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Abstract 

Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is 

expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount 

and intensity, and is most commonly expressed as the R-factor in the USLE 

model and its revised version, RUSLE. At national and continental levels, the 

scarce availability of data obliges soil erosion modellers to estimate this factor 

based on rainfall data with only low temporal resolution (daily, monthly, 

annual averages). The purpose of this study is to assess rainfall erosivity in 

Europe in the form of the RUSLE R-factor, based on the best available 

datasets. Data have been collected from 1,541 precipitation stations in all 

European Union(EU) Member States and Switzerland, with temporal resolutions 

of 5 to 60 minutes. The R-factor values calculated from precipitation data of 

different temporal resolutions were normalised to R-factor values with 

temporal resolutions of 30 minutes using linear regression functions. 

Precipitation time series ranged from a minimum of 5 years to maximum of 40 

years. The average time series per precipitation station is around 17.1 years, 

the most datasets including the first decade of the 21st century. Gaussian 

Process Regression(GPR) has been used to interpolate the R-factor station 

values to a European rainfall erosivity map at 1 km resolution. The covariates 

used for the R-factor interpolation were climatic data (total precipitation, 

seasonal precipitation, precipitation of driest/wettest months, average 

temperature), elevation and latitude/longitude. The mean R-factor for the EU 

plus Switzerland is 722 MJ mm ha-1 h-1 yr-1, with the highest values (>1,000 MJ 

mm ha-1 h-1 yr-1) in the Mediterranean and alpine regions and the lowest (<500 

MJ mm ha-1 h-1 yr-1) in the Nordic countries. The erosivity density (erosivity 

normalised to annual precipitation amounts) was also highest in 

Mediterranean regions which implies high risk for erosive events and floods. 

 

 

Keywords: RUSLE, R-factor, rainstorm, rainfall intensity, modelling, erosivity 

density, precipitation, soil erosion 
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1 Introduction 

Soil erosion by water affects soil quality and productivity by reducing 

infiltration rates, water-holding capacity, nutrients, organic matter, soil biota 

and soil depth (Pimentel et al., 1995). Soil erosion also has an impact on 

ecosystem services such as water quality and quantity, biodiversity, 

agricultural productivity and recreational activities (Dominati et al., 2011; Dale 

and Polasky, 2007).  

 

Since soil erosion is difficult to measure at large scales, soil erosion models are 

crucial estimation tools at regional, national and European levels. The high 

heterogeneity of soil erosion causal factors, combined with often poor data 

availability, are obstacles to the application of complex soil erosion models. 

The empirical Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997), 

which predicts the average annual soil loss resulting from raindrop splash and 

runoff from field slopes, is still most frequently used at large spatial scales 

(Kinnell, 2010; Panagos et al., 2014a). In RUSLE, soil loss may be estimated by 

multiplying the rainfall erosivity factor (R-factor) by five other factors: Soil 

erodibility (K-factor), slope length (L-factor), slope steepness (S-factor), crop 

type and management (C-factor), and supporting conservation practices (P-

factor).  

 

Among the factors used within RUSLE and its earlier version, the Universal Soil 

Loss Equation (USLE) (Wischmeier and Smith, 1978), rainfall erosivity is of high 

importance as precipitation is the driving force of erosion and has a direct 

impact on the detachment of soil particles, the breakdown of aggregates 

and the transport of eroded particles via runoff. Rainfall erosivity is the kinetic 

energy of raindrop’s impact and the rate of associated runoff (Wischmeier 

and Smith, 1978). The R-factor is a multi-annual average index that measures 

rainfall’s kinetic energy and intensity to describe the effect of rainfall on sheet 

and rill erosion. However, the erosive forces of runoff due to snowmelt, snow 

movement, rain on frozen soil, or irrigation are not included in this factor. 

Besides (R)USLE, the rainfall erosivity can be used as input in other models such 

as USPED, SEMMED and SEDEM. Further, this dataset could also be interesting 
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for natural hazard prediction such as landslide and flood risk assessment that 

are mainly triggered by high intensity events. 

