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Effect of long-range spatial correlations on the lifetime statistics of an emitter
in a two-dimensional disordered lattice
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The effect of spatial correlations on the Purcell effect in a bidimensional dispersion of resonant nanoparticles
is analyzed. We perform extensive calculations on the fluorescence decay rate of a point emitter embedded in
a system of nanoparticles statistically distributed according to a simple two-dimensional lattice-gas model near
the critical point. For short-range correlations (high temperature thermalization) the Purcell factors present a
long-tailed statistic which evolves towards a bimodal distribution when approaching the critical point where the
spatial correlation length diverges. Our results suggest long-range correlations as a possible origin of the large
fluctuations of experimental decay rates in disordered metal films.
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Since Purcell’s work [1], it is known that the lifetime of an
excited atomic state is a combination of the atom’s properties
and the environment where it is embedded. Changes in the
emission decay rate in regular structures have been reported
for emitters placed close to planar interfaces [2–5], cavities [6],
photonic crystals [7], and plasmonic [8,9] and magneto-
plasmonic structures [10], among others. More recently, the
possibility of creating nanostructured materials stimulated the
interest in wave propagation through disordered media [11].
Examples like backscattering enhancement [12,13], photon
localization [14], random lasing [15,16], or photonic mem-
branes [17,18] can be found in the literature. Also, the behavior
of light coupled to disordered matter has been analyzed
from the point of view of diluted cold atom systems in
scarcely populated optical lattices [19,20]. In complex systems
like liquids, colloids, granular, or biological materials, the
dynamic modification of the environment or the movement
of the emitter implies the need for a statistical study of the
decay rate [21,22]. In these random systems, the decay rate
exhibits a non-Gaussian, long-tailed distribution, where large
enhancements of the Purcell factor are attributed to strong
fluctuations in the local density of states induced by the
near-field scattering [23–25]. These rare events create optical
modes confined in a small volume around the source.

In most cases, previously studied disorder was produced in
a random way; that is, scatterers were distributed throughout
the lattice randomly. Real systems, however, can be realized
with other kinds of disorder, where the locations of the
dipoles are correlated. In particular, structural disorder with
long-range correlation (LRC) has been found for instance in
x-ray and neutron critical scattering experiments in systems
undergoing magnetic and structural phase transition [26–29].
This correlation effect in magnetic systems may be modeled
by assuming a spatial distribution of critical temperatures
with a correlation function obeying a slow power-law decay
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[30–32]. Spatial correlations in disordered scattering materials
have been shown to dramatically modify the light transport
properties; in particular, the light scattering mean-free path
presents strong chromatic dispersion [33,34].

In the present paper, long-range correlated distributions
of scatterers are produced by using a thermal order-disorder
distribution governed by a characteristic ordering temperature
(θ ) [35,36]. In particular, the quenched randomness is imple-
mented using a lattice-gas model equivalent to a thermally
diluted ferromagnetic two dimensional (2D) Ising lattice at
a temperature (θ ). We perform extensive calculations of the
fluorescence decay rate of a point emitter embedded in a
system of nanoparticles statistically distributed according to
a 2D lattice-gas model near the critical point. As we will
show, for short-range correlations (high-temperature thermal-
ization), the Purcell factors present a non-Gaussian long-tailed
statistic where events with large Purcell factors are extremely
rare. Interestingly, as we approach the critical point where
the spatial correlation range diverges, the statistics evolves
towards a bimodal distribution with a well-defined peak at high
enhancement factors. Our numerical results strongly resemble
those obtained experimentally in resonant thin metallic films
near percolation [24], which suggest long-range correlations
as a possible origin of the large fluctuations of experimental
decay rates in disordered metal films.

Let us consider the lattice system sketched in Fig. 1. The
nodes of this lattice are taken as the possible location points
of the optical dipoles by taking into account the following
mechanism: After thermalization of the pure Ising model at
temperature θ , the spins with s = 1 are taken as the locations of
the scattering dipoles, while spins with s = −1 are considered
as dipole vacancies (i.e., sites with no optical response). The
structure of the realization so constructed is fixed thereafter
for all subsequent optical-decay-rate studies.

