
1 
 

Physical mapping of ribosomal DNA and genome size in diploid 

and polyploid North African Calligonum species (Polygonaceae) 

 

Hassen GOUJA1,2,3, Teresa GARNATJE4, Oriane HIDALGO2,5
, Mohamed NEFFATI1, Aly 

RAIES3
 and SÒNIA GARCIA

2* 

 

1Pastoral Ecology Laboratory, Arid Regions Institute, Médenine, Tunisia 

2Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de 

Barcelona. Avinguda Joan XXIII s. n., 08028 Barcelona, Catalonia, Spain 

3Microbial and Biomolecular Laboratory, Faculty of Sciences of Tunis, University of 

Tunis El-Manar, El-Manar, Tunisia 

4Institut Botànic de Barcelona (IBB-CSIC-ICUB), Barcelona, Catalonia, Spain 

5Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United 

Kingdom 

*Corresponding author: soniagarcia@ub.edu  

Tel: 00 34 934 024 490 

Fax: 00 34 934 035 879 

Running title: Cytogenetics in Calligonum

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

This is an Accepted Manuscript of an article published in Plant Systematics and Evolution on 29 November 2014, available online: 
http://dx.doi.org/10.1007/s00606-014-1183-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36185464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:soniagarcia@ub.edu
http://www.editorialmanager.com/plsy/download.aspx?id=72383&guid=ed7121a2-a4a8-4be6-96bc-3fc7ca2abfdf&scheme=1
http://www.editorialmanager.com/plsy/viewRCResults.aspx?pdf=1&docID=3617&rev=2&fileID=72383&msid={6E3DC488-C17A-4D2D-89D6-16F375AE1A31}


2 
 

Abstract 

Most Calligonum species are desert plants, characteristic of the Saharan bioclimatic 

region. All species karyologycally analysed until present have the basic chromosome 

number x = 9 and comprise diploids, triploids and tetraploids. The Tunisian flora 

comprises diploid C. arich and C. azel, of restricted distribution, and the tetraploid C. 

comosum with wider distribution. Analyses of their karyotypes and polyploidisation-

linked rDNA changes by orcein staining, fluorochrome banding with chromomycin A3 

and fluorescent in situ hybridisation with 5S and 26S ribosomal DNA probes have been 

performed. We report the chromosome number for C. arich (2n = 18) as well as the 

diploid level for C. comosum for the first time. Chromosome counts have also verified 

the earlier described tetraploid cytotype (2n = 36) of C. comosum. A general pattern of 

six GC-rich bands as well as two 35S sites and four 5S sites is described for Calligonum 

species at the diploid level although there is intraspecific variation regarding the site 

number in a second type of A. comosum, with one pair of 35S rDNA sites and two pairs 

of 5S rDNA sites. The tetraploid cytotype of C. comosum has undergone locus loss and 

genome downsizing. Genome size assessments confirmed previous data. Nonetheless, 

statistically significant differences were found depending on the type of tissue used for 

estimation. Measurements from seeds had always larger values than from leaves. The 

presence of cytosolic compounds in leaves, interfering with DNA staining, is discussed as 

a possible cause of the differences.  

Key words: 5S rDNA, 35S rDNA, cytogenetics, FISH, fluorochrome banding, genome 

organisation 
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Introduction 

Calligonum L. (Polygonaceae) is one of the dominant genera in active sand dunes, 

distributed in the North African desert, the desert sands of the Middle East, south 

Europe and in West and Central Asia (Mao and Pan 1986). China represents most of the 

distribution range of the genus with 23 species out of 60–80 species in the world (Bao 

and Grabovskaya-Borodina 2003; Singh 2004). Many facts have caused the decline of 

the natural resources of Calligonum species (Liu et al. 2001) and some of them are 

considered even critically endangered, threatened with extinction, according to the 

criteria of the International Union for Conservation of Nature (IUCN 1997). The threats 

include overgrazing by the camel herds, use as firewood, and several other uses by 

Bedouins and local nomadic populations. Local healers have reported the chewed stems 

and leaves to cure toothache (Liu et al. 2001). Pharmacological and toxicological studies 

on Calligonum aerial parts showed anti-gastric, anti-hypertensive, high antimicrobial 

potential (Radhakrishnan et al. 1999; Zaki et al. 1984), anti-nociceptive and anti-

asthmatic activities (Islam et al. 1999; Liu et al. 2001). Extracts of Calligonum species are 

also described to reduce acute gastric ulcers (Liu et al. 2002) and protecting against toxic 

agents (Islam et al. 1999; Liu et al. 2001). They have also a great potential as forage and 

for halting desert encroachment (Badria et al. 2007).  

