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ABSTRACT 

This paper presents a power plant concept based on an oxy-fired circulating fluidized 

bed combustor (oxy-CFBC) combined with thermal energy storage on a large scale. The 

concept exploits to full advantage the large circulation flows of high temperature solids 

that are characteristic of these systems. Two solid storage silos (one for high 

temperature and the other for low temperature solids) connected to the oxy-fired CFBC 

allow variability in power output without the need to modify the fuel firing rate and/or 

the mass flow of O2 to the combustor. During the periods of high power demand the 

system can deliver additional thermal power by extracting heat from a series of 

fluidized bed heat exchangers fed with solids from the high temperature silo. Likewise, 

during period of low power demand, the thermal power output can be reduced by using 

the energy released in the combustor to heat up the low temperature solids on their way 

from the low temperature silo to the oxy-CFBC and storing them in the high 

temperature silo located below the cyclone. A preliminary economic analysis of two 

designs indicates that this highly flexible system could make this type of power plant 

more competitive in the electricity markets where fossil fuels with CCS will be required 

to respond to a large variability in power output.  
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1. Introduction 

Fossil fuels will continue to play a major role in meeting the world’s energy 

needs because of their very competitive cost, widespread distribution and the massive 

infrastructure available for burning them. CO2 capture and storage (CCS) technologies 

are considered to be one of the least-cost options for mitigating climate change [1]. In 

addition, CO2 capture and storage is the only low carbon technology that can make the 

vast economic assets linked to fossil carbon reserves or unburnable carbon compatible 

[2, 3]. 

Moreover, it is becoming increasingly common in the major electricity markets 

to operate fossil fuel power plants with large load changes and even periods of complete 

shut down, in order to be able to adjust to the variability in energy demand and to the 

increasing share of renewables in the electricity mix. Renewable energies like wind and 

solar power are characterized by their intermittency, so they need energy storage 

systems and/or back up infrastructures to adapt their supply to demand [4]. The use of 

air-fired fossil power plants to accommodate changes between minimum and full load 

by ramping up and down is a common practice [5]. However, there are substantial 

energy and economic penalties when the power generation equipment is forced to 

operate with load changes and offline periods [6-8]. In addition, the cycling mode of 

operation in fossil fuel power plants leads to low capacity factors, which obviously 

increases the cost of electricity compared to when operating at base-load. All these 

problems are aggravated in power plants with CCS because these are complex and 

integrated systems that are inherently capital intensive [1, 9, 10] and better adapted to 

base load operation. However, since the flexible mode of operation may be imposed by 
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regulators or market conditions, there is  a growing interest in developing CCS systems 

that allow a wide flexibility and load change [11-14] and ensure minimum impact on 

the unit of product (i.e., the kWhe and/or the tonne of CO2 avoided). 

For post-combustion CO2 capture systems that employ amine-based solvents, the 

use of tanks has been proposed as a means of storing the rich solvent leaving the 

absorber during peak demand periods [15]. This allows the regeneration of the solvent 

and the compression of the CO2 captured to be postponed to periods of low power 

demand. During the high power demand periods, the net power plant output is increased 

as the energy penalty associated with the consumption of the steam in the regenerator 

and electricity during the compression of CO2 is avoided [16]. However, even the 

storage of solvent for a few hours of operation will require the storage of large masses 

of costly amine.  

In pre-combustion CO2 capture systems, the power generation block can be 

decoupled from hydrogen production by using an intermediate hydrogen storage system 

provided that a geological suitable structure is available [11, 15]. More commonly, the 

clean syngas can be diverted in polygeneration systems to a chemical production line 

for the production of fuels such as methanol or dimethyl ether when there is a low 

power demand [17].  

For oxy-fuel combustion power plant systems, the use of oxygen cryogenic 

tanks for backup storage [15, 18] has been proposed to overcome the flexibility 

constraints during boiler load changes imposed by the slow response of the air 

separation unit (ASU). This increases the cost of the oxygen produced, mainly as a 

result of the additional energy requirements for the liquefaction and re-evaporation of 

the oxygen. Another proposal for improving the flexibility of oxy-fired systems is to 

design a combustor that is able to operate in oxy-fuel or air mode. The combustor could 
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then operate in air mode during high demand peaks to avoid the high energy penalty 

associated with consumption in the ASU and CPU [19]. However, this solution implies 

a substantial amount of carbon leakage, as CO2 is emitted during air combustion 

periods. 

One of the possible approaches to introduce flexibility in power plants would be 

to build an energy storage system within the power plant boundary. This would allow 

variability in power output irrespective of the thermal power input. The idea of 

implanting an energy storage system inside the fossil fuel power plant is not new and 

several conceptual designs were proposed in the late 70’s [20]. For example, Drost et al. 

[21] proposed a concept in which a coal-fired power plant heats up molten salt from 

288ºC to 566ºC and stores the salt in a high-temperature tank during periods of low 

electricity demand. During peak demand periods, the hot salt is withdrawn from the 

high temperature tank and used as a heat source for a steam generator after which the 

cold molten salt is returned to a low temperature tank (at 288ºC). Molten salt thermal 

energy storage systems are today commercially available and employed in concentrated 

solar power plants [22]. Another type of system for this kind of solar plant is to use 

moving solids to store energy as latent heat [23-25]. These systems typically consist of 

two silos for storing solids at different temperatures and at least one heat exchanger to 

transfer the energy from the solar field to the solids during the charging periods and 

another heat exchanger to release the energy stored in the solids to a working fluid 

during discharge periods [23-25].  

