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We show that the effective dynamics of the recently proposed isotropic condensate state of group field
theory with Laplacian kinetic operator can be equivalent to that of homogeneous and isotropic loop
quantum cosmology in the improved dynamics quantization scheme, where the area of elementary
holonomy plaquettes is constant. This constitutes a somewhat surprising example of a cosmological model
of quantum gravity where the operations of minisuperspace symmetry reduction and quantization can
actually commute.
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I. INTRODUCTION

Hamiltonian theories of quantum gravity are notoriously
hard to tame. Apparently inexhaustible technical difficulties
make the solution of background-independent canonical
quantum constraints a challenging task. However, if one
restricts the theory to homogeneous geometries, one can
construct a quantum model on a finite-dimensional minis-
uperspace [1]. It is generally agreed that minisuperspace
quantization is only a toy model of a quantum theory of
geometry. The symmetry reduction is performed before
solving the quantum constraints: one first restricts the
classical theory to a homogeneous background and then
quantizes. Dynamics is then expressed by a quantum
super-Hamiltonian constraint (Wheeler-DeWitt equation)
ĤΨ ¼ 0, where the wave function Ψ depends only on
geometry variables (the scale factor a of the universe) and
matter fields. On the other hand, a complete theory should
implement quantization in a background-independent way
and then specialize, if desired, to cosmology. Since sym-
metry reduction and quantization do not commute in general
[2], minisuperspace models can capture only some of the
qualitative features of the cosmology of the full theory.
For example, homogeneous loop quantum cosmology

(LQC) is not the cosmological limit of full loop quantum
gravity (LQG) but a minisuperspace model employing
LQG techniques (but see the recent results of [3]).
Taking the expectation value of the symmetry-reduced
quantum operator Ĥ on a semiclassical state peaked at
classical values of the canonical variables, for a massless
scalar field one gets the effective Friedmann equation
(e.g., [4,5])

αsin2ðμ̄cÞ ¼ ρ

ρ�
; ρ ¼

_ϕ2

2ν
; ρ� ≔

3

V2=3
0 γ2κ2μ̄2a2

;

ð1Þ

where α ¼ 1þOða−σÞ and ν ¼ 1þOða−σÞ contain small
corrections to inverse-volume operators,

μ̄ ¼ μ̄ðaÞ ∝ a−2n; n > 0; ð2Þ

is an arbitrary function of the scale factor (but n must
be positive for internal consistency of the model), c ¼ cðtÞ is
the Ashtekar–Barbero connection in homogeneous isotropic
spacetime, Ai

α ∝ cδiα, Roman indices i ¼ 1; 2; 3 run over the
internal gauge space, α ¼ 1; 2; 3 are spatial indices, and V0

is the comoving fiducial volume onwhich the Hamiltonian is
defined. Classically, c ¼ γ _aþ K (K ¼ 0;�1 is the intrinsic
curvature). The critical density ρ�, which depends on the
gravitational constant κ2 ¼ 8πG and on the Barbero–
Immirzi parameter γ ¼ Oð1Þ, is constant only in the
so-called improved quantization scheme [6]

μ̄ ∝ a−1; n ¼ 1

2
: ð3Þ

In this case, the classical big-bang singularity is replaced
(in the homogeneous theory) by a quantum bounce
slightly below the Planck density. Several quantization
ambiguities are present in the functions α, ν, and μ̄ which
cannot be fixed in the theory purely from the Friedmann
equation. This is a problem typical of canonical quanti-
zation, where Ĥ can be defined by an infinite number of
operator orderings. In the general case of lattice refine-
ment [7], one identifies μ̄ with the number μ ¼ l0V

−1=3
0 ¼

N −1=3 of elementary holonomy cells of comoving length
size l0 (parallel transport of the connection along closed
paths) per fiducial volume. Equation (3) then implies
that the cell area ðal0Þ2 is constant and proportional to
the Planck area l2