 

A precise assessment of rainfall erosivity requires recordings of precipitation at 

short time intervals (1 – 60 minutes) for a period of at least several years. The 

rainfall erosivity is calculated by multiplying the kinetic energy by the 

maximum rainfall intensity during a period of 30-minutes for each rainstorm. 

The R-factor accumulates the rainfall erosivity of individual rainstorm events 

and averages this value over multiple years.  

 

Field experiments using plot-sized rainfall simulators provide precise results of 

rainfall erosivity (Marques et al., 2007). However, since field experiments are 

expensive and often not easily transferable to large scales, researchers 

develop models for estimating rainfall erosivity. Two approaches are used to 

model rainfall erosivity: a) calculate the R-factor based on high-temporal-

resolution precipitation data, and b) develop functions that correlate the R-

factor with more readily available (daily, monthly, annual) rainfall data 

(Bonilla & Vidal, 2011). Only a few studies in Europe have determined the R-

factor directly from high-temporal-resolution data (the first approach), 

including those carried out in Slovenia (Mikos et al., 2006), the Ebro 

catchment in Spain (Angulo-Martinez et al., 2009), Switzerland (Meusburger et 

al., 2012), and one of the federal states of Germany, North Rhine Westphalia 

(Fiener et al., 2013).  At the continental scale, a recent study has accounted 

for the rainfall erosivity in Africa based on time series of 3-hours precipitation 

data (Vrieling et al., 2014) 

 

In most soil erosion studies, the calculation of rainfall erosivity is limited due to 

the lack of long-term time series rainfall data with high temporal resolution 

(<60 min). Following the second approach (called the empirical approach), 

equations have been developed to predict R-factor based on rainfall data 

with lower temporal resolution (Loureiro and Coutinho, 2001; Marker et al. 

2007; Diodato and Bellocchi, 2007; Panagos et al., 2012). In those cases, 

expert knowledge of local conditions and seasonal characteristics plays an 

important role in estimating rainfall erosivity. Authors have suggested that 
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rainfall erosivity equations should be used with caution in different 

applications, as the empirical relationships are location dependent and, in 

most cases, cannot be applied to larger areas (Oliveira et al., 2013). 

Moreover, those empirical equations cannot capture the high rainfall 

intensities which have significant influence on the average rainfall erosivity. R-

factor equations developed for a specific region cannot be applied to the 

whole of Europe. 

 

The main objective of this study is to estimate rainfall erosivity based on high-

temporal-resolution precipitation data in Europe. It aims to:  

a) present the spatial and temporal extent of high-resolution precipitation 

data available in Europe,  

b) compute rainfall erosivity for 1,541 precipitation stations in Europe, and 

propose a pan-European database of stations with R-factor data,  

c) produce a European R-factor map based on a regression approach,  

d) identify spatial patterns and map the relationship of the R-factor to 

precipitation (erosivity density), and   

e) identify the possible use of the final R-factor dataset in situations beyond 

soil erosion monitoring. 

 

2 Data Collection 

The geographical extent of this study includes the 28 Member States of the 

European Union (EU) plus Switzerland. High-resolution precipitation data were 

also available for the Swiss territory, which permitted us to avoid the “white 

lake” effect in the European rainfall erosivity map.  

 

Given the growing concerns about climate change, climatic data is 

particularly important for the scientific community and society in general, as 

decisions of individuals, business and governments are dependent on 

available meteorological data (Freebairn and Zillman, 2002). More than 15 

years ago, Petterson et al. (1998) recognised that data Infrastructures hosting 

climatic data are becoming more important and that their contributions are 

becoming more valuable to policy making.  



6 

 

 

The present data collection exercise is based on an initiative to develop a 

network of high-temporal-resolution precipitation stations, which could also 

be useful for other research purposes such as climate change studies. 

Generally, climatic data of high temporal resolution are not easily accessible 

in Europe, or are only available for a fee.  