Another example of thermal energy storage in fossil fuel power plants is to use 

hot water tanks integrated within the steam cycle [21]. During high demand peaks, the 

hot water can be discharged into the cycle to avoid steam consumption in the water 

preheaters. This can boost the amount power delivered and allow primary and 
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secondary frequency support responses [26]. The use of rapid changes in the solids 

circulation flows and inventories in high temperature solid looping cycles for CCS has 

also been proposed recently for the same purpose [27]. However, these solutions are 

intended for very small quantities of energy and cannot be considered effective for 

large-scale energy storage systems. 

The  oxy-fired CFBC concept [28] presented in this work incorporates a large-

scale thermal energy storage system that exploits the inherent capacity of circulating 

fluidized bed combustors to handle and circulate large flows of solids at high 

temperature. Oxy-fired CFBC technology has been developed very rapidly in recent 

years [29-31] due to its similarity to existing commercial air-combustion systems, that 

have already reached scales of up to 600MWe [32]. By exploiting the elements already 

present in CFBC power plants, a basic economic analysis of the proposed system has 

been carried out in order to compare its expected electricity costs with those of 

equivalent oxy-CFBC and air-CFBC power plants forced to operate with low capacity 

factors. 

 

2. Process description  

The oxy-fired CFBC power plant concept proposed in this work is represented in 

Figure 1. It is composed of several elements (marked in grey) that are common to all 

oxy-fired CFBC power plants: a CFB combustor, cyclones, convective heat exchangers 

and air preheaters (all marked with the symbol of HX1 to simplify the diagram), an 

external fluidized bed heat exchanger (FBHX1), an air separation unit (ASU) and CO2 

compression and purification units (CPU). The combustor chamber of the power plant 

depicted in Figure 1 is assumed to operate in adiabatic conditions by extracting as much 

heat as possible from the combustor chamber. Maximum extraction is achieved by using 
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the circulating solids (GS CFBC) as a heat carrier. Although  not a common practice in 

existing boilers (where a substantial fraction of the power released during the 

combustion is recovered inside the combustor chamber by transferring the heat to water 

pipes or wing walls within the combustor), this heat management option is feasible with 

the currently available CFBC technology and it is also a design option for oxy-CFB 

boilers [29, 33-37] thanks to the large heat carrying capacity of the solids circulating in 

and out the combustor. In these conditions, the external fluidized bed heat exchanger 

(FBHX1) is one of the main thermal power outputs from the combustion system of 

Figure 1 to the steam cycle (not shown in the Figure for simplicity). The fluidized bed 

heat exchanger is located in the return path of a fraction of circulating solids (labelled as 

stream 4 in Figure 1). Another stream of circulating solids (stream 5) can by-pass the 

heat exchanger and enter the combustor directly [38]. This makes it possible to operate 

with lower thermal loads and fuel inputs to the combustor and to maintain the same 

circulation of solids and combustion conditions [38]. 

The novel components in Figure 1 with respect to other Oxy-CFBC designs are 

the two storage silos and the second series of external fluidized bed heat exchangers 

(FBHX2). The purpose of FBHX2 is to reduce the temperature of the solids coming from 

the cyclone so that they can be stored as cold solids in a low temperature silo during 

periods of high demand. This allows increasing the power delivered during high 

demand periods. To achieve this objective, FBHX2 is composed of a series of fluidized 

bed heat exchangers in countercurrent flow to the water-steam flows, such as those 

proposed by Schwaiger et al. [24]. At the same time as thermal power is extracted from 

FBHX2, the high temperature silo connected to FBHX1 feeds solids at high temperature 

into this heat exchanger. The cooled solids are then fed to the CFBC. This will give rise 

to a total thermal power output (Pmax), the sum of the thermal power extracted from 
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HX1, FBHX1 and FBHX2 which is substantially higher than the thermal power released 

during the combustion of the fuel (Pcomb).  

C
FB

C

HX1

FBHX1

FBHX2

Fuel

CO2 to storage
CPU

CO2

Lo
w

 T
si

lo

ASU

Air

O2

N2

GS 
CFBC

GS silo

H
ig

h 
T

si
lo

CO2 recycle

GS silo

GS silo

1

2

3

45

6

7

8

9

 

Figure 1. Scheme of the Oxy-CFBC power plant concept with energy storage as 

proposed in this work.  

 

On the other hand, during periods of low power demand, the thermal power 

output from the system towards the steam can be drastically reduced by storing the high 

temperature solids leaving the CFBC in the high T silo connected to the exit of the 

cyclone. At the same time, the low temperature silo feeds cold solids to the combustor 

in order that heat continues to be extracted from the combustion process taking place in 

the adiabatic CFBC and to be stored in the high temperature silo. In this operation 

mode, the thermal power output (Pmin) only comes from the hot flue gas leaving the 

CFBC which is extracted in HX1.  
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In the scheme of Figure 1, the downwards movement of the solids is due to 

gravity and the upwards movement takes places in the CFBC, as long as the silos are 

located between the minimum height of the cyclone and the lowest point of the 

circulating fluidized bed combustor.  

The power plant depicted in Figure 1 is able to operate in different operation 

modes (different thermal power outputs between Pmax and Pmin) and can also gain 

flexibility in power output through changes to the fuel firing rate (Pcomb) in the 

combustor following the existing practice of load modifications used in commercial 

CFBCs. Also, it should be pointed out that the system represented in Figure 1 allows 

changes to be made to the thermal power output available for the steam cycle without 

modifying the combustion conditions inside the CFBC. This is a significant benefit for 

oxy-fired CFBC systems because the operation of the ASU and CPU can be simplified 

and made to be more cost-effective as it will be operating in steady state conditions. 