Pl, but since we are ignorant about the
dynamical evolution of N in a state of the full theory, the
exponent n in μ̄ can take any positive value, and, however
well motivated the improved scheme (3) is [8], it remains
only one among many possibilities.
In this paper, we partially solve this drawback of LQC

by deriving the structure of its homogeneous and isotropic
dynamics (1) from a fundamental quantum theory of
gravity, group field theory (GFT). GFT [9] is a back-
ground-independent nonperturbative quantum setting
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where a special physical state can be chosen so that the
conditions of homogeneity and isotropy emerge in the
semiclassical continuum limit. One can then extract
cosmology directly from the full quantum theory
[10,11]. The present stage of development of the model
does not warrant a thorough comparison with the findings
of LQC, and we are unable to check all of its known
features (such as the form of inverse-volume corrections
and whether these are artifacts of the symmetry reduc-
tion). However, we remove the quantization ambiguity on
μ̄ unavoidable in the Hamiltonian formalism and argue in
favor of the improved quantization scheme.

II. GFT CONDENSATE

We first review group field theory and its cosmology in
four dimensions [10,11]. GFTs are quantum field theories
on group manifolds. One has a complex-valued object
φðgÞ ≔ φðg1;…; g4Þ dependent on four elements gI of
the local gauge group G of gravity. Gauge invariance of
vertices is expressed by the property φðgIÞ ¼ φðgIhÞ for all
h ∈ G and all I. The classical dynamics is governed by the
action

SGFT ¼
Z
G
d4g

�Z
G
d4g0φ�ðgÞKðg; g0Þφðg0Þ þ V

�
; ð4Þ

where the kinetic operator K is an operator on G2 and the
potential V ¼ V½φðgÞ;φ�ðgÞ� is a nonlinear interaction of
the fields; choices of K and V fix the model.
The classical field φðgÞ is interpreted as the four-valent

vertex of a spin network, with the group label gI being the
holonomy of the connection along the Ith link. To each
vertex in a spin network there corresponds a 3-simplex (a
tetrahedron) in the dual simplicial complex. In this repre-
sentation, φðgÞ is a 3-simplex whose four 2-faces are
labeled by the gIs and φðgIÞ ¼ φðgIhÞ is called closure
constraint since it is equivalent to the requirement that the
four triangles close to form the tetrahedron. The interaction
term V describes how tetrahedra are glued together along
their faces to form a 4-simplex.
When GFTs are constructed as the generalization of loop

quantum gravity, the group is G ¼ SUð2Þ, and the geom-
etry described by the states is three dimensional and spatial.
The quantum scalar field φ̂ is expanded in terms of creation
and annihilation operators on a Fock space. The field
obeys the algebra ½φ̂ðgÞ; φ̂†ðg0Þ� ¼ 1Gðg; g0Þ, ½φ̂; φ̂� ¼ 0 ¼
½φ̂†; φ̂†�, where 1G is an identity operator compatible with
the closure constraint. The Fock vacuum j∅i is by definition
annihilated by φ̂, φ̂j∅i ¼ 0 and corresponds to a “no-
spacetime” configuration where no quantum-geometry
degree of freedom is present and all area and volume
operators have vanishing expectation value. By convention,
h∅j∅i ¼ 1. The one-particle GFT Fock state jgi ≔ φ̂†ðgÞj∅i
is interpreted as the creation of a four-valent spin-network
vertex or of its dual tetrahedron with labels gI .