 

The data collection exercise began in March 2013 and was concluded in 

May 2014. Previous attempts to collect soil erosion data from Member States 

used a top-down approach, and the response from countries was rather 

limited. In a recent top-down data collection exercise, only 8 Member States 

from a network of 38 countries provided estimates on soil loss (Panagos et al., 

2014a). For the present rainfall erosivity data collection exercise, a 

participatory approach has been followed in order to collect data from all 

Member States.  

 

The participatory data collection approach followed the steps listed below. 

Each step was followed in a sequential manner in case the preceding step 

was not successful:  

a) High-temporal-resolution precipitation data are publicly available for 

download. This was the case for data from the Royal Netherlands 

Meteorological Institute (Netherlands) only. 

b) The European Soil Data Centre (ESDAC) contacted the national 

meteorological services calling for precipitation data at high temporal 

resolution. Meteorological services such as Meteo-France, the 

Deutscher Wetterdienst – DWD (Germany), the Flemish Environmental 

Agency and the Service Public de Wallonie (Belgium), the Estonian 

Environment Agency, the Latvian Meteorology Centre and the 

Agrarmeteorologisches Messnetz (Luxembourg) responded to this 

request as some of them have bilateral agreements with the Joint 

Research Centre, which hosts ESDAC. 

c) If the data were not available to ESDAC, recognised scientists of the 

various meteorological services were invited to participate in this 

project. Meteorologists from Cyprus, Finland, Croatia, Hungary and 
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Romania participated in estimating the rainfall erosivity of their 

respective countries, based on their datasets. 

d) By means of a literature review, scientists who have developed similar 

research activities in their countries and have access to or have 

developed their own R-factor datasets (based on high-temporal-

resolution precipitation data) were identified and contacted. 

e) High-resolution precipitation datasets were identified in research 

project databases such as Hydroskopio (Greece) and Sistema National 

de Recursos Hidricos (Portugal). 

f)  A review of the ‘grey’ literature and searches with national language 

terms led to the discovery of data sources in Lithuania, Slovakia and 

Poland. 

 

In Italy and Spain, high-resolution precipitation data were collected at the 

regional level from regional meteorological authorities (Italy) and water 

agencies (Spain). 

 

The conditions set for the data collection exercise were: 

• Continuous records for at least 10 years. If such data were not 

available, data collected over a period of at least five years were 

included. Vrieling et al. (2014) also stated that the R-factor may be 

cumulated for shorter timespans in calculating rainfall erosivity trends. 

• Preference was given to datasets that cover the last decade. Where 

this was not possible, older time series were also included, e.g. for 

Bulgaria, Greece, the Czech Republic, Poland and Slovakia. As the 

priority of this study was to capture the spatial trends of rainfall erosivity 

by averaging erosive events over several years, we consider this time 

discrepancy to be of minor importance (Table 1). 

• Data of up to 60 minutes resolution were included. 

• In Italy, which has a larger pool of available stations (> 500), 251 

stations were selected in order not to bias the pan-European results. A 

stratified random sample of the Italian stations were selected, covering 

all climatic conditions (Mediterranean, Continental and Alpine) and all 

elevation levels.  
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Priority was given to datasets with high temporal resolution, independent of 

the period covered, because the objective of this data collection exercise 

was to capture the spatial trends of rainfall erosivity. In the majority (> 75%) of 

countries, the time-series include the first decade of the 21st century, except 

for Bulgaria, Greece, the Czech Republic, Poland and Slovakia. However, the 

time-series for those five countries are long enough (> 25 years) to capture the 

average rainfall erosivity  

 

Data have been collected from all EU Member States except Malta (the 

smallest EU Member State). In Malta, precipitation data were available only 

at a daily time step and, as they do not satisfy the criteria requirement of high 

temporal resolution, could not be used for R-factor estimation. However, 

Malta is only 80 km distant from the southern Italian island of Sicily, where a 

very dense network of stations is able to capture the spatial variability of 

rainfall erosivity. High-temporal-resolution data was available for Poland, but 

only against payment. In this case, data from literature sources were used. 
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Table 1: Overview of the precipitation data collected to estimate the R-factor.  