Uncoupling Pmax from Pcomb will also allow oxy-fired combustion under steady state 

conditions which in turn will minimize emission problems on the combustion side of the 

system during rapid load changes [39]. The system proposed in this work will also be 

able to deliver Pmax to a steam cycle with a smaller circulating fluidized bed combustor 

(because Pcomb<Pmax). This will lead to lower equipment cost in all the elements 

associated with the combustion island, at the expense of an increase in the cost of the 

storage system, as will be discussed below. 

A conceptual design of the proposed system has been carried out by solving the 

mass and energy balances for some reference cases assuming reasonable silo 

dimensions and energy storage cycle durations. In order to illustrate the different 

possible operation modes, a sensitivity analysis of the main variables that may affect the 

system has also been performed. To facilitate a transparent examination of the main 
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assumptions, this work focusses on the thermal power outputs of the heat exchangers of 

Figure 1. A detailed integration of these heat flows with steam power cycles is 

considered outside the scope of the present work and will be the subject of future 

investigation.  

The conceptual design of the system in Figure 1 is based on four main variables. 

These are the thermal input to the combustor (Pcomb), the power output delivered during 

the minimum and maximum power periods (Pmin and Pmax respectively) and the 

operating time at maximum power output (tmax at Pmax). Before defining the reference 

values corresponding to these variables, we shall discuss their implications for the 

operation of the system.  

The thermal input to the combustor (Pcomb) defines the size of the combustor 

chamber (the cross-sectional area of CFBC is proportional to Pcomb) and the scale of all 

auxiliary equipment linked to the combustion of coal (including the scale of the air 

separation unit and the CO2 purification and compression units in oxy-fired CFBCs). 

This parameter also defines the size of the heat exchangers FBHX1 and HX1.  

In principle, the thermal power delivered in maximum conditions (Pmax) can be 

freely chosen within the conservative limits imposed by the volume of the silos, the 

properties of the circulating solids (bulk density and heat capacity) and by the 

temperature of the solids stored in the silos. Critically, Pmax defines the scale of the 

second fluidized bed heat exchanger (FBHX2). It is convenient to introduce at this point 

the concept of the power ratio (PR) which is defined as:  

max

comb

P
PPR =       (1) 

In the case of a conventional power plant, PR=1 because Pcomb=Pmax.  Therefore, 

when the plant of Figure 1 is operating in extreme design conditions (only at Pmax or 

Pmin), a full charge and discharge cycle in the energy storage system consists of two 
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steps: the loading of the high temperature silo with high temperature solids from the 

CFBC while minimum power (Pmin) is delivered and the discharge from this silo at 

maximum power (Pmax) while the cooled solids are being stored in the low temperature 

silo. The thermal energy released from the high temperature silo during high demand 

periods needs to be the same as that stored during low demand periods. Thus: 

minmincombmaxcombmax t)PP(t)PP( −=−       (2) 

where tmax is the operating time at maximum power and tmin is the operating time at 

minimum power required to charge the silo with hot solids so that it is ready for the next 

discharge period with a thermal output of Pmax. Rearranging: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

1PR1
PP1

t
t combmin

min

max        (3) 

Figure 2 shows the effect of the maximum power delivered during a period of 

high demand (Pmax) on tmax/tmin. High values of Pmax imply the need to release the energy 

stored in a short period of time as this will lead to low tmax/tmin ratios. Figure 2 also 

shows that the ratio tmax/tmin is higher for the systems with lower Pmin as more energy 

can be stored during low demand periods.     
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Figure 2. Power ratio and tmax/tmin ratio as a function of Pmax/Pcomb for different values of 

Pmin/Pcomb.  

The choice of an operating time (tmax) to operate at maximum power Pmax is the 

key variable for assigning dimensions to the solid storage silos of Figure 1, together 

with the thermal properties of the stored solids and the temperature difference between 

the high and the low temperature silo, that define the energy storage density (ESD): 

)TT(cESD LTSHTSpss −ρ=       (4) 

where ρs is the bulk density of the solids, cps is the heat capacity of the solids, and THTS 

and TLTS are the temperatures of the high and low temperature silos respectively. Heat 

losses from this type of silo with a low surface-to-volume ratio and solids with a low 

thermal conductivity can be ignored in this study. We also assumed that the intrusion of 
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air to the high temperature silo can be minimized to avoid the combustion of the char 

present in the inventory of solids circulating in the CFBC system.  Therefore, THTS is 

determined by the operation temperature in the CFB combustor and TLTS by the 

temperature of the solids leaving the series of fluidized bed exchanger FBHX2.  

To illustrate a simple conceptual design case, a reference CFBC power plant 

with a combustion thermal input (Pcomb) normalized to 100 MWt is used as reference. A 

bituminous coal (C=65%wt, H=3%wt, S=1%wt, O=8%wt N=1%wt, H2O=7%wt, 

Ash=15%wt, LHV=26.3 MJ/kg) is burned in the combustor using a mixture of O2/CO2 

with 30% oxygen at a temperature of 900 ºC. The combustion is carried out with an 

oxygen excess of 6% and an oxygen supply of 7.7kg/s is delivered by the ASU for this 

purpose. The flue gas flow of 35.8 kg/s leaving the combustor transports 9.1 kg/s of 

CO2 to be compressed and stored. For the combustor chamber, we have assumed a 

typical gas velocity of 5 m/s that gives a cross-section of 16.4 m2. The solids stored in 

the silos and circulating through the combustor could be a mixture of ash and calcium 

derived solids that are routinely used in CFBCs as SO2 sorbents. However, in order to 

minimize the volume of the silos, it would be preferable to run the system using a 

circulation of  low cost inert solids of high particle density such as ilmenite or olivine. A 

certain make-up of inert dense solids (not shown in Figure 1 for simplicity) will be 

needed and/or a device to separate a substantial fraction of the coal ash from the denser 

solids used as heat carrier. For this design exercise, we have assumed that the solids 

circulating through the combustor and stored in the silos are composed mainly of 

ilmenite with an average heat capacity of 1300 J/kgºC and a bulk density of 2400 kg/m3 

[40]. 