Matter fields can be added to the picture, either as
emergent degrees of freedom or by hand as new coordinates
in an extension of the group manifold G4 [12]. In the second
case and for a real scalar field ϕ, the GFT field becomes
φðgÞ → φðg;ϕÞ. The generalization of the action (4) and of
the rest of the theory is straightforward.
In GFT, the double limit of the continuum and semi-

classicality is delicate because the pregeometric discrete
structure contains different information with respect to
gravity on a fixed topology. To translate statements regarding
differential manifolds (homogeneity, for instance) into the
language of simplicial complexes, it should be made possible
to embed any such complex into a smooth continuous
geometry. In a limit, if existing, where the complex describes
a differentiable spatial hypersurface, each tetrahedron should
be nearly flat compared to the overall curvature radius of the
embedding geometry. This flatness condition is an important
self-consistency check to be done at the end.
With this caveat on board, one can construct GFT

quantum states in the Fock space capable of describing
geometries with a continuum homogeneous limit. In a
homogeneous manifold, all points of space carry the same
information on the metric or the connection. In a classical
dual complex where the flatness condition holds, the
equivalent of points of space are tetrahedra and their metric
information is carried by their group or algebra labels. The
redundancy required by homogeneity is thus achieved by
asking (i) that all of the building blocks of the combinatorial
structure be in the same microscopic configuration and
(ii) that this configuration admit a “macroscopic” description
as a whole. This does not mean that the labels of each
classical building block are fixed to the same values, which
would correspond to an ad hoc minisuperspace approxima-
tion before quantizing. Rather, one considers the N -particle
state ξ̂N j∅i ¼ ξ̂…ξ̂j∅i built from some operator ξ̂ composed
of creation operators summed over all possible group
configurations: ξ̂ ≔

R
d4gξðgÞφ̂†ðgÞ, where the weight ξ

is called σ in [10,11]. Here we take the case of elementary
building blocks, i.e., tetrahedra, but one can obtain other
types of states made of “molecular” composites.
The quantum geometry found at these N distinct

tetrahedra is the same. Taking the limit N → þ∞, the
complex approximates to a continuum. This limit is not just
formal and can be realized by a concrete physical state. In
fact, a configuration with (i) an infinite number of particles
in the same microscopic quantum state and (ii) character-
ized by one macroscopic description is nothing but a
condensate. According to the lore of condensed matter,
the ensemble of tetrahedra is thus represented by the gauge-
invariant kinematical state

jξi ≔ Aeξ̂j∅i; ð5Þ
where A is some normalization here chosen so that
hξjξi ¼ 1. An easy calculation shows that jξi is a coherent
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state, that is, φ̂ðgÞjξi ¼ ξðgÞjξi. The metric can be recon-
structed from ξ when working in momentum space.
Expression (5) defines a nonperturbative vacuum on the

kinematical Fock space, on which the GFT field acquires the
nontrivial expectation value hξjφ̂jξi ¼ ξ ≠ 0. We enforce a
mean-field approximation on the condensate (5), expanding
the field φ ¼ ξþ δφ around its nonzero vacuum expectation
value and truncating the equations of motion up to some
order in the fluctuations δφ. Full quantum dynamics is given
by the infinite tower of constraints hξjÔ Ĉ jξi ¼ 0, where
Ĉ≔

R
d4g0Kðg;g0Þφ̂ðg0ÞþδV̂=δφ̂†ðgÞ is the quantum version

of the classical equation of motion and Ô½φ̂; φ̂†� is an
arbitrary operator of the GFT field. Exact solutions to the
quantum dynamics solve all of these conditions simulta-
neously. Approximated solutions can be found by imposing
only the first of such constraints (O ¼ 1), which is the
analogue of the Gross-Pitaevskii equation for Bose-Einstein
condensation [13]. Taking a normal ordering in V̂ such that
all φ̂† are to the left of all the φ̂, one has

