3-[(2,4-dinitrobenzoyl)amino]-benzoic acid 2-(4-

methylphenyl)-2-oxoethyl ester) was synthesized at Departamento de Química 

Orgánica, Centro de Investigación Príncipe Felipe, Valencia, Spain. For in vitro 

experiments, all drugs were dissolved in deionized water, except for FM19G11, 

wortmannin and rapamycin which were dissolved at 10 mM concentration in 

dimethylsulfoxide (DMSO). The subsequent dilutions were made in deionized water. 

Final DMSO concentration was 0.01% or lower. 

Statistical analysis 
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Two-factors analysis of variance (ANOVA) was applied to analyse the effects of the 

treatments on the complete concentration-response curves. Expression data and cGMP 

values were compared by one-factor ANOVA followed by Student-Newmann-Keuls 

test. pD2 was defined as the –log M of the concentration required to obtain 50% 

relaxation. Emax is the maximal relaxation response expressed as percentage. pD2 and 

Emax data given in the text were compared by Student t-test except those involving more 

than two groups where one-factor ANOVA followed by Student-Newmann-Keuls test 

was used. 
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Results 

Systemic administration of FM19G11 recovers endothelium-dependent vasodilatation 

in insulin-resistant rats. 

Fructose-fed rats developed insulin resistance, as confirmed by the significant increase 

in the HOMA-IR score (3.15±0.44-fold increase; p < 0.001). The increase in HOMA-IR 

was reduced to 1.70±0.42 after 7 days of intraperitoneal (i.p.) administration of 

FM19G11 (10 mg·kg
-1

·day
-1

) (p < 0.05 vs. untreated fructose-fed rats). Aortic segments 

from vehicle-treated insulin-resistant rats (IRR) displayed significantly diminished 

vasodilatation in response to ACh (10 nM to 10 µM) than segments from control rats 

(CR). Administration of FM19G11 completely reversed the impairment of endothelial 

vasodilatation, since ACh-induced responses in aortic segments from IRR treated with 

FM19G11 were not significantly different from those obtained in aortae from control 

rats (Figure 1A). Vasodilatation caused by insulin (0.01 nM to 1 µM) in aorta was also 

blunted in IRR. Treatment of IRR with FM19G11 resulted in the recovery of insulin-

induced dilations to the level of control rats (Figure 1B). Endothelium-independent 

vasodilatations caused by the nitric oxide donor, sodium nitroprusside (SNP; 1 nM to 10 

µM), were not altered by the presence of insulin resistance and were not modified by the 

treatment with FM19G11 (pD2 8.22±0.04, 8.31±0.13 and 8.42±0.04 for CR, IRR and 

IRR+FM19G11; n.s.). 

 

Acute preincubation of arteries from IRR with FM19G11 improves endothelium-

dependent vasodilatation 
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Preincubation for 30 minutes with FM19G11 (1 µM) did not significantly modify 

endothelium-dependent relaxation of aortic segments from CR (Figure 2B). At 0.3 µM 

concentration, FM19G11 induced a modest but significant increase in ACh-induced 

vasodilatation in IRR aorta (Figure 2C), but, when FM19G11 concentration was 

increased to 1 µM, a marked improvement in endothelial vasodilatation in IRR aorta 

was seen (Figure 2A and 2D). At this concentration, FM19G11 also enhanced 

vasodilatation driven by insulin in IRR aorta (Emax 54.1±4.0% vs 70.7±5.3%, p < 0.05). 

This improvement of endothelium-dependent vasodilatation by FM19G11 (1 µM) was 

confirmed in small mesenteric arteries from IRR rats (Figure 2E). Similar to that 

observed in aorta, ACh-induced responses were not significantly modified by FM19G11 

(1 µM) in mesenteric arteries from CR (pD2 7.48±0.10 vs 7.73±0.25; n.s.). 

Enhancement of endothelial vasodilation by FM19G11 is unlikely to be due to 

destabilization of adrenergic tone. This is supported by the fact that the treatment with 

FM19G11 did not influence the NE-induced tone in aorta from IRR when vehicle was 

administered instead of ACh whereas potentiation of ACh-induced vasodilation is 

clearly observed (Figure 2A). In addition, contraction data provided in figure legends 

demonstrate the lack of potential interference of contractile tone on the effects exerted 

by FM19G11 on vascular relaxation. 

 

Enhancing effects of FM19G11 on endothelial function are mediated by the 

NO/cGMP pathway 

ACh-induced relaxation of aortic segments in IRR is mainly mediated by NO, since 

inhibition of NOS with N
G
-nitro-L-arginine methyl ester (L-NAME; 100 µM) almost 
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abolished endothelium-dependent vasodilatation. When the NOS inhibitor was present, 

FM19G11 (1 µM) failed to exert its enhancing effect on ACh-induced responses (Figure 

3A). After exposure of aortic tissue to ACh, the intracellular content of the second 

messenger of NO, cyclic guanosine monophospate (cGMP), was reduced in IRR. In 

ACh-stimulated aortic tissue from IRR, the treatment with FM19G11 significantly 

increased the cGMP content, while a non-significant increment was observed in aortic 

tissue from CR (Figure 3B). The requirement of NO synthesis for these effects on 

cGMP accumulation was confirmed by the fact that L-NAME reduced cGMP level in 

ACh-stimulated aortic tissue and prevented the increase in cGMP content driven by 