Country No. of 

Stations 

(Main) 

Period 

Covered 

Years per 

station 

(average) 

(Main) Temporal 

resolution: 5 Min,  

10 Min, 15Min,  

30Min, 60 Min 

Source of data 

 

AT Austria  31 1995 - 2010 21 12 stations: 10Min 

19 stations: 15Min 

Hydrographic offices of Upper Austria, 

Lower Austria, Burgenland, Styria, Salzburg 

BE Belgium  20 

 

29 

2004 - 2013 

 

2004 - 2013 

10 

 

10 

Flanders (20 stations): 

30 Min 

Wallonia (29 stations): 

60 Min 

Flemish Environmental Agency (VMM),  

 

Service Public de Wallonie 

BG Bulgaria 84 1951 - 1976 26 30 Min Rousseva et al. (2010) 

CY Cyprus 35 1974 - 2013 39 30 Min Cyprus Department of Meteorology 

CZ Czech 

Republic  

32 1961-1999 35 30 Min Research Institute for Soil and Water 

Conservation (Czech Republic) 

CH Switzerland 71 1988 - 2010 22 10 Min Meusburger et al. (2012) 

DE Germany  148 1996-  2013 18 60 Min Deutscher Wetterdienst (DWD) 

DK Denmark  30 1988 - 2012 

2004 - 2012 

15 60 Min Danish Meteorological Institute (DMI), 

Aarhus University 

EE Estonia  20 2007 - 2013 7 60 Min Estonian Environment Agency 

ES Spain  113 2002 - 2013 12 14 stations: 10 Min,  Regional water agencies  
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81 stations: 15 Min 

18 stations: 30 Min 

FI Finland  64 2007 - 2013 7 60 Min Finnish Climate Service Centre (FMI) 

FR France  60 2004 - 2013 10 60 Min Météo-France DP/SERV/FDP 

GR Greece 80 1974 - 1997 30 30 Min Hydroskopio 

HR Croatia 42 1961 - 2012 40 10 Min Croatian Meteo & Hydrological Service  

HU Hungary  30 1998 - 2013 16 10 Min Hungarian Meteorological Service 

IE Ireland  13 1950 - 2010 56 60 Min Met Éireann – The Irish National 

Meteorological  Service 

IT Italy  251 2002 - 2011 10 30 Min Regional meteorological services, Regional 

agencies for environmental protection 

(ARPA)  

LT Lithuania  3 1992 - 2007 16 30 Min Mazvila et al. (2010) 

LU Luxembourg  16 2000 - 2013 11 60 Min Agrarmeteorologisches Messnetz  

LV Latvia  4 2007 - 2013 7 60 Min Latvian Environment, Geology and 

Meteorology Centre 

NL Netherlands  32 1981 - 2010 24 60 Min Royal Netherlands Meteorological Institute 

PL Poland  9 1961- 1988 27 30 Min Banasik et al. (2001) 

PT Portugal  41 2001- 2012 11 60 Min Agência Portuguesa do Ambiente 

RO Romania 60 2006 - 2013 8 10 Min Meteorological Administration 
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SE Sweden  73 1996 - 2013 18 60 Min Swedish Meteorological and Hydrological 

Institute (SMHI) 

SI Slovenia  31 1999 - 2008 10 5 Min Slovenian Environment Agency, Petan et 

al. (2010) 

SK Slovakia 81 1971 - 1990 20 60 Min Malasik et al. (1992) 

UK United 

Kingdom 

11 

27 

1993 – 2012 

2001 - 2013 

20 

11 

60 Min 

60 Min 

NERC & UK Environ. Change Network(ECN) 

 British Atmospheric Data Centre (BADC) 
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3 Methods 

Besides the high-temporal-resolution precipitation data collection, the 

estimation of the R-factor in Europe includes three further steps: a) The 

calculation of the R-factor for each precipitation station, b) the normalisation 

of R-factor values calculated using rainfall data with different time steps (5 

min to 60 min), and c) the spatial interpolation of R-factor point values.  