 

Only three species of this genus have been found in the Tunisian desert, which play an 

important role in the Saharan bioclimatic region (Le Houérou 1959; Pottier-Alapetite 

1979; Gouja et al. 2014). Calligonum comosum L’Hér. is a shrub of 1 to 2 m height with 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

This is an Accepted Manuscript of an article published in Plant Systematics and Evolution on 29 November 2014, available online: 
http://dx.doi.org/10.1007/s00606-014-1183-9



4 
 

the widest geographic distribution (Le Houérou 1959). This plant is abundant in the 

North African desert, the desert sands of the Middle East and Pakistan, as well as the 

sand dunes in both Central and Eastern Arabia (Lipscombe 1984). Calligonum azel Maire 

is an endemic tree or tall shrub (up to 4-5 m) of Great Eastern Erg, with a prominent 

branching (Le Houérou 1959; Dhief et al. 2012). Calligonum arich Le Houér. is a tree up 

to 7-9 m tall, considered as a Tunisian endemic of the Great Erg Oriental (Le Houérou 

1959; Pottier-Alapetite 1979; Gouja et al. 2014), with a prominent, non-thorned 

branching. The three Tunisian species are sometimes found in the same localities, 

although not intermixed as they occupy different dune slope positions (Le Houérou 

1959).  

 

In systematic and evolutionary studies of plants, karyological data are important and 

widely used to determine species relationships (Stebbins 1971; Hong 1990; Stuessy 

2011; Garbari et al. 2012). Several karyological studies have been based on family 

Polygonaceae, despite its difficulty due to the usually small chromosome size (Mao et al. 

1983; Wang and Yang 1985). Most chromosomal researches on this family were centred 

on Polygonum, Fagopyrum, Rheum and Rumex (Baltisberger and Widmer 2006; Hu et al. 

2007). Different basic chromosome numbers have been recorded: x = 8, 9 and 10 were 

detected for Rumex (Bolkhovskikh et al. 1969), x = 11 for Rheum (Darlington and Wylie 

1955) and x = 8 for Fagopyrum (Zhang 1998). Only x = 9 has been reported for genus 

Calligonum, and chromosome counts have been already performed for 16 species to our 

knowledge (Mao et al. 1983; Wang and Yang 1985; Wang and Guan 1986; Ferchichi 

1997) including diploid, triploid and tetraploid levels. Regarding Tunisian Calligonum, 
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chromosome counts establish diploidy for C. azel and tetraploidy for C. comosum 

(Ferchichi 1997), while no data are available for C. arich. Genome size measurements 

are consistent with these results and suggest C. arich to be diploid (Gouja et al. 2014). 

Fluorescent in situ hybridisation (FISH) with ribosomal DNA (rDNA) probes provides 

useful markers for chromosome identification (Singh et al. 2001). In plants, FISH with 

ribosomal RNA (rRNA) genes as probes has been widely used for karyotyping (Raina et 

al. 2001), for studying genome organisation and chromosome evolution (Leitch and 

Heslop-Harrison 1993) and for understanding the systematic and evolutionary 

relationships between closely related species (Ali et al. 2000; Ran et al. 2001; Li and 

Zhang 2002). In family Polygonaceae few researches have been performed, which 

describe the numbers and locations of 5S and 35S (18S-5.8S-25S) rRNA genes for genera 

Fagopyrum, Persicaria and Rumex (Kim et al. 2006; Choi et al. 2008; Kikuchi et al. 2008; 

Sheng et al. 2013). However these genera are relatively phylogenetically distant from 

Calligonum (Schuster et al. 2013).  

 

In this study, we investigate for the first time the abundance and distribution pattern of 

5S and 35S rDNA loci on the chromosomes of three Calligonum species by FISH. The 

specific aims of this research are: a) to characterise the numbers and locations of 5S and 

35S rDNA sites and b) to study the evolution of rDNA loci with polyploidy. Additionally, 

we have complemented a previous genome size study on this group (Gouja et al. 2014) 

by undertaking new assessments on these three Tunisian Calligonum species both in 

seed and in seedlings, in order to study the reach of intraspecific or interpopulation 
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variability, if any, as well as to detect any significant difference on genome size 

estimation with respect to the tissue used. 