FM19G11 (Figure 3B). Protein amounts in the phosphorylated form of eNOS at 

Ser1177 (p-eNOS) relative to total eNOS content were significantly reduced in IRR 

aortae. Treatment with FM19G11 (1 µM) for 30 minutes caused a significant increase in 

the aortic p-eNOS/eNOS ratio in these rats (Figure 3C). FM19G11 (1 µM) did not 

significantly modify aortic content of total eNOS in CR or IRR (eNOS/ß-actin ratios 

were 0.796±0.118 and 0.805±0.107 for vehicle- and FM19G11-treated aortae from CR, 

and 0.756±0.135 and 0.732±0.110 for vehicle- and FM19G11-treated aortae from IRR). 

 

Improvement of endothelial vasodilatation in IRR aorta by FM19G11 involves 

activation of the PI3K/Akt/eNOS pathway. 

Inhibition of phosphatidyl inositol-3 kinase (PI3K) by wortmannin (500 nM) did not 

modify ACh-induced vasodilatation in IRR aorta significantly, but completely 

prevented the enhancing effects induced by FM19G11 (1 µM) on these responses 

(Figure 4A). This suggests the involvement of the PI3K/Akt pathway in FM19G11-

induced improvement in endothelial vasodilatation in IRR. In this sense, although Akt 
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expression was not significantly modified by FM19G11 (1 µM) (0.897±0.170 and 

0.863±0.152 for vehicle- and FM19G11-treated aortae from IRR), increased 

phosphorylation of Akt was observed after 30 min incubation with FM19G11 (1 µM) in 

IRR aortae, an effect that was prevented by co-treatment with wortmannin (500 nM) 

(Figure 4B). Furthermore, increased amounts of the phosphorylated forms of Akt and 

eNOS were immunodetected in aortic endothelium from IRR after either chronic (7 

days) or acute (30 min) exposure to FM19G11 (10 mg·kg
-1

·day
-1

; i.p. and 1 µM, 

respectively) (Figure 5). Quantification of endothelial cells (ECs) positive for p-Akt in 

aortae from IRR yielded a significant increase in the percentage of ECs expressing p-

Akt after acute or chronic exposure to FM19G11 (Figure 5G). Consistently, the 

percentage of ECs positive for p-eNOS increased in aorta from IRR after treatment with 

FM19G11 (Figure 5H). 

 

Improvement of endothelial vasodilatation caused by FM19G11 is not dependent on 

upregulation of HIF-1α. 

Consistent with the previously reported ability of FM19G11 to upregulate mammalian 

target of rapamycin (mTOR)/HIF-1α signaling under normoxic conditions in different 

cell types (Rodríguez-Jiménez et al., 2012), treatment for 30 min with this compound 

resulted in increased aortic expression of HIF-1α protein in both CR and IRR (Figure 

6A). However, this upregulation of HIF-1α driven by FM19G11 seems not to be 

responsible for the improving effects of this molecule on endothelial vasodilatation in 

IRR, since the inhibition of mTOR with rapamycin (20 µM) did not prevent the 

improvement induced by FM19G11 on ACh-induced vasodilatation in IRR aorta 

(Figure 6B). Western blot example in figure 6C clearly shows that mTOR inhibition 
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with rapamycin (20 µM) prevented HIF-1α upregulation induced by FM19G11 in aorta 

from IRR while it did not preclude FM19G11-induced enhancement of Akt 

phosphorylation. On the other hand, HIF-2α/ß-actin ratio was not significantly modified 

by the treatment with FM19G11 (1 µM) in aortae from CR (0.877±0.064 vs. 

0.703±0.187 for vehicle and FM19G11, respectively, n=3) or IRR (0.706±0.095 vs. 

0.739±0.175 for vehicle and FM19G11, respectively, n=3). 

FM19G11 reverses impairment of endothelial vasodilation in human penile arteries 

and corpus cavernosum from patients with vascular erectile dysfunction 

Endothelium-dependent vasodilatation elicited by ACh (1 nM to 10 µM) in HPRA from 

patients with vascular erectile dysfunction was not modified after treatment with the 

vehicle (0.01% DMSO) (pD2 5.93±0.34 vs. 6.08±0.32; n.s.). Impaired endothelial 

vasodilatation was observed in HPRA from ED patients when compared to HPRA from 

No ED subjects but this impairment was reversed by treating arterial segments with 

FM19G11 (1 µM), as can be clearly observed in tracings in Figure 7A. Measurement of 

the results showed a significant potentiation of ACh-induced vasodilation of HPRA by 

FM19G11 (Figure 7B). This resulted in the recovery of endothelial vasodilatation in 

HPRA from patients with vasculogenic ED, since endothelial vasodilatory responses 

were comparable to those obtained in arteries from healthy penile tissues. Similar 

results were obtained when the effects of FM19G11 on endothelium-dependent 

relaxation of human corpus cavernosum (HCC) were evaluated. FM19G11 (1 µM) 

improved relaxations induced by ACh (1 nM to 10 µM) in HCC from patients with 

vascular ED to a relaxation response similar to that obtained in HCC from patients 

without ED (Figure 7C). 
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Discussion 