 

3.1 R-factor calculation 

The erosive power of precipitation is accounted for by the rainfall erosivity 

factor (R-factor), which gives the combined effect of the duration, 

magnitude and intensity of each rainfall event. In this study, the original RUSLE 

R-factor equation was used to create an R-factor database of 1,541 

precipitation stations in Europe.  

 

The R-factor is the product of kinetic energy of a rainfall event (E) and its 

maximum 30-min intensity (I30) (Brown and Foster, 1987): 

R = k

n

j

mj

k
EI

n
)(1

1 1
30∑∑

= =

    (1) 

where R = average annual rainfall erosivity (MJ mm ha�1 h�1 yr-1 ), n is the 

number of years covered by the data records, mj is the number of erosive 

events of a given year j, and EI30 is the rainfall erosivity index of a single event 

k. The event erosivity EI30 (MJ mm ha�1 h�1) is defined as: 

EI30 = ( r
r

rve∑
=

0

1

) I30             (2) 

where er is the unit rainfall energy (MJ ha�1 mm�1) and vr the rainfall volume 

(mm) during a time period r. I30 is the maximum rainfall intensity during a 30-

min period of the rainfall event (mm h�1). The unit rainfall energy (er) is 

calculated for each time interval as follows (Brown and Foster, 1987): 

er =0.29[1�0.72exp(�0.05ir)]        (3) 

 

where ir is the rainfall intensity during the time interval (mm h�1). 
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The R-factor calculation requires the identification of erosive rainfall events 

(mj) for each station. Three criteria for the identification of an erosive event 

are given by Renard et al. (1997): (i) the cumulative rainfall of an event is 

greater than 12.7 mm, or (ii) the event has at least one peak that is greater 

than 6.35 mm during a period of 15 min (or 12.7 mm during a period of 30 

min). A rainfall accumulation of less than 1.27 mm during a period of six hours 

splits a longer storm period into two storms. The 12.7-mm threshold defines 

precipitation events that have erosive power. Interestingly, a reduction of the 

threshold from 12.7 mm to 0 mm leads to an increase in the R-factor of no 

more than 3.5% (Lu and Yu, 2002). 

 

The Rainfall Intensity Summarisation Tool (RIST) software (USDA, 2014) was used 

to calculate the R-factor. The RIST can be used for R-factor calculations using 

precipitation data that have the same temporal resolution (Klik and Konecny, 

2013). 

 

3.2 Normalisation procedure for R-factors with different 

precipitation recording intervals 

The precipitation data collected from the 28 countries across Europe have 

different temporal resolutions: 60-min, 30-min, 15-min, 10-min and 5-min. This 

variation in temporal resolutions is due to high numbers of data providers 

(minimum one per country; data from Spain, Italy, Austria, Belgium and the 

United Kingdom came from more than one data source, see Table 1).  

 

According to the literature, the R-factor is underestimated as time steps 

increase from 5, 10, 15, 30 to 60 min (Yin et al, 2007; Williams and Sheridan, 

1991). In order to homogenise the R-factor results calculated using different 

time-step data, conversion factors were established in the present study. The 

conversion of 60-min-resolution data to very fine resolution introduces quite a 

high level of uncertainty. As a compromise, the 30-min temporal resolution 

data was used, even though the most abundant time-step is 60 min. In 

addition, Yin et al. (2007) recommended that it is not needed to move 
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towards time intervals of less than 30-min to obtain reliable erosivity 

estimations. 

 

The data at very fine resolution were aggregated to coarse resolutions, and 

the R-factor was estimated for different temporal resolutions. For example, 

data of 30-min resolution were aggregated to 60-min resolution, and the R-

factor was calculated both at 30-min and 60-min resolution. Data of 10-min 

resolution were aggregated to 30-min resolution, and the R-factor was 

calculated using both 10-min and 30-min resolutions. Regression functions 

between R-factors based on high and low resolution data were established to 

normalise the R-factor values to 30-min resolution.  