 

 

Materials and methods 

 

Plant materials 

 

Seeds of three Calligonum species (C. arich, C. azel and C. comosum) for cytogenetics 

and genome size assessments were collected from the wild part of the desert in the 

Eastern Great Erg of Southern Tunisia. In this study, seeds were selected at three sites 

(El Borma, Tiaret and Kamour, places with the typical arid-type climate of dry and hot 

summers and cold winters) between years 1999 and 2012 (Table 1 and Fig. 1). These 

were washed and stored (20°C, 30% H) in the seed bank at the Pastoral Ecology 

Laboratory (PLE) of the Arid Regions Institute (Médenine, Tunisia) until further use. For 

flow cytometric measurements on leaf tissue, seedlings were obtained from seeds from 

the corresponding sites. Specimen vouchers of the studied material have been 

deposited in the herbarium of the University of Barcelona (BCN). 

 

Chromosome preparations 

 

Seeds were germinated on wet filter paper in Petri dishes in the dark at room 

temperature. Chemical scarification with sulfuric acid (96%) for 30 min was applied to C. 
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azel and C. arich seeds, before germination. In order to obtain mitotic chromosomes, 

0.5-1 cm long root tips  were collected from seedlings and the meristems pretreated in 

aqueous colchicine (0.05% w/v) for 3-4 h and then fixed in Farmer’s fixative fluid 

(absolute ethanol : glacial acetic acid, 3 : 1) at 4°C for at least 4 h and later transferred to 

70% ethanol. For chromosome counts, the fixed roots were hydrolyzed in 0.1 M 

hydrochloric acid at 60°C for 1 min, washed with water and then stained with acetic 

orceine (1%) for 2-12 hours and squashed for observations. Each sampled population 

included 10 to 30 individuals. A minimum of 10 well spread metaphases were counted 

for each population. Photographs were taken with a digital camera (AxioCamHRm Zeiss) 

coupled on a Zeiss Axioplan microscope and images were analyzed with Axio Vision Ac 

software version 4.2. 

 

Chromosome preparations for fluorochrome banding and FISH were done using the air-

drying technique of Geber and Schweizer (1987), with some modifications: root tips 

were washed with soft shaking in citrate buffer (0.01 M citric acid – sodium citrate, pH = 

4.6) for 15 minutes, excised, and incubated in an enzyme solution [4% cellulase Onozuka 

R10 (Yakult Honsha), 1% pectolyase Y23 (Sigma) and 4% hemicellulase (Sigma)] at 37°C 

for 20 to 25 minutes, depending on the species and meristematic thickness. Protoplasts 

were prepared applying gentle pressure (squash) to spread the chromosomes onto 

microscope slides, frozen at -80ºC overnight and after fast coverslip removal they were 

desiccated using absolute ethanol and drying for two days. 

 

Fluorochrome banding 
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In order to reveal GC-rich DNA bands, chromomycin A3 (CMA) was used, following the 

protocols of Schweizer (1976) and Cerbah et al. (1995) with minor modifications: the 

slides were incubated in McIlvaine buffer, pH = 7 (0.1 g/L in McIlvaine buffer, pH = 7) for 

15 min; stained with CMA (5 mmol/L MgSO4) for 60 to 90 min; rinsed in the latter buffer; 

counterstained with methyl green (0.1 % in McIlvaine buffer, pH = 5.5) for 10 min; 

rinsed in McIlvaine buffer, pH = 5.5; and mounted in Citifluor AF1 (glycerol/PBS 

solution). 

 

 

Labelling of rDNA probes and FISH 

 

For hybridisation experiments we have mostly used the same slides than for 

fluorochrome banding with CMA after destaining with fixative, dehydration through an 

ethanol series (70%, 90% and 100%), and drying for two days. The probe used for 35S 

rDNA localization was a plasmid carrying a 2.5 kb insert of 26S rRNA gene from 

Lycopersicum esculentum Mill. labeled with Cy3 (Jena Biosciences) using the Nick 

Translation Mix (Roche). The 5S rDNA probe was an approximately 0.7 kb-long trimer of 

5S rRNA genes from Artemisia tridentata Nutt., labeled with Green dUTP (Abbot 

Molecular) using the Nick Translation Mix (Abbot Molecular). This probe contained 

three units of the 5S rRNA gene (120 bp) and the noncoding intergenic spacers (about 

290 bp). DNA in situ hybridisation was carried out according to Heslop-Harrison et al. 