In these systems, the correlation function between point
dipoles separated by a distance r is given by the spin-spin
correlation function [37]:

g(r) ∼ r−τ e−r/ξ , (1)
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FIG. 1. (Color online) Schematic representation of a crystalline
structure with an edge (D) of seven particles. The transparent spheres
represent the removed particles. The dipole emitter is represented by
the blue sphere and the scatterers by red spheres.

with ξ being the correlation length and τ being a characteristic
number depending on the system. The correlation length,
near the critical temperature of the Ising model (Tc), depends
on the ordering temperature with a power law given by
ξ ∼ (θ − Tc)−ν , where ν = 1 and Tc = 2/ ln(1 + √

2) for the
two-dimensional Ising system.

So, if a high ordering temperature (θ � Tc) is used to
generate a particular realization, the correlation function of
the equilibrium thermal disposition of the dipoles is going
to be given by g(r) ∼ exp(−r/ξ ), i.e., we have a random
(short-range-correlated) disorder similar to the one used in
previous investigations [22,23,25]. However, if θ happens
to coincide with the characteristic critical temperature of
the pure Ising model (θ = Tc) then ξ → ∞ and we are
going to have scatterers randomly located but following a
long-range-correlated distribution given by g(r) ∼ r−τ . The
dispersion in dipole concentration (c) obtained by a thermal
distribution at θ = Tc is larger than the one obtained when
scatterers are randomly distributed with no correlation. In
order to be able to compare both cases we only consider
systems with a concentration in the range between c = 0.45
and c = 0.55. More details about the construction of these
thermally disordered systems can be found in Refs. [35,36].

We consider a square lattice with lateral size D, where
the emitter is placed in the central position of the lattice and
oriented out of plane (see Fig. 1).

In this paper we consider a particular frequency (ω = ω0)
and an associated particular wave number (k = k0 = ω0/c)
at which dipoles are in resonance with the electromagnetic
radiation, meaning that the polarizability is now given by α =
i6π/k3

0 . In the presence of a dipole emitter p(r) the electric
field at some position r′ can be obtained by operating the Green
tensor over the dipole positioned at r. Mathematically, this is
expressed as

E(r′) = k2

ε0
G0(r′,r) · p(r), (2)

with ε0 being the permittivity of vacuum.
The Green tensor is given by [38]

G0(r,r′) = eikR

4πR

[(
1 + ikR − 1

k2R2

)
I

+
(

3 − 3ikR − k2R2

k2R2

)
R̂ ⊗ R̂

]
, (3)

where R is the modulus of the vector R = r − r′, R̂ ⊗ R̂
denotes the outer product of R̂ = R/R by itself, and I is the
unit dyadic.

When the emitter is in the presence of N dipole scatterers,
the scattered field at position r′ is given by

E(r′) = k2

ε0
G0(r,r′)p(r) + k2

ε0

N∑
m=1

G0(r,rm)pm, (4)

where rm is the position of scatterer m and pm = ε0αE(rm) is
the value of the induced dipole located at rm. To obtain the
value of all induced dipoles we should solve the electric fields
in Eq. (4) by considering the coupled-dipole method [39]. The
second term on the right-hand side of Eq. (4) represents the
modification of the free-space dyadic Green function due to
the presence of the scatterers. The scattered field is then given
by

Es(r′) = k2α

N∑
m=1

G0(r′,rm)E(rm). (5)

Once the scattered field is known, the normalized sponta-
neous decay rate 
 of a dipole p(r′), in the weak-coupling
regime, is given by [38]





0
= 1 + 6πε0

|p|2k3
Im[p∗ · Es(r)], (6)

where Im is the imaginary part and 
0 is the decay rate of the
emitter in free space. It is important to take into account that the
expression for the spontaneous decay rate we are considering
is an approximation valid only for weak interacting fields.
In fact, Eq. (6) is obtained by quantum electrodynamics
calculations of the spontaneous decay rate of an atomic system
in an inhomogeneous medium when the weak-coupling regime
approximation is considered [38].