Present results show that continued systemic administration of FM19G11 reverses the 

impairment of endothelium-dependent vasodilatation caused by insulin resistance in rat 

aorta. In fact, short-term incubation with FM19G11 improved endothelial vasodilatation 

in aorta and mesenteric arteries of insulin-resistant rats. FM19G11 exerted its protective 

effect through the PI3K/Akt/eNOS/cGMP pathway, since first, it was abolished by NO 

synthesis inhibition, second, it was prevented by PI3K inhibition and, finally, it was 

associated with an increment in the phosphorylated forms of Akt and eNOS, and a 

cGMP increase in aortic tissue from IR rats. Although FM19G11-induced actions were 

paralleled by an increase in HIF-1α protein content in aortic tissue, HIF-1α did not 

significantly contribute to the positive effects of FM19G11 on endothelial 

vasodilatation. The ability of FM19G11 to recover defective endothelium-dependent 

vasodilatation was confirmed in human penile arteries and corpus cavernosum from 

patients with endothelial dysfunction. 

Aging and metabolic disorders lead to abnormal endothelial function that implies 

vascular damage and, ultimately, cardiovascular disease. Although there are portfolios 

of safe drugs to treat metabolic diseases, few of them, if any, are oriented to the 

endothelial function, with a view to avoiding the long-term undesired side-effects of 

metabolic disorders, such as cardiovascular disease. Therefore, there is an urgent 

clinical need to identify novel mechanisms of action focusing on impeding endothelium 

deterioration. The rationale for evaluating the effects of FM19G11 on endothelial 

vasodilatation is based on evidence demonstrating its ability to activate PI3K/Akt and 

mTOR/HIF-1α in ependymal stem cells under normoxic conditions (Rodríguez-Jiménez 

et al., 2012). The PI3K/Akt pathway regulates the phosphorylation of eNOS at Ser1177, 
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which results in increased synthesis of NO by this enzyme and enhances vasodilatatory 

response, a process that might be compromised in pathological situations associated 

with endothelial dysfunction (Kobayashi et al., 2004; Li et al., 2010; Zhang et al., 

2012).  

Results confirm the hypothesis that FM19G11 exerts positive effects on endothelial 

vasodilatation when endothelial dysfunction is present, as demonstrated by the data 

obtained after administration of the drug in a well-accepted rat insulin-resistance model 

with endothelial dysfunction. The impairment of endothelial vasodilatation caused by 

insulin resistance in rats was reversed by chronic in vivo treatment with FM19G11. This 

beneficial in vivo effect on vasodilatation was also produced by short-term 

preincubation of the arteries ex vivo, suggesting that FM19G11 acts on vascular tissue. 

This effect was not limited to a specific vascular area, since it occurred in both large 

(aorta) and resistance (mesenteric) arteries, which differ in blood flow regulatory 

functions. The improvement of vasodilatation by FM19G11 was mediated by the NO 

pathway in IRR aorta, as this effect was prevented by the NOS inhibitor, L-NAME. NO 

generation by endothelium stimulates soluble guanylyl cyclase in vascular smooth 

muscle, promoting cGMP formation that triggers intracellular processes leading to 

smooth muscle relaxation and vasodilatation (Moro et al., 1996). Accumulation of 

cGMP in aortic tissue in response to endothelial stimulation was reduced in IRR aorta, 

but was recovered by exposure to FM19G11, demonstrating that this compound 

strengthens the NO/cGMP pathway. This is probably accomplished by the observed 

increase in eNOS phosphorylation driven by FM19G11 in aortic tissue from IRR. In 

fact, FM19G11 treatment recovered the amount of phospho-eNOS in IRR aorta, which 

was lower than in CR. Therefore, phosphorylation at Ser1177 confers increased activity 
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on eNOS, leading to greater NO synthesis and enhanced vasodilatation. Thus, 

functional recovery of vasodilatation in IRR by systemic administration of FM19G11 

could be triggered at the molecular level by adequate phosphorylation of eNOS. This 

result clearly suggests that pharmacological interventions leading to eNOS activation 

could be a reasonable way of overcoming endothelial dysfunction and thus preventing 

vascular damage. 

Overactivation of PI3K/Akt is likely the mechanism leading to phospho-eNOS increase 

after treatment with FM19G11, since inhibition of PI3K with wortmannin completely 

prevented the positive effects of FM19G11 on aortic vasodilation in IRR. PI3K/Akt 

involvement in FM19G11-induced effects is further supported by the results obtained 

with an additional PI3K inhibitor. LY294002 does not inhibit myosin light chain kinase 

(MLCK) at concentration used (Yano et al. 1995), but, similarly to wortmannin, it 

prevented the improvement of vasodilatation exerted by FM19G11 in aorta from IRR. 