As pointed out above, the combustor is designed to operate as an adiabatic 

reactor. Therefore, most of the power released during combustion is transferred to the 
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circulating stream of solids. In order to minimize the fraction of power that abandons 

the system with the flue gas, part of this power is used to preheat the comburent up to a 

temperature of 350 ºC. This leaves a power of 29.7 MWt available in the HX1 which is 

the minimum power (Pmin) during low demand periods and a ratio Pmin/Pcomb of 0.297. 

It is important to note that the power plant has internal power consumption 

requirements due to the air separation unit (ASU), CO2 compression and purification 

units (CPU), and the power plant auxiliaries that must be met even during low demand 

periods. Assuming a typical specific energy consumption of 160 kWhe/tO2 in the ASU 

and 100 kWhe/tCO2 in the CPU [41], 5% of the gross electric power output (Pmax) for the 

auxiliaries [42] and 45% net efficiency for the steam cycle, the thermal energy 

requirements for this internal electricity consumption will be 27.1 MWt. This almost 

matches the thermal power available from HX1, which means that during minimum 

electricity demand periods, the CCS plant can consume all the electricity that is 

generated from the thermal output from HX1 and it should be possible to reduce the 

electricity flow to the grid to almost zero. 

The solids circulation rate through the combustor has been fixed at a value of 

15 kg/m2s which is in the range of typical CFB combustors [43]. In order to extract 

70.3 MWt from the circulation of solids leaving the combustor (245.8 kg/s), the 

temperature of the solids at the exit of the heat exchanger (FBHX1) needs to be around 

680 ºC. 

In order to design the volume of the silos, a maximum power output (Pmax) of 

200 MWt is assumed. This results in a power ratio of 0.5 and a tmax/tmin ratio of 0.7 

according to Eq. 3. The volume of the silos is proportional to the time tmax that the plant 

needs to be operating at Pmax without interruption. There are typically two peak periods 

(early morning and evening) in the electricity demand curves in most countries, 
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separated by several hours of lower activity. However, as stated in the Introduction, a 

flexible power generation system with energy storage devices needs to be ready to 

operate at Pmax randomly, during periods of normal electricity demand on the 

assumption that there will be gaps in the electricity supply due to renewables 

intermittency or other variable power sources. In this particular reference example, the 

silos have been designed to operate at maximum power (tmax) during a period of just 2 

hours (equivalent to 200 MWht), which must be followed by a period of 2.8 h at Pmin 

with a maximum frequency of 5 charge/discharge periods per day. Obviously, if higher 

frequencies between the charge and discharge modes of operation are desired, tmax and 

the volume of the silos can be reduced. The energy storage density (ESD) will be 607 

kWht/m3 (assuming 200 ºC to be the temperature of the cold solids leaving FBHX2). 

The volume needed for the silos will then be 330 m3.  A cross-section of 16.5 m2 has 

been calculated for the silos assuming they will have a height of 20 m to allow for the 

inclusion of the high temperature silo between the discharge point of the cyclone and 

the inlet point of solids entering the combustor. This cross-section compares reasonably 

well with that corresponding to the combustor delivering Pcomb (16.4 m2). 

Table 1 shows the main mass flow streams and the power available from the 

different heat exchangers during operation in maximum, minimum and normal (without 

using the energy storage system) modes. During tmax, part of the total solids circulation 

(GSsilo= 6.7 kg/m2s referred to the cross-sectional area of the CFBC) is diverted towards 

the FBHX2 heat exchanger. The rest of the solids circulating from the combustor 

(equivalent to 8.3 kg/m2s) and the solids from the high temperature silo are fed to the 

main heat exchanger (FBHX1) to ensure a solids flow of GSCFBC=15 kg/m2s through the 

combustor and the delivery of 70.3 MWt by FBHX1.  

Table 1. Main mass flows involved in the systems depicted in Figure 1 and 4 and 
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the power delivered under the different operation modes. 

 PR=0.5 PR=0.2 
 Normal  Maximum 

power 
Minimum 

power Normal Maximum 
power 

Minimum 
power 

 Mass 
flow Temp. Mass 

flow Temp. Mass 
flow Temp. Mass 

flow Temp. Mass 
flow Temp. Mass 

flow Temp. 