0 ¼ hξjĈjξi ¼
Z

d4g0Kðg; g0Þξðg0Þ þ δV
δφ�ðgÞ

����
φ¼ξ

: ð6Þ

Solutions ξðgÞ of this equation give, when plugged into
Eq. (5), approximate physical states.
The scalar weight ξ is interpreted as a probability

distribution on the space of homogeneous geometries. It
is not a wave function of the quantum geometry in the
canonical sense since (6) is nonlinear in general. In
Wheeler–DeWitt and loop quantum cosmology, a wave
function Ψ describes a single quantum universe with fixed
topology. In GFT cosmology (or GFC in short), the scalar ξ
is a highly quantum object, the interpretation of a continuum
geometry and the semiclassical limit being recovered only
by the macroscopic, large-scale collective behavior of this
many-particle ensemble. In the case of molecular conden-
sates, ξ carries also information on the correlation between
different quanta.
To study a concrete model of quantum dynamics, one

must make a choice of operators in Eq. (6). Renormalization
analyses indicate that finiteness of the theory requires the
kinetic operator K to include the Laplacian Δg on the group
manifold [14]. Assuming that nonlinear interactions are
negligible (V ¼ M2jφj2) and including a matter scalar field,
the dynamical equation to solve is�X4

I¼1

ΔgI þ 12E2∂2
ϕ þM2

�
ξðg;ϕÞ ¼ 0; ð7Þ

where M is dimensionless and E2 is some constant whose
sign will be chosen later in relation with the classical
equations of motion. At first we ignore matter, E2 ¼ 0.
We use the irreducible representation of SUð2Þ in a
neighborhood of the identity in terms of the Pauli generators
τi ¼ σi=ð2iÞ of the suð2Þ Lie algebra where gIðπIÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~πI · ~πI

p
12 þ 2~τ · ~πI is a 2 × 2 matrix and the four

three-vectors ~πI are elements of suð2Þ such that j~πIj ≤ 1.
Thanks to gauge invariance and the closure condition, one
can manipulate the dynamical equation to express it only in
terms of the elements ~πI of the first three links (dual faces).
The ~πIs can be combined into the matrix invariants
πIJ ≔ ~πðgIg−14 Þ · ~πðgJ g−14 Þ, where I ;J ¼ 1; 2; 3, jπIJ j ≤
1 and πII ≥ 0. For simplicity, we assume isotropic states
ξ ¼ ξðπ11; π22; π33Þ and that the diagonal components are all
equal, πII ¼ χ for all I , so that the equation of motion is
recast as [11]

2χð1 − χÞ d
2ξðχÞ
dχ2

þ ð3 − 4χÞ dξðχÞ
dχ

þmξðχÞ ¼ 0; ð8Þ

where 0 ≤ χ ≤ 1 and m ¼ M2=12. To summarize, homo-
geneity is recovered after taking the continuum limit of a
special but fully quantum state, while isotropy is imposed
only to find analytic solutions of the GFT condensate giving
rise to the simplest cosmological background. To give χ an
interpretation, we observe that, if the connection remains
approximately constant along a dual link with length l0, the
holonomy thereon is g≃ expðl0 ~ω · ~τÞ, where ωi ¼ eαAi

α.
One has g ¼ cosðl0j~ωj=2Þ12 þ 2~τ · ð~ω=j~ωjÞ sinðl0j~ωj=2Þ,
leading to the identification

χ ¼ sin2
�
l0j~ωj
2

�
≕ sin2

�
μ̄c
2

�
: ð9Þ

In the second step, we used a notation reminiscent of the
LQC cosmological setting, where we encoded the informa-
tion on the holonomy length and macroscopic fiducial
volume into a parameter μ̄ ¼ μ̄ðaÞ, whose time evolution
is encoded in a scale-factor dependence. Near the identity,
~π ≃ ~ω=2 and

ffiffiffi
χ

p ≃ μ̄c=2 are proportional to the connection
c at low curvature. At the classical level for K ¼ 0, c ∝ _a, so
that the low-curvature classical limit is