In confirmation of these results, immunodetermination experiments done after exposure 

to FM19G11 showed increased phosphorylation of Akt in aortic tissue from IRR, which 

was prevented by inhibition of PI3K. Although immunodetection of phosphorylated 

proteins, phospho-eNOS and phospho-Akt, in aortic tissue homogenates do not allow 

for determining if endothelium or smooth muscle, which is the major component of 

aortic tissue, are the source of phosphorylated proteins, immunolocalization assays 

show that both chronic and acute treatments with FM19G11 increased phospho-eNOS 

and phospho-Akt in aortic endothelium from IRR. This evidence strongly suggests that 

FM19G11 activates the PI3K/Akt pathway in endothelial cells, promoting increased 

phosphorylation and therefore activation of eNOS, the latter increasing NO availability 

and producing larger quantities of cGMP that cause enhanced vasodilatation. This 
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concept is further supported by the ability of in vivo as well as in vitro treatment with 

FM19G11 to improve insulin-mediated vasodilatation, since this response has been 

firmly postulated as produced by eNOS phosphorylation via the PI3K/Akt pathway 

(Montagnani et al., 2002; Kobayashi et al., 2005; Gentile et al., 2008). It is worth 

mentioning here that previous publications showed that FM19G11 also activates the 

serine/threonine-protein kinase ATR, a protein structurally related to PI3K (Rodríguez-

Jiménez et al., 2010, 2012) 

FM19G11 has been described as enhancing glucose metabolism in ependymal stem 

cells (Rodríguez-Jiménez et al., 2012). This is compatible with the lowering effect 

exerted by FM19G11 on HOMA-IR in fructose-fed rats. In fact, since insulin action 

involves activation of PI3K/Akt signalling, the reduction in HOMA-IR would be 

consistent with the ability by FM19G11 to enhance this pathway.  The reduction in 

HOMA-IR is an important feature confers potential relevance to FM19G11 for 

increasing insulin sensitivity. However, although improved glucose disposal at the 

systemic level could contribute to the beneficial effects of chronic FM19G11 on 

endothelial function, it cannot explain the improving effect exerted by acute FM19G11, 

which is probably mediated by acting on endothelial cells. 

It is relevant to note that FM19G11, in addition to activating the PI3K/Akt pathway, has 

also been reported to activate the mTOR/HIF-1α pathway and promote HIF-1α
 

upregulation in stem cells under normoxic conditions (Rodríguez-Jiménez et al., 2010; 

2012). This was also the case in rat vascular tissue, since FM19G11 induced a 

significant increase in HIF-1α protein content in aorta from both CR and IRR. Although 

upregulation of HIF-1α reverses the inability of aged mice to recover perfusion and 

motor function in ischemic hindlimbs (Bosch-Marce et al., 2007; Di et al., 2013), it 
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does restore the blunted inotropic response of hearts from old rats (Tan et al., 2010) and 

contributes to cardiac repair by cell therapy (Cerrada et al., 2013), HIF-1α elevation 

triggered by FM19G11 does not seem to be related to its capacity to overcome 

endothelial dysfunction in IRR. This is demonstrated by the fact that inhibition of 

mTOR with rapamycin prevented the increase in HIF-1α expression induced by 

FM19G11 but without affecting the increment in Akt phosphorylation and, 

consequently, did not impede the improvement of endothelial vasodilation driven by 

FM19G11 in IRR aorta. mTOR-mediated up-regulation of HIF-1α may be a 

consequence of PI3K/Akt pathway activation in normoxia (Agani and Jiang, 2013). 

Whether this is so for FM19G11 or it is produced by an independent mechanism is 

irrelevant to the improvement of endothelial vasodilatation by FM19G11, since the 

switching off of HIF-1α expression did not alter such an effect. Although it has been 

suggested that HIF-2α is involved in endothelial homeostasis (Ahmad et al., 2013) and 

it was reported that FM19G11 inhibited HIF-2α expression under hypoxic conditions in 

cancer cells and embryonic stem cells (Moreno-Manzano et al., 2010), FM19G11 failed 

to significantly modify HIF-2α content in aortic tissue in our oxygen abundance 

conditions. HIF-2α expression is controlled by mTOR complex 2 (mTORC2) rather 

than mTORC1 (Toschi et al., 2008). It is assumed that mTORC2 is less sensitive to 

rapamycin than mTORC1 but the high concentration of rapamycin (20 µM) used in our 

study has been demonstrated to block mTORC2 signalling in vascular tissue (Gao et al. 

2011). Thus, the lack of inhibition by rapamycin on FM19G11-induced improvement of 

endothelial vasodilatation in IRR suggests that the recovery of endothelial function by 

FM19G11 is not contributed by any interference of FM19G11 with either HIF-1α or 

HIF-2α expression. 
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Endothelial dysfunction associated to the presence of cardiovascular risk factors is 

assumed to play a key role in ED of vascular aetiology (Gratzke et al., 2010). In fact, 

human penile resistance arteries (HPRA) and corpus cavernosum (HCC) from patients 

with ED show an impaired endothelial vasodilatation, which is associated with a 

defective NO/cGMP pathway in penile tissue (Angulo et al., 2010). The presence of a 

broad spectrum of cardiovascular risk factors, including elevated age, could contribute 

to endothelial dysfunction in our ED patients. In this context, treatment with FM19G11 

improved endothelium-dependent vasodilation in HPRA and HCC from patients with 

vascular ED, which may reflect the presence of systemic endothelial dysfunction 

(Gandaglia et al., 2014). Thus, consistent with the results obtained in rats, FM19G11 is 

able to enhance endothelial vasodilatation in human vasculature characterized for 

having endothelial dysfunction and defective NO pathway. This demonstrates that the 

mechanism triggered by FM19G11 is efficacious in improving endothelial function in 

rat and human vasculature. It is not limited to the reversion of endothelial impairment 

specifically caused by insulin resistance, but seems to improve vasodilatation in a 

broader spectrum of pathological conditions associated with endothelial dysfunction.   