Stream kg/s ºC kg/s ºC kg/s ºC kg/s ºC kg/s ºC kg/s ºC 
1 3.8 20 3.8 20 3.8 20 3.8 20 3.8 20 3.8 20 
2 32.3 350 32.3 350 32.3 350 32.3 350 32.3 350 32.3 350 
3 35.8 900 35.8 900 35.8 900 35.8 900 35.8 900 35.8 900 
4 245.8 900 135.9 900 0 0 245.8 900 245.8 900 0 0 
5 0 0 0 0 168.6 900 0 0 0 0 168.6 900 
6 0 0 0 0 77.2 900 0 0 0 0 77.2 900 
7 0 0 109.9 900 0 0 --- --- --- --- --- --- 
8 0 0 109.9 900 0 0 0 0 439.6 900 0 0 
9 0 0 0 0 77.2 200 0 0 0 0 77.2 200 

Power output 
HX1 29.7 29.7 29.7 29.7 29.7 29.7 

FBHX1 70.3 70.3 0 70.3 70.3 0 
FBHX2 0 100.0 0 0 400 0 
Total  100 200 29.7 100 500 29.7 

 

The system has been designed with extreme power outputs in mind but it can 

also be operating for longer periods of time (see Figure 3b) at intermediate power 

outputs between Pmax and Pmin by adjusting the split of the solids flow from the CFBC 

(GSCFBC) to the high and low temperature silos (GS silo) (streams 6 and 8 in Figure 1 and 

dotted line of Figures 3a and 3b). This particular example has been chosen to illustrate 

that the thermal power output of the system can be adapted to virtually any shape in the 

demand curve by controlling the solids circulation ratios Gssilo/GsCFBC while the 

combustion conditions in the oxy-CFBC are kept constant. This high level of flexibility 

can be achieved by means of methods and equipment used for the control and operation 

of external fluidized bed heat exchangers in commercial CFBC boilers [44, 45] 
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Figure 3. Examples of thermal power output curves of the system with a power ratio of 

0.5 of Table 1: a) operating the system to fit peaks of maximum power output; b) 

operating the system to follow a curve of power output by adjusting solids circulation 

ratios in the system (dotted line). 

 

Table 1 also includes the conditions corresponding to a different design case 

with an even lower power ratio (PR=0.2) for a system intended to operate at a 

maximum power of 500 MWt (Pmax) for a maximum of 2.5 hours followed by a long 

period of time at Pmin where the high temperature silo is charged overnight for 12 hours. 

The remaining time (9.5 hours) could be used in this particular example for the 

operation at Pcomb (to cover, for example, the period between the morning and night 

peaks) or for recharging the high temperature silo and increasing the duration of the 

night peak at Pmax. 

As can be seen from the new scheme in Figure 4 based on a design with a 

PR=0.2, the scale of the full oxy-fired CFBC subsystem (including ASU and CPU) has 

been considerably reduced (as Pcomb is only 1/5 of Pmax), while the relative volume of the 

silos and its associated heat exchanger have been increased. This makes it necessary to 
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redesign the method to increase the amount of solids circulating in the system as the 

solids flow between the silos will have to increase to over 439.6 kg/s (see Table 1) in 

order to allow a much larger thermal power output from FBHX2. In these conditions, it 

will probably be necessary to set up two separate steam cycles (one standard cycle for 

the oxy-CFBC marked in grey in Figure 4, to deal with the sum of HX1 and FBHX1 

power outputs) and a second steam cycle driven by the stream of hot solids flowing 

through FBHX2. As indicated in Figure 4, this large FBHX2 could be located below the 

high temperature silo and be connected to an independent transport line of cold solids to 

the top of the low temperature silo. 
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Figure 4. Scheme of the proposed Oxy-CFBC power plant concept with energy 

storage with a PR=0.2.  

 

As will be discussed below, this system could be economically interesting in 
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certain market conditions because the contribution to the overall specific equipment cost 

of the first subsystem (the costly CCS part marked in grey in Figure 4) is relatively 

small compared to the contribution required by the subsystem with the lower specific 

equipment cost (the silos and the steam cycle driven by Pmax). As will be discussed 

below, although a low power ratio (PR=0.2) will always be detrimental to specific 

electricity costs, the  advantage of such a system is that it could be used to cover short 

by highly rewarding peaks. To our knowledge, no other CCS system could operate with 

such a low capacity factor without incurring very severe economic penalties.  

3. Cost analysis 

A basic economic analysis has been carried out in order to explain the cost 

structure of the proposed system and the conditions that must be met for the system to 

be viable with respect to existing CFBC power plant designs (oxy-fired and air-fired). 

The cost of electricity (COE) has been estimated for all the systems using the following 

equation for a levelized cost [1]: 

η
++

×
+×

=
FCVOM

8760CF
FOMFCFTCRCOE   (5) 

where TCR is the specific total capital requirement to build any of the power plants 

discussed below, FCF is the fixed charge factor, FOM are the fixed operating costs, 

VOM are the variable operating costs, FC the fuel cost and η is the net plant energy 

efficiency.  

The cost of CO2 avoided (AC) [1] in oxy-fired CO2 capture systems is used to 

quantify the cost of reducing CO2 emissions by one unit (usually one tonne of CO2) 

while delivering the same amount of power as a reference plant without CO2 capture, 

and is defined as: 

( ) ( )capture
1

e2ref
1

e2

refcapture

kWhCOkWhCO
COECOE

AC −− −
−

=     (6) 
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where CO2kWhe
-1 is the CO2 mass emission rate per kWhe. The application of these 

equations to a CFBC and oxy-CFBC without energy storage is straight forward because 

there is sufficient aggregated cost information on TCR for both air fired and oxy-fired 

CFBC power plants [10, 35, 46-48]. For reference purposes, we have chosen 

representative numbers for all these variables as shown in Table 2, based on detailed 

reports by Naskala et al. [35] and DOE [48] because these two studies provide detailed 

costs of the components of power plants, that will be used below to discuss the TCR of 

the power plants with energy storage represented Figure 1 and 4.  

 

Table 2. Summary of cost assumptions for the CFBC power plants without energy 

storage. 