First, we analyze the full crystalline configuration and
calculate the normalized decay rate of the emitter, positioned in
the center of the structure, as a function of the ratio between the
lattice parameter a and the resonance wavelength considered,
λ = 2π

k
. We fix the wavelength of the emitter and we vary the

particles’ position in the lattice.
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FIG. 2. Normalized decay rate of a crystalline structure for a
system with edge of 23 particles (total system with 528 particles).
The maximum can be found at a

λ
= 0.44.
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FIG. 3. Normalized histogram of the decay rate for 106 different
configurations for a system with D = 23.

Results presented in Fig. 2 for a system with lateral
dimension D = 23 show how it is possible to identify a
maximum at a

λ
= 0.44 with value 
/
0 ∼ 7.

Next, we fix the lattice parameter to a = 0.44λ and
we analyze the decay rate distribution for disordered sys-
tems generated at different ordering temperatures rang-
ing from θ � Tc (ξ → 0) corresponding to a short-range-
correlated disorder to θ = Tc (ξ → ∞), corresponding
with a long-range-correlated distribution of the vacancies.
Results, for 106 different configurations, are shown in
Fig. 3.

When the ordering temperature is large (θ ∼ 2Tc), we ob-
tain a long-tailed distribution centered at 
/
0 ∼ 1.3, where
some rare events are detected for values as high as 
/
0 ∼
7. Similar results have been previously reported [22,25].
However, as the ordering temperature decreases towards Tc,
the correlation function between vacancies changes from an
exponential decay to a power law and the decay rate distribu-
tion reshapes dramatically. For θ = 1.001Tc, there is no longer
any long-tailed behavior, but a bimodal distribution where the
previously reported rare events increase considerably to build
a new maximum centered at 
/
0 ∼ 7.

We also analyzed the possible presence of finite size effects
by considering different lateral sizes ranging from D = 13 to
D = 63 for θ = Tc. Results are shown in Fig. 4. Note how
all secondary maxima between 
/
0 ∼ 1 and 
/
0 ∼ 7 tend
to smear out, while maxima at 
/
0 ∼ 1 and 
/
0 ∼ 7 are
reinforced when the lateral size increases.

Large Purcell factors are due to optical modes confined
around the source and are sustained by near-field interac-
tions [25], so systems with strong correlations, like the ones
reported in this paper, should promote an increase in the
number of configurations where the emitting dipole is sur-
rounded by clusters of dipoles allowing for field confinement.
To further analyze this idea, we plotted the histogram of
the frequency of occupation for each position normalized
to the number of configurations, for different values of the
decay rate. We focused our attention on 



0
= 1.31 ± 0.02,

corresponding to the maximum of the distribution for θ = 2Tc

and 


0

= 0.98 ± 0.02,6.88 ± 0.02, corresponding to the two

0

0.5

1

1.5

2

N
or

m
. F

re
qu

en
cy

D = 13 D = 23

0 2 4 6
Γ/Γ0

0

0.5

1

1.5
D = 43

0 2 4 6 8
Γ/Γ0

D = 63

FIG. 4. Normalized histogram of the decay rate for 106 different
configurations. The systems under study have an edge of 13, 23, 43,
and 63 particles.

main maxima of the distribution for θ = Tc. Results are shown
in Fig. 5.

For 


0

= 1.31 we detect no special patterns, and dipoles

are distributed almost randomly. However, for 


0

= 6.88
(corresponding to the second maximum for θ = Tc) the dipoles
distribution changes markedly. In this case, the emitting
particle is clearly surrounded by scattering dipoles, allowing
for confinement of the optical modes. This is in agreement with
the attribution proposed in Ref. [25] and clearly shows how
large Purcell factors are boosted by long-range correlations in
the disordered sample. Interestingly, for the other maximum
located at 



0
= 0.98, the situation is just the opposite and

the emitting dipole is, on average, surrounded by vacancies
where no field confinement is possible, entailing a dipole
response similar to the one found in vacuum. This last effect is
also fostered by the existence of long-range correlations when
θ = Tc.