(1991) and Cerbah et al. (1998) with slight modifications as follows. Slides were 
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incubated in 100 μg/ml DNase-free RNase in 2×SSC (0.03 M sodium citrate and 0.3 M 

sodium chloride) for 1 h at 37°C in a humidified chamber, rinsed in 2×SSC for 5 min with 

slow shaking, and incubated in pepsin (0.1 mg/ml in 0.01 N HCl) for 15 min at 37°C, 

washed three times in 2×SSC for 5 min each with slow shaking, dehydrated through an 

ice-cold ethanol series (70%, 90%, and 100% for 3 min each), and air dried. The probe 

hybridisation mixture contained 25–100 ng/μl rDNA probes, formamide, 50% (w/v) 

dextran sulphate, and 20×SSC. This was denatured at 75°C for 10 min and immediately 

transferred to ice for 5 min. Approximately 30 μl of the probe mixture were loaded on 

slides and covered with plastic coverslips. The preparations were denatured at 75°C for 

10 min and transferred at 55°C for 5 min. Hybridisation was carried out overnight at 

37°C in a humidified chamber. Post-hybridisation washes were performed with shaking, 

the first at room temperature in 2×SSC for 3 min, followed by several washes at 42°C for 

5 min (three in 2×SSC, one in 0.1×SSC, three in 2×SSC and one in 4×SSC with 0.2% Tween 

20). A last wash was done at room temperature for 7 min in 4×SSC with 0.2% Tween 20. 

Samples were counterstained with Vectashield (Vector Laboratories, Inc. Burlingame, 

California) a mounting medium containing DAPI. FISH preparations were observed with 

an epifluorescence Zeiss Axioplan microscope with different combinations of Zeiss 

excitation and emission filter sets (01, 07 and 15). Hybridisation signals were analyzed 

and photographed using the highly sensitive CCD camera (Princeton Instruments), 

images were processed for color balance, contrast and brightness uniformity with 

Adobe Photoshop Axiovision HR Rev3, 4.8. Graphics (idiograms) were performed with 

PowerPoint 2010, considering three standard chromosome sizes (small, medium and 

large). 
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Flow cytometric measurements 

 

Seven populations of the different Calligonum species were studied, and of these, five 

individuals per population were selected to estimate the genome size by flow cytometry 

(Table 2). We used both seeds and leaves from seedlings for these analyses and each 

individual was measured twice. Petunia hybrida Vilm. ‘PxPc6’ (2C = 2.85 pg; Marie and 

Brown 1993) and Lycopersicon esculentum Mill. ‘Montfavet 63-5’ (2C = 1.99 pg; Catrice 

et al. 2006) were used as the internal standards, which were first analyzed separately to 

locate its peak position at the fluorescence histogram. Fresh leaf tissue of the standard 

and the target species were chopped together in 600 μl of LB01 buffer (8% Triton X-100; 

Doležel et al. 1989) supplemented with 100 μg/ml ribonuclease A (RNase A, Boehringer, 

Meylan, France) and stained with 36 μl of 1 mg/ml propidium iodide (Sigma-Aldrich, 

Alcobendas, Madrid) to a final concentration of 60 μg/ml, and kept on ice for 20 min. 

The fluorescence measurements were performed using an Epics XL flow cytometer 

(Coulter Corporation, Miami, FL, USA) at the Centres Científics i Tecnològics, Universitat 

de Barcelona. More details about the method followed are described in Gouja et al. 

(2014). As in Garcia et al. (2008), to ensure that the instrument shows a linear response 

across the range of genome sizes studied and that results obtained with either one 

internal standard or the other are fully comparable, we performed cytometric assays 

with both internal standards and the specimen with the highest genome size at the 

same time. The difference between the obtained results with respect to each standard 

was negligible (about 1.5-2% of deviation), and we can therefore ascertain the linearity 
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of the flow cytometer in this interval and the convenience of the use of the chosen 

internal standards in any case. 

 

Statistical analyses 

 

In order to detect significant difference between genome size estimations from seeds 

and leaves from seedlings, the non-parametric Wilcoxon test for paired data and the 

parametric paired t-test were performed with XLSTAT (Addinsoft) and the R commander 

package (Version 2.0-3) of R.  

 

Results 

Basic karyology 

The metaphase chromosome morphology of the studied species is shown in Fig. 2. Basic 

chromosome number of all species was x = 9. All observations showed that C. comosum 

(Kamour), C. azel (Tiarert and El Borma) and C. arich (Kamour) have a somatic number of 

2n = 18 (diploid), whereas, for C. comosum (El Borma) we have detected diploid and 

tetraploid cytotypes (Fig. 2: g, m): 2n = 18 and 2n = 36 (Table 1). We find metacentric, 

submetacentric and acrocentric chromosomes in Calligonum metaphases.  
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rDNA FISH and fluorochrome banding 

 

The cytogenetic results of the taxa studied are presented in Fig. 2. In all the studied  

Calligonum species, 5S and 35S signals were always in different chromosomes, 

separated from each other (S-type arrangement). Calligonum arich, C. azel and C. 

comosum (Kamour) have one locus of 35S rDNA and two loci of 5S rDNA (Fig. 2: b and c,  

e and  f, and k and l, respectively) whereas the diploid C. comosum (El Borma) has two 

loci of 35S rDNA and one locus of 5S rDNA (Fig. 2: h, i). The tetraploid C. comosum (El 

Borma) presents two loci of both the 35S and 5S rDNAs (Fig. 2:n, o). GC-rich regions 

were detected in all the studied species with CMA staining, which showed six terminal 

bands in all diploids and eight terminal bands in the tetraploid C. comosum from El 

Borma, in all cases in different chromosomes and coincident with rDNA sites (data not 

shown). 