  Oxy-fired Air-fired (ref)
Reference plants without energy 
storage 

   

Total capital requirements, TCR $/kWe ($/kWt) 3600 (1296) 2000 (900) 
Fixed fraction cost, FOM $/kWe 50 35 
Fixed charge factor, FCF yr-1 0.1 0.1 
Variable cost, VOM $/kWhe 0.007 0.005 
Fuel cost, FC $/GJ 3 3 
Capacity factor, CF  0.9 0.9 
Net plan efficiency, η kWe/kWt 0.36 0.45 
CO2 emission factor, CO2kWhe

-1 tCO2/MWhe 0.045* 0.724 
COE  $/kWhe 0.087 0.057 
AC  $/tCO2 43.2 --- 

*For a 90% of capture efficiency 

 

We have assumed that the fuel cost, the net energy efficiencies and the fixed and 

variable operating costs reported in Table 2, are the same for all systems considered in 

this work. The focus in the following paragraph is on estimating the TCR and CF 

variables of equation (5) for the different systems considered.  

For convenience, the discussion that follows is based on the specific cost of 

equipment per unit of thermal power (kWt) as can be seen in Table 2 with the numbers 
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in brackets referring to the reference systems. In these conditions, the total cost ($) of a 

complete system incorporating energy storage that must be able to generate a maximum 

thermal power output of Pmax is simply TCR Pmax. To estimate the value of TCR 

($/kWt), three main components of the power plant with the energy storage system are 

considered:  

- TCRPower w/o Comb. This is the specific capital requirement to build a power 

plant excluding the equipment related with the fuel combustion (TCRComb). 

Therefore, this comprises the full steam cycle (i.e. steam turbine and feed 

and cooling water systems) for absorbing a thermal power of Pmax. It also 

includes all the costs related to the conditioning of the site, the building of 

the structures, the instrumentation and control and accessory electric plant.  

- TCRComb. This is the specific capital requirement of all the fuel combustion 

equipment for delivering a thermal power given by Pcomb (i.e. equipment 

marked in grey in Figures 1 and 4). This includes all the equipment 

associated with the combustion chamber (including FBHX1, HX1and the fans 

used for fluidization), the fuel feeding system, the flue gas cleaning, ash 

handling and the ASU and CPU units in the oxy-fired systems. According to 

the data available in the literature [35], this capital requirement represents 

about 60% of the total TCR of an oxy-CFBC power plant and about 50 % of 

the total TCR of an air-fired CFBC power plant. As indicated in Table 3, we 

have assumed that the Pcomb is sufficiently large to yield identical specific 

capital costs to those reported in Table 2 for standalone power plants 

designed for the same thermal output.   

- TCRStorage. This is all the equipment necessary to deliver a thermal power of 

Pmax-Pcomb (mainly the power generation equipment related to FBHX2, the 
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two silos and their solids transport equipment). Therefore, the scale of the 

equipment (and its total capital cost) is assumed to be proportional to Pmax-

Pcomb.    

In these conditions the total cost of the energy storage system of Figures 1 or 4, 

designed to deliver a maximum thermal power Pmax will be: 

( )combmaxStoragecombCombmaxCombo/wPowermax PPTCRPTCRPTCRPTCR −++=  (7) 

or: 

( )PR1TCRPRTCRTCRTCR StorageCombCombo/wPower −++=   (8) 

 

The estimation of TCRStorage is uncertain. On the basis of similar components in 

existing power systems and/or cement plants handling large flows of similar materials, 

the cost can be split into three main equipment cost components: 

maxSilohandlingSolids2FBHXStorage tTCR2TCRTCRTCR ++=    (9) 

  In oxy-CFB power plants, the largest fraction of the heat is extracted from the 

boiler and mainly from the external heat exchangers. The specific cost of FBHX2 

(TCRFBHX2) is assumed to be identical to the cost of the boiler of an oxy-CFBC power 

plant. This assumption can be considered conservative and is supported by the fact that 

FBHX2 is mechanically and thermally similar to the equipment used today in power 

plants incorporating external fluidized bed heat exchanger technologies [29, 33, 38].  

Furthermore, in accordance with reference [35, 48], the cost of the boiler in an oxy-

CFBC power plant represents approximately 15% of the total TCR of the plant.  

The specific equipment cost of the solids handling, TCRSolid handling in the energy 

storage system has been assumed to be zero for the system in Figure 1 because the 

circulating fluidized bed combustor has already incorporated the necessary transport of 

solids from the bottom of the silos to the top of the silos. However, for the system with 
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a PR lower than 0.2 represented in Figure 4, the solids circulation rate required 

throughout the CFBC takes on a value of more than 25 kg/m2s and it would be 

appropriate therefore to incorporate an additional transport line of cold solids leaving 

FBHX2 to the top of the low temperature silo.  The specific cost for this equipment is 

assumed to be 20 $/(kg/h) the same value as that of reference [49] for typical equipment 

in cement plants used to transport the clinker from the cooler to the storage silo. This 

specific cost can be considered conservative because it is likely to go down in view of 

the large scale of the solids handling in the energy storage system of Figure 4. In order 

to change this figure into the units of Table 3 (TCRSolids handling of 79.2 $/kWt), we have 

assumed the equipment cost to be proportional to the solids circulation flows Gssilo in 

Figure 1 or 4 required to transfer one kWt from the high temperature silo to the low 

temperature silo (1.1*10-3 kg/s for the solids used in this work with a heat capacity of 

1300 J/kgºC and a difference of temperature between the silos of 700 ºC). 

Finally, the specific cost of the high temperature and low temperature silos is 

assumed to be 1.5 $/kg which is similar to the specific cost of silos used to store the 

ashes extracted from coal boilers [35, 48]. As in the case of the solids handling 

equipment, the TCRSilo value of 5.9 $/kWht adopted in Table 3 was obtained for the 

typical design base reported in the previous sections (3.95 kg of stored solids to satisfy 

an energy storage of 1 kWht, for the solids used in this work with a heat capacity of 