In order to understand these effects, it is important to
take into account that, at criticality, clusters of all sizes,
containing either dipoles or vacancies, exist on the system
and the response due to larger clusters resembles the one
found for the crystalline structure 



0
∼ 7. However, when

a noncorrelated distribution of vacancies is considered, the
correlation length and the cluster’s sizes are very small, and
the detection of events with a large Purcell factor turns out to
be very unlikely. The surface structure of the clusters in the
Ising model for long-range correlation, i.e., at criticality, is
known to be fractal and scale invariant [40], like the clusters
obtained for high filling factors in semicontinuous metal-film
experiments [24]. These structures are responsible for surface
plasmon localization leading to a large increase in the decay
rates.

In conclusion, the normalized fluorescent decay rate
distribution has been analyzed in a thermally disordered
two-dimensional diluted dipole lattice where the correlation
between vacancies may be tuned at will. When the ordering
temperature is far from criticality, the correlation length is
small, and the decay rate distribution has the typical long-tailed
shape where events with large Purcell factors are extremely
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FIG. 5. (Color online) Color-map histogram of the occupied positions for different size systems (on vertical: D = 23, D = 43, D = 63) at
different normalized decay rates and different ordering temperatures. Each histogram is normalized by the number of structures corresponding
to each decay rate.

rare. However, when the ordering temperature is close to
criticality, the correlation length tends to infinity, turning the
decay rate function into a bimodal distribution where large
Purcell factor events are much more probable. Our analysis
shows how diluted systems, where vacancies are distributed in
a long-range manner, enclose clusters of dipoles of all sizes,
allowing for the existence of many configurations with optical
modes confined around the source. It is worth mentioning
the analogy between our model system and related models
in the field of optical lattices filled with cold atoms [19,20],
in particular for sparsely filled lattices. This analogy could
open another way to study spatial correlations effects on the
statistics of fluorescence lifetime.
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191 (2000).

[37] J. M. Yeomans, Statistical Mechanics of Phase Transitions
(Oxford University Press, Oxford, 1992).

[38] L. Novotny and B. Hecht, Principles of Nano-Optics
(Cambridge University Press, Cambridge, 2012).

[39] E. M. Purcell and C. R. Pennypacker, Astrophys. J. 186, 705
(1973).

[40] A. Coniglio, Phys. Rev. Lett. 62, 3054 (1989).