Genome size 

 

Although genome size measurements for Calligonum species were apparently similar in 

seeds and in leaves, the paired t-student test and the Wilcoxon test for paired data 

supported significant differences between both datasets (p<0.05 for both). In all cases, 

values obtained with seeds were slightly higher than those obtained with leaves. The 2C 

DNA mean values ranged from 2.58 to 2.63 pg (for seeds) and from 2.27 to 2.56 pg (for 

leaves), and, at the tetraploid level, the values were 4.89 pg (for seeds) and 4.77 pg (for 

leaves) (Table 2). Half-peak coefficients of variation (HPCV) values were lower than 5% 

in all cases, which indicates the good quality of the analyses.  
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Discussion 

Chromosome number 

 

Cytogenetic studies by Hong et al. (1992), Navajas-Pérez et al. (2005), and Baltisberger 

and Widmer (2006) have revealed highly variable basic chromosome numbers in 

Polygonaceae (x = 7 to 13), in particular in the genera Rumex and Polygonum (Simmonds 

1945; Baltisberger and Widmer 2006). Chromosomal studies are particularly difficult to 

perform in Calligonum due to the small chromosome size. The chromosome numbers of 

genus Calligonum had been previously investigated and our results confirm the basic 

chromosome number of x = 9 and the existence of two cytotypes, 2n = 18 and 2n = 36. 

The chromosome number for C. arich is reported here for the first time. Although these 

diploid and tetraploid cytotypes are the most commonly found in the genus (Sabirhazi 

and Pan 2009; and references therein), recently, Shi et al. (2013) reported a triploid 

population (2n = 3x = 27) in C. mongolicum Turcz., supporting what Mao et al. (1983) 

had already stated that polyploidy was present in the genus, including triploid and 

tetraploid forms. They had also detected an unusual count (2n = 24), which would point 

to aneuploidy, in a population of C. klementzii Losinsk.  

 

General banding and rDNA pattern in Calligonum species 
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In the Polygonaceae, the independent organization of 5S and 35S rDNA loci on 

chromosomes, i.e. that both rRNA genes are separated, not linked in a single operon as 

found in genera such as Artemisia, some other Asteraceae or Ginkgo, among others 

(Garcia et al. 2009, 2010; Galián et al. 2012; Garcia and Kovařík 2013), had been 

previously observed (Sheng et al. 2013). FISH studies on family Polygonaceae are rare 

and this is the first molecular cytogenetic investigation in Calligonum. Our FISH results 

have shown that all 5S and 35S rDNA sites were also separated and always located in 

terminal positions of different chromosomes. Actually, rRNA genes (particularly 35S) 

occur preferentially in terminal positions in angiosperms (Roa and Guerra 2012). These 

regions were always positively stained with CMA, which is also a common finding as 

rDNA is typically GC-rich (Garcia et al. 2009). In diploids, the general pattern is that two 

terminal 5S rDNA sites and four terminal 35S rDNA sites are observable. However, there 

is an exception in the diploid C. comosum (El Borma), where we find the inverse result. 

Plenty of studies on variation in number of rDNA loci in many plant, insect and 

vertebrate groups have described such changes in their number and chromosomal 

location, suggesting that rDNA sites are highly dynamic components of the genome 

(Britton-Davidian et al. 2012). The tetraploid cytotype of C. comosum shows 

equal numbers of sites (four) for both 5S and 35S rDNA. Chromosomes with 35S rDNA 

genes are called NOR-bearing (nucleolar organizer regions) chromosomes, these are the 

regions around which the nucleolus forms after mitosis. When these genes are 

transcriptionally active (competent NORs, Kalmarová et al. 2007) they give rise to 

decondensed chromatin structures during previous interphase and prophase and to 

secondary constrictions at metaphase stage. When these are inactive (i. e. silent) they 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