1300 J/kgºC and a difference of temperature between silos of 700 ºC).  

Now that the methodology used to estimate TCR has been discussed, it is 

important to consider again the definition of the capacity factor (CF in eq. 5) with 

reference to the different systems employed in this work. For the reference cases of 

Table 2, the value of CF=CFcomb=0.9 is a standard capacity factor value for power plants 

with a “base load”. It indicates the ratio between the energy produced over the year (for 
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example in kWhe of electricity) divided by the maximum energy that could be produced 

if the plant were operating at full load all year. However, the value of CF in the energy 

storage systems must take into account that “full load” at the maximum power Pmax is 

only available for a certain period of time even when the combustor is operating 

continuously at Pcomb. Therefore:  

PRCFCF Comb=        (10) 

which shows once again that the systems incorporating energy storage are limited (by 

PR) to the fraction of time during which they can deliver full power.   

Another important difference between Table 2 and Table 3 concerns the choice 

of net plant efficiency for the different systems compared in this work. It is well known 

that lower values of CF are associated to relevant energy penalties when a low CF is 

linked to part load operation. The penalty would be less severe if the CF was linked to 

long periods at full load followed by long shut-down periods. It is beyond the scope of 

this conceptual paper to analyse the dependencies of the net power efficiencies with CF. 

Therefore, all efficiencies in Table 3 are assumed to be identical to the reference 

systems at high CF and the comparison of cost that follows in the following paragraphs 

focuses on relative differences between systems at identical CF (which are likely to 

have similar penalties associated to the low CF).  

The application of the previous assumptions and equations to estimate the costs 

reported in Table 3 allows a preliminary comparison of costs for the systems without 

energy storage reported in Table 2. As expected, the COE is substantially higher in the 

cases chosen as examples of systems incorporating energy storage with respect to the 

reference plants in Table 2 operating with a large CF. However, this is essentially 

because the systems being compared have very different overall CFs. A power plant 

with no energy storage will deliver electricity at the lowest cost if, and only if, the 
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capacity factor of the plant is sufficiently high. However, the reverse applies when 

similar capacity factors are considered.  

 

Table 3. Summary of cost assumptions for the CFBC power plants with energy storage 

for different power storage ratios (PR), using a CFcomb=0.9, and FC, VOM and FCF 

values as in Table 2  

Reference plants with energy 
storage 

 Air-fired 
PR=0.2 

Oxy-fired 
PR=0.5 

Oxy-fired 
PR=0.2 

Type of system  Figure 4 Figure 1 Figure 4 
TCR $/kWt 782 1016 916 
TCRPower w/o Comb $/kWt 450 518 518 
TCRComb  $/kWt 450 778 778 
TCRStorage (Eq. 9)  $/kWt 303 218 303 
TCRFBHX2 $/kWt 194 194 194 
TCRSolid handling $/kWt 79 0 79 
TCRSilo $/kWht 5.9 5.9 5.9 
tmax h 2.5 2 2.5 
Capacity factor, CFcomb PR  0.18 0.45 0.45 
Net plan efficiency, η kWe/kWt 0.45 0.36 0.36 
CO2 emission factor, CO2kWhe

-1 tCO2/MWhe 0.724 0.045* 0.045* 
COE $/kWhe 0.157 0.118 0.233 
AC $/tCO2 --- 45.9 

(88.9**) 
71.7  

(243.5**) 
*For a 90% capture efficiency 

** For PR=1 in the reference plant and CF=0.9 

Figure 5 compares the cost of electricity produced by a CFBC power plant as a 

function of the capacity factor for oxy-fired and air-fired systems with and without 

storage. Since PR=1 for the systems without energy storage, the reduction in the 

capacity factor comes from the reduction in CFcomb and the COE rapidly escalates to 

high values as CF decreases, especially in the case of the oxy-fired CFBC since the 

costly equipment is underused for low values of CFcomb. In contrast, for the three 

systems with energy storage, where CFcomb remains constant, the impact of the lower 

capacity factor is in the decreasing values of the power storage ratio (PR). Since a 

decrease in this power ratio increases the contribution of the lower cost components of 
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the system (TCRStorage is lower than TCRComb) to the total power plant cost TCR (Eq. 8), 

the levelized cost of electricity increases less sharply than in the case of power plants 

without energy storage.  
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Figure 5. Cost of the electricity (COE) as a function of the capacity factors of the 

systems in Table 2 and 3. Dotted lines: reference systems (air and oxy-CFBC with 

PR=1).  

Figure 5 indicates that, if a power plant is designed to operate in a market with 

low capacity factors (low CF=CFcomb), a system that incorporates energy storage with 

the same overall capacity factor (CF) achieved with the maximum technical value of 

CFcomb but lower values of PR should be cost effective. The differences in COE are 

larger for oxy-fired power plants with energy storage than for similar oxy-fired systems, 

in Table 2 that operate with a low CFcomb. The difference in COE in the case of air-fired 
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systems is less favorable to energy storage systems. This indicates that the storage 

system proposed in this work would be a good alternative if cost intensive oxy-fired 

CO2 capture systems operated with low capacity factors, since the impact of low PR in 

reducing the average TCR of the systems would be greater (see Eq. 8). For a given 

capacity factor, the COE of the system depicted in Figure 1 is slightly lower than that of 

Figure 4, as there is no need of a solid handling system. 