 

3.3  Spatial prediction of the R-factor 

Given the relatively low observation density for the European continent and 

the huge climatic variability of the study area, interpolation by kriging was not 

expected to produce realistic results. Instead, given the likely correlation 

between the R-factor and climatic data, a regression approach was used to 

infer the distribution of rainfall erosivity from a series of related, but 

independent, climatic covariates (Goovaerts, 1998). Basically, this approach 

aims to find a statistical relationship between the property to be predicted 

and a set of spatially exhaustive covariates. Once this relationship is 

established, the dependent property, here the R-factor, can be estimated for 

the area of interest. Various covariates were considered for the regression 

model, but three main types were identified as being significant: 

1. Climatic data: average monthly precipitation, average minimum & 

maximum monthly precipitation, average monthly temperature, 

precipitation of the wettest month, precipitation of the driest month and 

precipitation seasonality (variation of precipitation over seasons). The 

climatic data are derived from the WorldClim database (Hijmans, 2005), 

which reports monthly averages of precipitation and temperature for the 

period 1950-2000 at 1-km resolution. 

2. Elevation derived from the Digital Elevation Model of the Shuttle Radar 

Topography Mission (SRTM). 
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3. Latitude and longitude spatial coordinates, derived from the measuring 

stations location, were added explicitly to the regression model in order to 

model spatial correlation. 

 

In the late 1990’s, Goovaerts (1999) introduced the geostatistical interpolation 

method for calculating rainfall erosivity based on regionalised variables such 

as elevation. This linear model for spatial R-factor prediction has been widely 

used because it allows for non-biased estimation at non-sampled points with 

minimum variance. The high dimensionality (number of degrees of freedom) 

of the data used and the likely non-linear relation between the target 

variable and the covariates, discouraged the use of linear regression. Instead, 

this study adopted Gaussian Process Regression (GPR) (Rasmussen and 

Williams 2006; Stein 1999), a non-linear regression approach.  

 

Compared to linear regression, GPR can model non-linear processes by 

projecting the inputs into some high dimensional space using basis functions 

and applying linear model in said space. In this study the Radial Basis Function 

(RBF) Gaussian kernel has been used; this is a kernel commonly applied in 

machine learning (Hoffmann et al., 2008).  The kernel function is equivalent to 

a covariance function in kriging and its value is considered as a measure of 

similarity between the two feature vectors. In this respect, GPR is 

mathematically equivalent to kriging (Stein 1999); however, while kriging is 

usually performed on two- or three-dimension geographical space, GPR can 

be performed over an arbitrary number of covariates, including terrain 

features and geographical coordinates. The main advantages of GPR are 

that it can model complex non-linear relations between covariates and the 

target variable, and directly model both average and variance estimation, 

thus providing information about prediction uncertainty. 

 

Gaussian Process Regression was selected as the best performing model in 

terms of cross validation among a series of candidate models (including OLS, 

GLM, GAM, and Regression Kriging).  The criteria chosen for the selection 

were the minimization of the root-mean squared error and the maximization 

of the R2. The GPR model performance was tested for both a fitting and a 
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cross-validation dataset. The cross-validation is carried out by random 

sampling with 10% replacement of the original dataset used for validation. 

 

4 Results and Discussion 

4.1 Rainfall Erosivity Database on the European Scale 

(REDES) 

In preparing the Rainfall Erosivity Database on the European Scale (REDES), 

high temporal resolution precipitation data were collected from 1,541 

precipitation stations within the European Union (EU) and Switzerland, 

covering a territory of 4,422,661 km2. The average density of the precipitation 

stations is one every 53.5 km x 53.5 km (or 2,869 km2). The variability is quite 

high, with a dense network of stations in Cyprus and Luxembourg, and a 

sparse network in Poland and some regions of Spain (Fig. 1).  
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Fig. 1: Spatial distribution of precipitation stations used for the R-factor 

calculation 

 