This is an Accepted Manuscript of an article published in Plant Systematics and Evolution on 29 November 2014, available online: 
http://dx.doi.org/10.1007/s00606-014-1183-9

http://www.sciencedirect.com/science/article/pii/S0304423813001015


15 
 

are often highly compacted. Due to the reduced size of Calligonum chromosomes, the 

presence of secondary constrictions (in other words, the number of 35S sites that are 

transcriptionally active) is difficult or impossible to see. However, in the slightly 

prophasic chromosomes shown for C. azel (Fig. 2e) we can see two 35S chromatin knobs 

(i. e. satellites) apparently detached (indicated with arrows) but which may be 

connected to their respective chromosomes by faint fibers of decondensed 

heterochromatin. We assume that these are competent NORs, and therefore one 35S 

rDNA locus would be active for this species, while the other remains inactive, a 

phenomenon known as amphyplasty or nucleolar competence and which could be 

related to past hybrid origin of the species / population (Lacadena et al. 1984). 

Altogether, rather than a specific cytogenetic pattern, capable of discerning between 

these three taxa, we find a typical karyotype common to C. arich, C. azel and C. 

comosum. Conversely, the clade formed by these tree taxa in a recent phylogenetic 

reconstruction based on nuclear (ITS) and plastid (trnL-trnF and rbcL) regions (Gouja et 

al. 2014) did clearly discern between the three species (see Figure 3), supporting their 

separated specific status. Similar findings were reported in the Tridentatae subgenus of 

Artemisia (Garcia et al. 2009). In this species complex, a quite homogeneous cytogenetic 

pattern was shared among its members, although phylogenetic approaches clearly 

supported the specific status of these species (Garcia et al. 2011). 

Previous research determining the number and location of 5S and 35S ribosomal DNA 

loci distribution in Polygonaceae does not show a clear tendency of 5S or 35S loci to be 

in higher or lower abundance than the other; in Fagopyrum and Persicaria most species 

present more 35S than 5S loci (Kikuchi et al. 2008; Sheng et al. 2013; Choi et al. 2008), 
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while in Rumex it is the other way round (Koo et al. 2004; Kim et al. 2006). Nevertheless, 

the number of rDNA sites detected for Calligonum is consistent with the most 

commonly found numbers in angiosperms. In this line, the typical angiosperm karyotype 

at the diploid level, according to data available at the Plant rDNA database 

(www.plantrdnadatabase.com, Garcia et al. 2012) has 18 chromosomes with two 5S 

sites and two to four 35S sites (being four the most usual), both kinds located at 

terminal position (Garcia et al. unpublished research).  

 

Polyploidy, rDNA loci downsizing and intraspecific rDNA loci number variation  

 

Polyploidy is a common phenomenon in plants and has contributed to the evolution of 

about 70% of angiosperms species (Cui et al. 2006; Leitch and Leitch 2008; Soltis et al. 

2009; Garcia et al. 2009; Ramsey and Schemske 1998). Among many other features, 

polyploidy is said to improve fitness in arid habitats (Grant 1981). In our sample, C. 

comosum (El Borma) has the largest geographical distribution, spread across the Sahara 

with the exclusion of the Great Erg Oriental to the high Southern plains, with an 

extension to the East and North of Tunisian desert. On the other side, C. arich is an 

endemic restricted, with a low frequency of distribution (one to five plants per ha), to 

the top of the large dunes of the Great Erg Oriental. Calligonum azel is also localized at 

the Great Erg Oriental (Le Houérou 1959) occupying the slopes of large Saharan dunes 

(Dhief et al. 2009) with a poor average density of one to 10 plants per ha. It is likely that 

the tetraploid cytotype of C. comosum has achieved a larger geographical distribution 

(Ferchichi 1997) than the others, only known at diploid level.  
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Regarding the number of rDNA sites, we would expect that the tetraploid C. comosum 

would have twice the number of rDNA signals than the diploid ones. However, neither 

from “doubling” the number of signals from the diploid C. comosum individuals from El 

Borma nor from the population of Kamour, the observed number of signals, that is four 

sites both for 5S and 35S rDNA, is not consistent with a recent autopolyploid origin of 

any of them (and this is also consistent with regards to the number of CMA positive 

signals: we would expect 12 but we only detect eight GC-rich bands). According to our 

results, there has been loss in any case. Loci loss has been previously detected after 

allopolyploid and autopolyploid formation (Garcia et al. 2009), although rDNA loci 

additivity (i.e. that the tetraploids have twice the number of loci than the diploids, for 

example) is also a common finding, particularly in polyploids of recent origin (Soltis and 

Soltis 1999). 