In conclusion, FM19G11 improves endothelial dysfunction due to an effect on the NO-

mediated responses by a mechanism linked to the activation of the PI3K/Akt pathway 

but not to mTOR activation/HIF-1α expression. This effect is not restricted to a unique 

pathological mechanism of endothelial dysfunction and seems to be present in both 

animal models of disease and human conditions. 
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Figure Legends 

Figure 1. Recovery of endothelium-dependent vasodilatation in aorta from insulin-

resistant rats by chronic FM19G11. Effects of chronic administration of FM19G11 

(10 mg·kg
-1

·day
-1

; i.p.) for 7 days on endothelium-dependent vasodilatation elicited by 

acetylcholine (ACh; 10 nM to 10 µM) (A) or insulin (0.01 nM to 1 µM) (B) in aorta 

from insulin-resistant rats (IRR). Vasodilatations obtained in aorta from control rats 

(CR; non-insulin-resistant) are shown for comparison. Data are expressed as 

mean±SEM of the contraction induced by norepinephrine (NE; 1.80±0.13 g, 1.88±0.16 

g, and 1.84±0.1 g for CR, IRR and IRR+FM19G11 10 mg·kg
-1

·day
-1

 in A, n.s.; 

1.72±0.17 g, 1.82±0.08 g and 1.86±0.07 g for CR, IRR and IRR+FM19G11 10 mg·kg
-

1
·day

-1
 in B, n.s.). n indicates the number of vascular segments used for determinations 

that were obtained from 12 CR, 16 IRR and 6 IRR treated with FM19G11. *** indicates 

p < 0.001 versus CR and ††† p < 0.001 versus IRR by a two-factor ANOVA test. 

 

Figure 2. Acute treatment with FM19G11 improves endothelium-dependent 

vasodilatation in arteries from insulin-resistant rats. Panel A displays representative 

tracings showing the improvement of endothelium-dependent vasodilatation elicited by 

acetylcholine (ACh; 10 nM to 10 µM) by FM19G11 (1 µM) (left traces) and the lack of 

contractile tone destabilization by the same treatment (right traces) in aortic segments 

from insulin-resistant rats (IRR). Other panels show the effects of preincubation with 

FM19G11 (0.3 or 1 µM) on vasodilatation elicited by ACh in aorta from control rats 

(CR) (B), in aorta from IRR (C, D) or in mesenteric arteries from IRR (E). Data are 

expressed as mean±SEM of the contraction induced by norepinephrine (NE; 1.99±0.08 

g vs. 1.96±0.10 g; 1.92±0.12 g vs. 1.86±0.14 g; 1.77±0.08 g vs. 1.82±0.07 g; and  
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9.28±0.71 mN vs. 8.48±0.82 mN, control vs. FM19G11 for B, C, D and E, respectively; 

n.s. for all comparisons). n indicates the number of vascular segments used for 

determinations obtained from, at least, three different animals. *** indicates p < 0.001 

versus control by a two-factors ANOVA test. 

 

Figure 3. Involvement of the NO/cGMP pathway in FM19G11-induced 

improvement of endothelial vasodilatation in insulin-resistant rats. Panel A shows 

the influence of the NO synthase (NOS) inhibitor, N
G
-nitro-L-arginine methyl ester (L-

NAME; 100 µM), on the effects of FM19G11 (1 µM) on endothelium-dependent 

vasodilatation elicited by acetylcholine (ACh; 10 nM to 10 µM) in aorta from insulin-

resistant rats (IRR). Data are expressed as mean±SEM of the contraction induced by 

norepinephrine (NE; 2.10±0.33 g, 2.45±0.32 g, 2.08±0.23 g and 2.44±0.32 g for IRR, 

IRR+L-NAME, IRR+FM19G11 and IRR+L-NAME+FM19G11, respectively; n.s.). n 

indicates the number of vascular segments used for determinations obtained from, at 

least, three different animals. *** indicates p < 0.001 versus IRR by a two-factors 

ANOVA test. Panel B shows the effects of FM19G11 (1 µM) on cGMP accumulation 

induced by exposure to ACh (10 µM) in aortic tissue from control rats (CR) and IRR 

and the influence of L-NAME (100 µM) on such effects. n indicates the number of 

animals used for determinations. * indicates p < 0.05 versus vehicle, and † p < 0.05 

versus CR by a one-factor ANOVA followed by a Student-Newmann-Keuls test. Panel 

C shows the effects of FM19G11 (1 µM) on aortic content of endothelial NOS (eNOS) 

and its phosphorylated (at Ser177) form (p-eNOS) in CR and IRR. Data are expressed 

as the normalized p-eNOS/eNOS ratio. Numbers of determinations appear in brackets. 
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** indicates p < 0.01 versus vehicle; and †† p < 0.01 versus CR by a one-factor 

ANOVA followed by a Student-Newmann-Keuls test. 