It is important to point out that the costs of the electricity presented in Table 3 

and Figure 5 for the power plants incorporating an energy storage system have been 

calculated assuming that the CFComb is 0.9 as the combustor can operate continuously 

irrespective of the power output. The cost benefits of this steady state operation in the 

combustion part of the system (and all the remaining auxiliaries) have not been 

quantified in the simple cost analysis carried out above on the systems with energy 

storage. Therefore, it could be argued that the cost estimates considered in the previous 

paragraphs are too conservative and that we have been somewhat pessimistic in our cost 

assumptions for these energy storage systems. 

To turn to the differences in avoided cost of CO2 obtained with Eq. 6, it is 

important to choose an adequate reference plant without capture. Generally, this is a 

power plant of the same type and design as the plant with CO2 capture [1, 10]. 

Therefore, for this study an air-fired CFBC power plant was selected as reference. The 

results for the avoided costs in Tables 2 and 3 and in Figure 6 have been calculated 

assuming that the reference power plant operates with the same capacity factor as the 

oxy-CFBC systems with and without energy storage. For a conventional oxy-CFBC 

power plant operating at “base load” with a CF=0.9, the cost of CO2 avoided is 43.2 

$/tCO2. However, the AC for this type of power plants increases sharply as the capacity 

factor decreases in accordance with the evolution of the COE with CF as shown in 
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Figure 5.   
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Figure 6. Cost of CO2 avoided as a function of the capacity factors of the systems in 

Table 2 and 3.  

In the case of the oxy-CFBC power plants with energy storage, the increase in 

the cost of avoided CO2 with CF is less pronounced. This is due to the lower increase in 

the COE with CF for these systems. This is obviously linked to the assumption that the 

capacity factor in the energy storage system is the same as that in the reference plant. As 

mentioned above, the energy storage systems discussed in this work would be less 

economical than the reference plants if the reference plants were allowed to work with 

very high capacity factors (see cost of AC in brackets in Table 3). But from Figure 6, it 

can be seen that standard oxy-fuel combustion systems would also be uneconomical, 

and possibly technically unviable if they operate with low capacity factors and/or very 

large load changes.  
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An important point to bear in mind when comparing the COE and cost of CO2 

avoided of the different systems in Figures 5 and 6 is that the CF value in the reference 

system without energy storage can change over the whole scale of capacity factors (i.e. 

the power plant could be operated at different periods of time with different capacity 

factors). In contrast, with the energy storage system, the average capacity factor is an 

irreversible design choice that cannot be increased beyond the value of PR adopted 

when designing the storage equipment. This is obviously a constraint that will favor the 

standard systems (without energy storage) when there is a lot of uncertainty in the 

electricity markets, though there is a substantial probability of high capacity factors. The 

value of this additional flexibility in the standard systems is not represented in Figures 5 

and 6, and could sway decisions in favor of the standard systems (with no energy 

storage) when capacity factors are much higher than CF=0.5. However, the differences 

in COE and avoided costs are substantial when capacity factors are below 0.5 and 

increase if there is a further decrease in CF. Therefore, in view of the uncertainties and 

trends discussed above, we can conclude that there is a wide range of conditions in 

which the systems with energy storage will be competitive.  

 

4. Conclusions 

Circulating fluidized bed combustor power plants, CFBC, in particular those 

operating under oxy-fired conditions have limited flexibility for both technical and 

economic reasons associated to the large impact of the capacity factor on energy cost. 

The ability of CFBCs to handle and circulate large flows of high temperature materials 

makes it possible to design a large scale thermal energy storage system composed of 

two solid storage silos connected to the circulating fluidized bed combustor. The 

thermal energy stored in the high temperature silo of solids during low power demand 
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periods can generate a large amount of thermal power even with a small circulating 

fluidized bed combustor. This is particularly important for highly integrated and costly 

oxy-fired CFBC. During low power demand periods, the CFBC is fed by a low 

temperature stream of solids from a silo while the high temperature solids circulating in 

the combustor are stored in the high temperature silo. In this study, two conceptual 

designs of energy storage systems in oxy-CFBC power plants able to deliver between 2 

and 5 times the nominal thermal power capacity of the combustor have been carried out 

to illustrate the flexibility in power outputs that can be achieved by controlling the solid 

circulation rates between the silos and through the combustor. With a constant 

combustion conditions and a coal feeding rate equivalent to 100MWt in the CFBC, the 

system should be able to modify the power output between a minimum of 29.7 MWt 

and a maximum of 200 and 500 MWt, respectively.  

 

According to a preliminary cost analysis of these design examples, there is a 

clear window of opportunity for these systems to be competitive in markets where the 

power plants (with or without CO2 capture) are forced to operate at very low capacity 

factors, CF. This is because the specific capital cost of the energy storage components  

of the system (heat exchanger + silos + solids handling at low temperature) appears to 

be lower than that of equivalent fuel combustion equipment in conventional power 

plants. For oxy-CFBC power plants incorporating energy storage with an overall 

capacity factor below 0.45, the cost of electricity appears to be highly competitive 

compared to the cost of the electricity produced by an equivalent system without energy 

storage. On the other hand, costs are always higher in systems with energy storage when 

compared to systems without storage operating with very high capacity factors. Energy 

storage systems can operate at full load only during relatively short periods of time with 
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respect to other periods when the thermal energy is stored in silos. The storage systems 

proposed in this work are especially attractive when cost intensive oxy-fired CFBC 

systems are forced to operate with low capacity factors. However, more research is 

clearly needed to close gaps of knowledge and cost uncertainties in the new concept. 
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