 

As stated previously, there is intraspecific variability in C. comosum, which may be a 

reflection of the higher ecological plasticity and colonising ability of this species with 

respect to C. azel and C. arich. A variable number of rDNA sites occur between different 

populations of C. comosum, a case of intraspecific variability, quite commonly found in 

many plant groups. Two authors have determined the number and location of the 35S 

and 5S rRNA loci in Polygonaceae, also finding a variation in the number of the rDNA 

sites in Fagopyrum esculentum: Kikuchi et al. (2008) reported the presence of six signals 

of both 35S and 5S rDNA, but Sheng et al. (2013) detected eight 35S rDNA and four 5S 

rDNA sites. A considerable variation in rDNA loci number was also identified in the 
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species Rumex acetosa: according to Kim et al. (2006), it presented four 35S and 5S 

rDNA sites, while Koo et al. (2004) showed two 5S rDNA sites and three to four 35S 

rDNA sites. Many other examples outsides family Polygonaceae can be found showing 

that intraspecific variation in the number of rDNA loci is a common finding (Garcia et al. 

2012). 

 

Genome size analysis 

 

This is the first time that the amount of nuclear DNA was assessed in Calligonum from 

seed tissue. The results confirm the chromosomal counts, indicating that C. comosum (El 

Borma) has two cytotypes (diploid and tetraploid). Among the diploid taxa, genome 

sizes are fairly similar, i.e. genome size alone would not help distinguishing between 

these species. The flow cytometry profiles of nuclear DNA content obtained both for 

seeds and leaf tissue show that 2C-values in seeds were slightly but significantly higher 

(p<0.05) than in the leaves in all cases. A similar situation had been observed previously 

in Brassica napus L. and Helianthus annuus L. (Sliwinska et al. 2005) and in Eucalyptus 

globulus Labill. (Pinto et al. 2004), in which a higher genome size was found in seeds 

than in leaves. Many angiosperms contain a storage tissue, named endosperm, full of 

reserve for the embryo and which, in diploid species, it is triploid. This could interfere 

with genome size estimations from seeds. However, our results indicate that the 

measurements clearly correspond to the embryo cells, since values from seeds are only 

1.5% to 15.8% larger than values from leaf tissue, depending on the species. If we were 

measuring mostly endospermic cells we would expect values about 50% larger in seeds 
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than in leaves. This was also the case of Zea mays L. (Sliwinska et al. 2005) in which no 

endosperm nuclei were observed in the histograms as a clear fluorescence peak when 

the whole seed was analyzed, because the large storage cells of endosperm do not 

contain nuclei. This is probably what explains the relatively similar genome sizes 

between seeds and leaves in Calligonum.  

Additionally, results were overall consistent with previous genome size determination in 

these species from leaves (2.30 pg for C. azel, 2.45 pg for C. arich and 4.68 pg for 

tetraploid C. comosum, from Gouja et al. 2014). According to several authors (Bino et al. 

1993; Sliwinska et al. 2009), species that contain phenolic compounds, among others, 

may present technical problems for measurements with flow cytometry. Many species, 

particularly woody and aromatic plants, produce numerous secondary metabolites that 

can interfere with DNA staining causing stoichiometric error in measurements. 

Calligonum is rich in polysaccharides, alkaloids and other secondary metabolites (Liu et 

al. 2001). Thus, the lower DNA content in leaves could be explained by the presence of 

interfering staining inhibitors (Sliwinska et al. 2005). Other authors (Baluska 1990; 

Biradar and Rayburn 1994) suggested that the difference between the 2C values in 

leaves and seeds could be due to the different structure and condensation of chromatin 

in these different tissues.  

 

Genome size in the tetraploid C. comosum (2C = 4.89 pg) is 6% lower than expected 

from doubling nuclear DNA amount from its closest diploid relative (2C = 2.59 pg). 

Genome downsizing is a widespread biological phenomenon in response to 

polyploidisation, leading to diploidisation of the polyploid genome (Leitch and Bennett 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

This is an Accepted Manuscript of an article published in Plant Systematics and Evolution on 29 November 2014, available online: 
http://dx.doi.org/10.1007/s00606-014-1183-9



20 
 

2004). There may be a relationship between the detected genome downsizing in the 

tetraploid and its lower than expected number of rDNA loci previously described. 

Although the whole genome downsizing cannot be directly linked (neither totally 

attributed) to a decrease in the number of rDNA loci (or rDNA genes copy number) it is 

conceivable that rDNAs, as a highly repetitive part of the genome, bear some 

relationship with overall genome size (Prokopovich et al. 2003).  