 

Figure 4. Requirement of PI3K/Akt pathway activation in FM19G11-induced 

improvement of endothelial vasodilatation in insulin-resistant rats. Influence of 

inhibition of PI3K with wortmannin (WORT; 500 nM) (A) or LY294002 (LY; 1 µM) 

(B) on the effects of FM19G11 (1 µM) on endothelium-dependent vasodilatation 

elicited by acetylcholine (ACh; 10 nM to 10 µM) in aorta from insulin-resistant rats 

(IRR). Data are expressed as mean±SEM of the remaining contraction induced by 

norepinephrine (NE; 1.94±0.14 g, 1.97±0.14 g, 1.91±0.17 g and 2.02±0.16 g for IRR, 

IRR+WORT, IRR+FM19G11 and IRR+WORT+FM19G11 in A; 1.64±0.09 g, 

1.82±0.11 g, 1.66±0.08 g and 1.77±0.14 g for IRR, IRR+LY, IRR+FM19G11 and 

IRR+WORT+FM19G11 in B; n.s. for all comparisons). n indicates the number of 

vascular segments used for determinations that were obtained from, at least, three 

different animals. *** indicates p < 0.001, * p < 0.05 versus IRR, and ††† p < 0.001 

versus IRR+FM19G11 by a two-factors ANOVA test. Panel C shows the effects of 

FM19G11 (1 µM) on aortic content of Akt and its phosphorylated (at Ser473) form (p-

Akt) in IRR and the influence of wortmannin on such effects. Data are expressed as the 

normalized p-Akt/Akt ratio. Numbers of determinations appear in brackets. * indicates 

p < 0.05, ** p < 0.01 versus control, and † p < 0.05 versus FM19G11 by a one-factor 

ANOVA followed by a Student-Newman-Keuls test. 
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Figure 5. FM19G11 increases Akt/eNOS phosphorylation in aortic endothelium 

from insulin-resistant rats. Immunodetection of phosphorylated forms of Akt (Ser473) 

(left panels) and eNOS (Ser1177) (right panels) in aortae from insulin-resistant rats 

(IRR). Panels A and B show immunodetection in aortae from untreated IRR. In C and 

D, aortae from IRR were incubated for 30 min with 1 µM FM19G11. In E and F, aortae 

were obtained from IRR treated with FM19G11 (10 mg·kg
-1

·day
-1

; i.p.) for 7 days. Red 

fluorescence indicates positive signal. Lower panels show the mean±SEM of the 

percentage of endothelial cells (ECs) positive for p-Akt (G) and p-eNOS (H) in aortae 

from insulin resistant rats after exposure to vehicle or FM19G11 either acute (ex vivo; 

30 min with 1 µM FM19G11) or chronic (in vivo; 10 mg·kg
-1

·day
-1

; i.p. for 7 days). 

Numbers of determinations appear in brackets. *** indicates p < 0.001 versus IRR. 

 

Figure 6. Upregulation of HIF-1α by FM19G11 does not contribute to improve 

endothelial vasodilatation in insulin-resistant rats. Panel A shows the effects of 

FM19G11 (1 µM) on protein content of HIF-1α in aortic tissue from control (CR) and 

insulin-resistant rats (IRR). Data are expressed as the normalized HIF-1alpha/ß-actin 

ratio. Numbers of determinations appear in brackets. * indicates p < 0.05, ** p < 0.01 

versus control by a one-factor ANOVA followed by a Student-Newmann-Keuls test. 

Panel B shows the influence of the mammalian target of rapamycin (mTOR) inhibitor, 

rapamycin (RAPA; 20 µM), on the effects of FM19G11 (1 µM) on endothelium-

dependent vasodilatation elicited by acetylcholine (ACh; 10 nM to 10 µM) in aorta from 

insulin-resistant rats (IRR). Data are expressed as mean±SEM of the contraction 

induced by norepinephrine (NE). n indicates the number of vascular segments used for 

determinations which were obtained from, at least, three different animals. *** indicates 
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p < 0.001 versus IRR by a two-factors ANOVA test. Panel C shows a representative 

blotting showing that treatment with RAPA (20 µM) prevents FM19G11-induced HIF-

1α upregulation in aorta of IRR while does not precludes FM19G11-induced Akt 

phosphorylation at Ser473. 

 

Figure 7. FM19G11 recovers endothelium-dependent vasodilatation in human 

penile resistance arteries and corpus cavernsoum. Panel A shows representative 

tracings of the vasodilatation elicited by acetylcholine (ACh; 1 nM to 10 µM) in penile 

resistance arteries from a subject without known erectile dysfunction (No ED) (upper 

tracing) and from a patient with erectile dysfunction (ED) (lower tracings) before (left) 

and after (right) incubation with FM19G11 (1 µM) for 30 min. Other panels show the 

effects of FM19G11 (1 µM) on endothelium-dependent vasodilatation elicited by ACh 

in human penile resistance arteries (HPRA) (B) and corpus cavernosum (HCC) (C) 

from patients with ED. ACh-induced vasodilation in HPRA and HCC from No ED 

subjects is shown for comparison. Data are expressed as mean±SEM of the contraction 