063830-5

http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1038/37757
http://dx.doi.org/10.1038/368436a0
http://dx.doi.org/10.1038/368436a0
http://dx.doi.org/10.1038/368436a0
http://dx.doi.org/10.1038/368436a0
http://dx.doi.org/10.1103/PhysRevE.61.1985
http://dx.doi.org/10.1103/PhysRevE.61.1985
http://dx.doi.org/10.1103/PhysRevE.61.1985
http://dx.doi.org/10.1103/PhysRevE.61.1985
http://dx.doi.org/10.1103/PhysRevLett.110.063903
http://dx.doi.org/10.1103/PhysRevLett.110.063903
http://dx.doi.org/10.1103/PhysRevLett.110.063903
http://dx.doi.org/10.1103/PhysRevLett.110.063903
http://dx.doi.org/10.1103/PhysRevLett.109.253902
http://dx.doi.org/10.1103/PhysRevLett.109.253902
http://dx.doi.org/10.1103/PhysRevLett.109.253902
http://dx.doi.org/10.1103/PhysRevLett.109.253902
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1103/PhysRevLett.102.173903
http://dx.doi.org/10.1103/PhysRevLett.102.173903
http://dx.doi.org/10.1103/PhysRevLett.102.173903
http://dx.doi.org/10.1103/PhysRevLett.102.173903
http://dx.doi.org/10.1103/PhysRevA.76.013835
http://dx.doi.org/10.1103/PhysRevA.76.013835
http://dx.doi.org/10.1103/PhysRevA.76.013835
http://dx.doi.org/10.1103/PhysRevA.76.013835
http://dx.doi.org/10.1002/pssa.200778176
http://dx.doi.org/10.1002/pssa.200778176
http://dx.doi.org/10.1002/pssa.200778176
http://dx.doi.org/10.1002/pssa.200778176
http://dx.doi.org/10.1103/PhysRevLett.66.887
http://dx.doi.org/10.1103/PhysRevLett.66.887
http://dx.doi.org/10.1103/PhysRevLett.66.887
http://dx.doi.org/10.1103/PhysRevLett.66.887
http://dx.doi.org/10.1103/PhysRevLett.105.183901
http://dx.doi.org/10.1103/PhysRevLett.105.183901
http://dx.doi.org/10.1103/PhysRevLett.105.183901
http://dx.doi.org/10.1103/PhysRevLett.105.183901
http://dx.doi.org/10.1103/PhysRevLett.106.163902
http://dx.doi.org/10.1103/PhysRevLett.106.163902
http://dx.doi.org/10.1103/PhysRevLett.106.163902
http://dx.doi.org/10.1103/PhysRevLett.106.163902
http://dx.doi.org/10.1103/PhysRevLett.70.3151
http://dx.doi.org/10.1103/PhysRevLett.70.3151
http://dx.doi.org/10.1103/PhysRevLett.70.3151
http://dx.doi.org/10.1103/PhysRevLett.70.3151
http://dx.doi.org/10.1103/PhysRevB.49.15730
http://dx.doi.org/10.1103/PhysRevB.49.15730
http://dx.doi.org/10.1103/PhysRevB.49.15730
http://dx.doi.org/10.1103/PhysRevB.49.15730
http://dx.doi.org/10.1103/PhysRevLett.71.1087
http://dx.doi.org/10.1103/PhysRevLett.71.1087
http://dx.doi.org/10.1103/PhysRevLett.71.1087
http://dx.doi.org/10.1103/PhysRevLett.71.1087
http://dx.doi.org/10.1103/PhysRevB.49.11967
http://dx.doi.org/10.1103/PhysRevB.49.11967
http://dx.doi.org/10.1103/PhysRevB.49.11967
http://dx.doi.org/10.1103/PhysRevB.49.11967
http://dx.doi.org/10.1103/PhysRevB.27.413
http://dx.doi.org/10.1103/PhysRevB.27.413
http://dx.doi.org/10.1103/PhysRevB.27.413
http://dx.doi.org/10.1103/PhysRevB.27.413
http://dx.doi.org/10.1103/PhysRevLett.74.3840
http://dx.doi.org/10.1103/PhysRevLett.74.3840
http://dx.doi.org/10.1103/PhysRevLett.74.3840
http://dx.doi.org/10.1103/PhysRevLett.74.3840
http://dx.doi.org/10.1103/PhysRevB.60.12912
http://dx.doi.org/10.1103/PhysRevB.60.12912
http://dx.doi.org/10.1103/PhysRevB.60.12912
http://dx.doi.org/10.1103/PhysRevB.60.12912
http://dx.doi.org/10.1103/PhysRevLett.93.073903
http://dx.doi.org/10.1103/PhysRevLett.93.073903
http://dx.doi.org/10.1103/PhysRevLett.93.073903
http://dx.doi.org/10.1103/PhysRevLett.93.073903
http://dx.doi.org/10.1103/PhysRevB.79.241109
http://dx.doi.org/10.1103/PhysRevB.79.241109
http://dx.doi.org/10.1103/PhysRevB.79.241109
http://dx.doi.org/10.1103/PhysRevB.79.241109
http://dx.doi.org/10.1103/PhysRevE.60.2394
http://dx.doi.org/10.1103/PhysRevE.60.2394
http://dx.doi.org/10.1103/PhysRevE.60.2394
http://dx.doi.org/10.1103/PhysRevE.60.2394
http://dx.doi.org/10.1103/PhysRevE.62.191
http://dx.doi.org/10.1103/PhysRevE.62.191
http://dx.doi.org/10.1103/PhysRevE.62.191
http://dx.doi.org/10.1103/PhysRevE.62.191
http://dx.doi.org/10.1086/152538
http://dx.doi.org/10.1086/152538
http://dx.doi.org/10.1086/152538
http://dx.doi.org/10.1086/152538
http://dx.doi.org/10.1103/PhysRevLett.62.3054
http://dx.doi.org/10.1103/PhysRevLett.62.3054
http://dx.doi.org/10.1103/PhysRevLett.62.3054
http://dx.doi.org/10.1103/PhysRevLett.62.3054