 

 

Conclusions  

 

This study reports for the first time data on ribosomal DNAsite number and distribution 

in a representative sample of Calligonum species in the desert areas of Tunisia. This 

supports a typical signal pattern at the diploid level with mostly two terminal 5S rDNA 

and four terminal 35S rDNA sites. Nevertheless, more species and populations should be 

analysed in order to confirm this model, since we found some intraspecific variation for 

one species. In the tetraploid studied, rDNA loci loss and genome downsizing have been 

detected, both findings frequently associated with polyploidy. Finally, the study 

demonstrated that genome size can be estimated from seeds in these taxa, and that this 

estimate may be more accurate than from leaves since seeds do not contain staining 

inhibitors, while leaves may present cytosolic compounds that interfere with the 

genome size assessment. As the slight difference in genome size estimations from seeds 

and leaves is significant, we recommend the use of seeds for nuclear DNA assessments 

in this genus and probably as well in closely related taxa, whenever possible. 
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Table 1 Provenance and collection data of the studied Calligonum populations, all from Tataouine, Tunisia. All signals appear in terminal 

or subterminal positions. (*) Chromomycin A3, (**) detected with 26S rDNA probe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Taxon 

 

Voucher specimens 

 

Collection year 

 

Chromosome 

number (2n) 

 

Ploidy 

level 

 

CMA* 

 

5S rDNA 

sites 

 

 

35S rDNA 

sites** 

 

 

 C. arich Tunisia, Tataouine: Kamour, Gouja H. BCN 106466 2005 18 2x 6  2 4  

C. azel Tunisia, Tataouine: Tieret, Gouja H. BCN 106463 2012 18 2x 6  2 4 

C. azel Tunisia, Tataouine: El Borma, Gouja H. BCN 106465 2010 18 2x 6  2 4 

C. comosum Tunisia, Tataouine: Kamour, Gouja H. BCN 106456 1999 18 2x 6  2 4 

C. comosum Tunisia, Tataouine: El Borma, Gouja H. BCN 106457 2007 18, 36 2x, 4x 6, 8 4, 4 2, 4 
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Table 2 Genome size data of the studied Calligonum populations, all from Tataouine, Tunisia. SD= standard deviation. Lycopersicon 

esculentum* (2C=1.99 pg) and Petunia hybrida** (2C=2.85 pg) were used as internal standards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxon 

 

Voucher specimens  

 

Collection year 

 

Poidy level 

 

2C (pg)± SD 

seeds 

 

HPCV plant 

(%) 

 

2C (pg)± SD  

seedlings 

 

HPCV plant 

(%) 

C. comosum Tunisia, Tataouine: Kamour, Gouja H. BCN-S-1887 

Tunisia, Tataouine: El Borma, Gouja H. BCN-S-1877 

2013 

2012 

2x 

4x 

2.59±0.07* 

4.89±0.13* 

3.45 

3.28 

2.36±0.07** 

4.77±0.10** 

3.16 

3.94 

C. azel Tunisia, Tataouine: Kamour, Gouja H. BCN-S-1888 2013 2x 2.63±0.20* 3.70 2.27±0.06** 3.63 

 Tunisia, Tataouine: El Borma, Gouja H. BCN-S-1876 2012 2x 2.60±0.13* 3.93 2.45±0.05** 1.71 

 Tunisia, Tataouine: Tieret, Gouja H.  BCN-S-1874 2012 2x 2.58±0.08* 3.04 2.54±0.02** 3.18 

C. arich Tunisia, Tataouine: Kamour, Gouja H. BCN-S-1889 2013 2x 2.60±0.10* 2.37 2.45±0.07* 2.39 

 Tunisia, Tataouine: El Borma, Gouja H. BCN-S-1878 2012 2x 2.60±0.13* 1.34 2.56±0.01* 4.97 
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Fig. 1 Map of Tunisia indicating the geographical distribution of the Calligonum 

populations analysed. 

 

Fig. 2 Orcein, FISH pictures and idiograms in which chromomycin A3 positive bands are 

marked yellow, 26S rDNA sites, green and 5S rDNA sites, red, for diploid Calligonum 

arich from Kamour (a-c), C. azel from El Borma (d-f), C. comosum from El Borma (g-i), C. 

comosum from Kamour (j-l) and tetraploid C. comosum from El Borma (m-o). Since 

information on chromosome morphology is not included in this work, idiograms depict 

them as all metacentric, although submetacentric and acrocentric chromosomes are 

also present. In picture e arrows indicate detached 35S rDNA satellites. Scale bars = 10 

µm. 

 

Fig. 3 Neighbour-net diagram based on sequences from the merged dataset of three 

DNA regions (ITS, trnL-F, and rbcL), adapted from Gouja et al. (2014). Populations of 

the same species are grouped in the same cluster.  
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