induced by norepinephrine (NE; 6.73±0.68 mN, 6.26±1.73 mN and 6.33±1.51 mN for 

No ED, ED and ED+FM19G11, respectively; n.s. for all comparisons) and 

phenylephrine (PE; 1.20±0.29 g, 0.99±0.22 g and 1.05±0.20 g for No ED, ED and 

ED+FM19G11, respectively; n.s. for all comparisons), respectively. n indicates the 

number of patients from whom the tissues were collected. *** indicates p < 0.001 

versus No ED, ††† p < 0.001 versus ED by a two-factors ANOVA test. 
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Figure 1. Recovery of endothelium-dependent vasodilatation in aorta from insulin-resistant rats by chronic 
FM19G11. Effects of chronic administration of FM19G11 (10 mg•kg-1•day-1; i.p.) for 7 days on 

endothelium-dependent vasodilatation elicited by acetylcholine (ACh; 10 nM to 10 µM) (A) or insulin (0.01 

nM to 1 µM) (B) in aorta from insulin-resistant rats (IRR). Vasodilatations obtained in aorta from control rats 
(CR; non-insulin-resistant) are shown for comparison. Data are expressed as mean±SEM of the contraction 
induced by norepinephrine (NE; 1.80±0.13 g, 1.88±0.16 g, and 1.84±0.1 g for CR, IRR and IRR+FM19G11 

10 mg•kg-1•day-1 in A, n.s.; 1.72±0.17 g, 1.82±0.08 g and 1.86±0.07 g for CR, IRR and IRR+FM19G11 10 
mg•kg-1•day-1 in B, n.s.). n indicates the number of vascular segments used for determinations that were 
obtained from 12 CR, 16 IRR and 6 IRR treated with FM19G11. *** indicates p < 0.001 versus CR and ††† 

p < 0.001 versus IRR by a two-factor ANOVA test.  
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Figure 2. Acute treatment with FM19G11 improves endothelium-dependent vasodilatation in arteries from 
insulin-resistant rats. Panel A displays representative tracings showing the improvement of endothelium-
dependent vasodilatation elicited by acetylcholine (ACh; 10 nM to 10 µM) by FM19G11 (1 µM) (left traces) 

and the lack of contractile tone destabilization by the same treatment (right traces) in aortic segments from 
insulin-resistant rats (IRR). Other panels show the effects of preincubation with FM19G11 (0.3 or 1 µM) on 
vasodilatation elicited by ACh in aorta from control rats (CR) (B), in aorta from IRR (C, D) or in mesenteric 
arteries from IRR (E). Data are expressed as mean±SEM of the contraction induced by norepinephrine (NE; 
1.99±0.08 g vs. 1.96±0.10 g; 1.92±0.12 g vs. 1.86±0.14 g; 1.77±0.08 g vs. 1.82±0.07 g; and  9.28±0.71 

mN vs. 8.48±0.82 mN, control vs. FM19G11 for B, C, D and E, respectively; n.s. for all comparisons). n 
indicates the number of vascular segments used for determinations obtained from, at least, three different 

animals. *** indicates p < 0.001 versus control by a two-factors ANOVA test.  
190x254mm (72 x 72 DPI)  
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Figure 3. Involvement of the NO/cGMP pathway in FM19G11-induced improvement of endothelial 
vasodilatation in insulin-resistant rats. Panel A shows the influence of the NO synthase (NOS) inhibitor, NG-

nitro-L-arginine methyl ester (L-NAME; 100 µM), on the effects of FM19G11 (1 µM) on endothelium-

dependent vasodilatation elicited by acetylcholine (ACh; 10 nM to 10 µM) in aorta from insulin-resistant rats 
(IRR). Data are expressed as mean±SEM of the contraction induced by norepinephrine (NE; 2.10±0.33 g, 

2.45±0.32 g, 2.08±0.23 g and 2.44±0.32 g for IRR, IRR+L-NAME, IRR+FM19G11 and IRR+L-
NAME+FM19G11, respectively; n.s.). n indicates the number of vascular segments used for determinations 

obtained from, at least, three different animals. *** indicates p < 0.001 versus IRR by a two-factors ANOVA 
test. Panel B shows the effects of FM19G11 (1 µM) on cGMP accumulation induced by exposure to ACh (10 
µM) in aortic tissue from control rats (CR) and IRR and the influence of L-NAME (100 µM) on such effects. n 

indicates the number of animals used for determinations. * indicates p < 0.05 versus vehicle, and † p < 
0.05 versus CR by a one-factor ANOVA followed by a Student-Newmann-Keuls test. Panel C shows the 

effects of FM19G11 (1 µM) on aortic content of endothelial NOS (eNOS) and its phosphorylated (at Ser177) 
form (p-eNOS) in CR and IRR. Data are expressed as the normalized p-eNOS/eNOS ratio. Numbers of 

determinations appear in brackets. ** indicates p < 0.01 versus vehicle; and †† p < 0.01 versus CR by a 
one-factor ANOVA followed by a Student-Newmann-Keuls test.  
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Figure 4. Requirement of PI3K/Akt pathway activation in FM19G11-induced improvement of endothelial 
vasodilatation in insulin-resistant rats. Influence of inhibition of PI3K with wortmannin (WORT; 500 nM) (A) 

or LY294002 (LY; 1 µM) (B) on the effects of FM19G11 (1 µM) on endothelium-dependent vasodilatation 

elicited by acetylcholine (ACh; 10 nM to 10 µM) in aorta from insulin-resistant rats (IRR). Data are 
expressed as mean±SEM of the remaining contraction induced by norepinephrine (NE; 1.94±0.14 g, 