χ ∝ ðaμ̄HÞ2 ≪ 1; H ≔ _a=a: ð10Þ

The general solution of Eq. (8), which we omit [5,11], is
always normalizable with respect to the group measure.
In the most general case, ξðχ ≪ 1Þ ∼ χ−1=2, and hence,
consistently, the general isotropic vacuum solution is
infinitely peaked at small curvature: in the continuum
limit, tetrahedra of a classical geometry are nearly flat
(spatially constant triad and connection). The exact vacuum
solutions of (8) are well defined also in high-curvature
regimes where χ ≈ 1 and the flatness condition fails. These
regimes are not unphysical, but they do not admit a simple
geometric interpretation in the language of continuous
smooth manifolds. This situation is strongly remindful of
what happens in LQC, where a nonclassical dynamics is
effectively encoded in equations on a continuum even if
there is no underlying smooth manifold structure. It is in
this sense that the universe described by ξðχÞ is highly
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quantum, contrary to the WKBwave functions of canonical
quantum cosmology which represent conventional semi-
classical geometries for all values of their arguments a
and ϕ.

III. LQC FROM GFC

We now recover both the classical Friedmann equation
and the one of homogeneous and isotropic LQC with a
unique parametrization. As in [10], we take a WKB Ansatz
of the form

ξWKBðχ;ϕÞ ¼ Aðχ;ϕÞe½iSðχ;ϕÞ−Iðχ;ϕÞ�=l2Pl : ð11Þ
The functions A, S, and I must be tuned so that the
classical-geometry interpretation with ξ ∼ χ−1=2 be given
by the simultaneous limits lPl → 0 and χ → 0. Incidentally,
the usual problem that WKB states are non-normalizable
approximations of unknown quantum-gravity states is
solved in GFT, since the general exact solution of (7)
is known.
We look for solutions of (7) of the form S ¼ Sðχ;ϕÞ and

I ¼ 0; damping terms can be included in A. Plugging (11)
into (8) (with matter switched on), expanding m as
m ¼ m4l−4

Pl þm2l−2
Pl þm1l−1

Pl þm0, and separating order
by order in lPl, one obtains Oðl−4

Pl Þ, Oðl−2
Pl Þ, and Oð1Þ

equations, of which we report only the first:

2χð1 − χÞðS;χÞ2 ¼ −E2ðS;ϕÞ2 þm4: ð12Þ

As in the usual Hamilton-Jacobi formalism, we identify
∂χS ∝ pχ and ∂ϕS ∝ pϕ with the semiclassical momentum
conjugate to, respectively, χ and ϕ. Classically, in N ¼ 1
gauge, they correspond to

pχ ∼ pμ̄2 _a2 ∼
a

μ̄2H
; pϕ ∼ a3 _ϕ: ð13Þ

Our main results will be that (A) the purely classical limit
fixes the behavior of μ̄ and (B) the limit of LQC effective
dynamics is also recovered and confirms (A).
(A) In the low-curvature limit χ ≪ 1 but without

expanding the left-hand side of (12) as χð1 − χÞ≃ χ, using
Eq. (10) one would have H2 ∝ E2 _ϕ2 −m4a−6 þ ðaμ̄Þ−2,
which would be, assuming E2 > 0, the standard Friedmann
equation for a massless scalar field and two extra con-
tributions. One is a stiff matter term which can be removed
by settingm4 ¼ 0. The other is a curvature term if μ̄ ¼ 1 or
a cosmological constant if Eq. (3) holds. The first pos-
sibility is excluded because the curvature term could only
come from the classical connection c ¼ γ _aþ 1 and also
because, if we want to embed LQC in group field
cosmology and identify the GFC function μ̄ with the
LQC function (2), LQC forbids a constant μ̄. The other
choice is more interesting, but we will see that E2 > 0 does
not lead to Lorentzian LQC. Also, Wick rotating the above

equation to compensate for a positive E2 (H2 → −H2,
_ϕ2 → − _ϕ2) would give a negative cosmological constant.
We therefore turn to another derivation of the classical
equation of motion. Taking the extreme regime χ ≈ 0, we
now make the expansion χð1 − χÞ≃ χ and get