1.97±0.14 g, 1.91±0.17 g and 2.02±0.16 g for IRR, IRR+WORT, IRR+FM19G11 and IRR+WORT+FM19G11 
in A; 1.64±0.09 g, 1.82±0.11 g, 1.66±0.08 g and 1.77±0.14 g for IRR, IRR+LY, IRR+FM19G11 and 

IRR+WORT+FM19G11 in B; n.s. for all comparisons). n indicates the number of vascular segments used for 
determinations that were obtained from, at least, three different animals. *** indicates p < 0.001, * p < 

0.05 versus IRR, and ††† p < 0.001 versus IRR+FM19G11 by a two-factors ANOVA test. Panel C shows the 
effects of FM19G11 (1 µM) on aortic content of Akt and its phosphorylated (at Ser473) form (p-Akt) in IRR 

and the influence of wortmannin on such effects. Data are expressed as the normalized p-Akt/Akt ratio. 
Numbers of determinations appear in brackets. * indicates p < 0.05, ** p < 0.01 versus control, and † p < 

0.05 versus FM19G11 by a one-factor ANOVA followed by a Student-Newman-Keuls test.  
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Figure 5. FM19G11 increases Akt/eNOS phosphorylation in aortic endothelium from insulin-resistant rats. 
Immunodetection of phosphorylated forms of Akt (Ser473) (left panels) and eNOS (Ser1177) (right panels) 
in aortae from insulin-resistant rats (IRR). Panels A and B show immunodetection in aortae from untreated 

IRR. In C and D, aortae from IRR were incubated for 30 min with 1 µM FM19G11. In E and F, aortae were 
obtained from IRR treated with FM19G11 (10 mg·kg-1·day-1; i.p.) for 7 days. Red fluorescence indicates 

positive signal. Lower panels show the mean±SEM of the percentage of endothelial cells (ECs) positive for p-
Akt (G) and p-eNOS (H) in aortae from insulin resistant rats after exposure to vehicle or FM19G11 either 

acute (ex vivo; 30 min with 1 µM FM19G11) or chronic (in vivo; 10 mg·kg-1·day-1; i.p. for 7 days). 
Numbers of determinations appear in brackets. *** indicates p < 0.001 versus IRR.  
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Figure 6. Upregulation of HIF-1α by FM19G11 does not contribute to improve endothelial vasodilatation in 
insulin-resistant rats. Panel A shows the effects of FM19G11 (1 µM) on protein content of HIF-1α in aortic 

tissue from control (CR) and insulin-resistant rats (IRR). Data are expressed as the normalized HIF-

1alpha/ß-actin ratio. Numbers of determinations appear in brackets. * indicates p < 0.05, ** p < 0.01 
versus control by a one-factor ANOVA followed by a Student-Newmann-Keuls test. Panel B shows the 

influence of the mammalian target of rapamycin (mTOR) inhibitor, rapamycin (RAPA; 20 µM), on the effects 
of FM19G11 (1 µM) on endothelium-dependent vasodilatation elicited by acetylcholine (ACh; 10 nM to 10 

µM) in aorta from insulin-resistant rats (IRR). Data are expressed as mean±SEM of the contraction induced 
by norepinephrine (NE). n indicates the number of vascular segments used for determinations which were 

obtained from, at least, three different animals. *** indicates p < 0.001 versus IRR by a two-factors ANOVA 
test. Panel C shows a representative blotting showing that treatment with RAPA (20 µM) prevents FM19G11-
induced HIF-1α upregulation in aorta of IRR while does not precludes FM19G11-induced Akt phosphorylation 

at Ser473.  
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Figure 7. FM19G11 recovers endothelium-dependent vasodilatation in human penile resistance arteries and 
corpus cavernsoum. Panel A shows representative tracings of the vasodilatation elicited by acetylcholine 
(ACh; 1 nM to 10 µM) in penile resistance arteries from a subject without known erectile dysfunction (No 

ED) (upper tracing) and from a patient with erectile dysfunction (ED) (lower tracings) before (left) and after 
(right) incubation with FM19G11 (1 µM) for 30 min. Other panels show the effects of FM19G11 (1 µM) on 
endothelium-dependent vasodilatation elicited by ACh in human penile resistance arteries (HPRA) (B) and 
corpus cavernosum (HCC) (C) from patients with ED. ACh-induced vasodilation in HPRA and HCC from No 

ED subjects is shown for comparison. Data are expressed as mean±SEM of the contraction induced by 
norepinephrine (NE; 6.73±0.68 mN, 6.26±1.73 mN and 6.33±1.51 mN for No ED, ED and ED+FM19G11, 
respectively; n.s. for all comparisons) and phenylephrine (PE; 1.20±0.29 g, 0.99±0.22 g and 1.05±0.20 g 

for No ED, ED and ED+FM19G11, respectively; n.s. for all comparisons), respectively. n indicates the 
number of patients from whom the tissues were collected. *** indicates p < 0.001 versus No ED, ††† p < 

0.001 versus ED by a two-factors ANOVA test.  
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