ðaμ̄Þ−2 ∝ −E2 _ϕ2: ð14Þ

If we take E2 < 0, the right-hand side is the scalar field
energy density plus a cosmological constant. The left-hand
side is H2 only if μ̄ ∝ 1= _a. For the inverse power law (2)
and an expanding universe, this condition is verified if a ∝
t1=ð1−2nÞ for n < 1=2, or if a ∝ eHt when H is constant in
the improved quantization scheme n ¼ 1=2. Although both
cases rely on a specific form of the scale factor, the second
is more realistic in the presence of a cosmological constant
Λ, which is bound to dominate over matter asymptotically
(de Sitter attractor). Remarkably, the choice (3) is the one of
the improved quantization scheme. While in the canonical
theory any choice of μ̄ is formally compatible with the
classical limit, here GFC has the correct limit of the
Einstein-gravity Friedmann equation in de Sitter approxi-
mation only when (3) holds. There is thus the possibility
that part of the ambiguities of the canonical theory be
removed in this model of GFT.
(B) We now obtain the Friedmann equation (1) of

LQC for general χ. Observing that 4χð1 − χÞ ¼ sin2ðμ̄cÞ,
Eqs. (12) and (1) agree provided E2 < 0 and the Hamilton–
Jacobi momentum pχ be

pχ ∝
ffiffiffi
α

ν

r
a2

μ̄
; ð15Þ

where α and ν are the inverse-volume LQC corrections of
the gravity and matter sectors. Equation (15) has not been
derived from first principles, but the characteristic structure
of LQC dynamics is indeed reproduced. The classical limit
α; ν → 1 agrees with Eq. (13) only if μ̄ ∝ 1= _a, consistently
with Eq. (14).
The claim that LQC at large can be fully derived from

GFT is premature, since our results should be refined in
many ways. First, the stability of the condensate should
(but can) be checked in perturbation theory, which would
be also crucial for the study of cosmological inhomoge-
neities and their comparison with LQC perturbations.
Second, nontrivial interactions V must be turned on to
better account for the matter content of the model and
obtain a fuller derivation of Eq. (15) and the functions α and
ν. Preliminary WKB calculations with the local potential
V¼M2jφðgÞj2þðσ=2ÞjφðgÞj4 show that interactions could
generate a nonminimally coupled term. Expanding the
coupling λ ≔ σ=12 ¼ λ4l−4

Pl þ λ2l−2
Pl þ λ0 and solving

the WKB equation A;ϕϕ þ ðm0=E2ÞAþ ðλ0=E2ÞA3 ¼ 0

for an amplitude A ¼ AðϕÞ, the only change in Eq. (12)
is m4 → m4 þ λ4A2ðϕÞ. The most general analytic
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solutions are the Jacobi elliptic functions cn, sn, and dn.
When m0 ≠ 0 and assuming E2 < 0, the simplest solutions
are A1ðϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m0=λ0

p
tanh½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=ð2E2Þ

p
ϕ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

m0=λ0
p

tan½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m0=ð2E2Þ

p
ϕ� and A2ðϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m0=λ0

p
=

cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=E2

p
ϕÞ, depending on the sign of m0. When

m0 ¼ 0, the only solution is A3ðϕÞ ¼ cn½
ffiffiffiffiffiffiffiffiffiffiffiffi
λ0=E2

p
ϕ;

ð ffiffiffi
5

p
− 1Þ=2�. The interpretation of these scalar-field pro-

files with a stiff-matter scaling a−6 remains to be assessed
and might require to go beyond the WKB approximation.
The present approach will likely have something to say

about the cosmological constant problem, too. The peak
ξ ∼ χ−1=2 in the probability density can be translated into
one for Λ, since in the classical limit with Eq. (3) and for
negligible (or nearly constant) matter energy density

χ ≃H2 ∝ Λ: ξðΛÞ ∼ Λ−1=2. This peak is less pronounced
than the exponential probabilities found in Wheeler-DeWitt
quantum cosmology, but it is perhaps better motivated, as it
does not rely on a minisuperspace quantization.
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