Since erosivity varies significantly from year to year, at least 15 years of data 

are required to obtain representative estimates of annual erosivity (Foster et 

al., 2003). Oliveira et al. (2013) carried out an extensive literature review (ISI 

Web of Science, Scopus, SciELO, and Google Scholar databases) of rainfall 

erosivity studies using different time series. They identified 35 studies, but only 
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15% of these used data covering more than 20 years. The Rainfall Erosivity 

Database on European Scale (REDES) of precipitation stations is the result of 

calculating the R-factor for a total of 26,394 years with a mean value of 17.1 

years per station (Table 1). In almost all countries, the average time-series per 

station is more than 10 years, except in Estonia, Finland, Latvia and Romania, 

where the average recorded period was 7 years.  

 

REDES, with its 1,541 precipitation stations, covers all elevation levels. 106 of 

the stations are at an altitude of more than 1,000 m above sea level (asl), in 

order to reflect the fact that around 6.5% of the total study area has an 

elevation greater than 1,000 m asl. The majority of the stations at high 

elevations are located in the Alps (Switzerland, Italy, France, Slovenia and 

Croatia), the Apennines (Italy), Troodos (Cyprus) and Spain.  

 

In terms of the time resolution of precipitation data, 42.3% of the stations (in 13 

countries) make hourly recordings, 34.4% make recordings every 30 minutes 

(in 8 countries), 6.5% record their data at 15-minutes intervals (major part of 

Spain and Austria), 14.9% make recordings every 10 minutes (4 countries) and 

only 2% (in Slovenia) of the data records are at a 5-minute time step.   

 

The availability of data is not scarce in the domain of rainfall intensity. During 

the past decade (2004-2013), the development of automatic weather 

stations in many European countries (Belgium, Germany, France, Denmark, 

Estonia, Finland, Hungary, Italy, Luxembourg, Latvia, Portugal and Romania) 

led to the generation of more high resolution precipitation data. Besides the 

data availability, the data quality is considered sufficient for this study as the 

main source of the high resolution precipitation datasets were the official 

meteorological services or environmental agencies of the Member States 

(Table 1). The main limitation was the non-availability of high resolution 

precipitation data from some Meteorological services (Poland, Slovakia and 

UK). This limitation will be bypassed by the INSPIRE directive which foresees the 

data sharing between public authorities. Following the experience of REDES, 

this data collection can potentially extended to Norway, Turkey and Balkan 

states in a later phase. 
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4.2 Conversion factors for different temporal resolutions 

Using a very representative pool of stations (in terms of geographical 

coverage, R-factor values), regression functions have been developed to 

convert the R-factor from different temporal resolutions to 30-min resolutions 

(Table 2). According to the conversion factors (Table 2), there is a strong 

underestimation of the R-factor (circa 56%) whenever 60-min data are used. 

The results are in accordance with previous literature findings (Yin et al., 2007; 

Williams and Sheridan, 1991). However, the R2 values for the regression 

between R-factors calculated using precipitation data with different temporal 

resolutions show that 60-min data in combination with a conversion factor 

can be successfully used to estimate the R-factor where fine-resolution data 

are not available (Table 2). The conversion factors for recording time-steps of 

< 30 min are less than 1, which implies that the homogenised 30-min-based R-

factor dataset slightly underestimates the ” real”  rainfall erosivity. 

 

Table 2: Conversion factors for the calibration of temporal resolutions 

Source 

data 

resolution 

No. of 

Stations 

Countries 

covered 

Regression function R2 

Coefficient of 

determination 

60-min 82 BE, CZ, CH, 

CY, DE, EE, FR, 

IT, LU,  RO 

R30min = 1.5597*R60min 0.994 

15-min 31 BE, ES R30min = 0.8716*R15min 0.998 

10-min 31 CZ, CY, CH, 

DE, EE, HR, HU, 

LU, RO 

R30min = 0.8205*R10min 0.998 

5-min 12 CZ, CY, FR, HR, 

LU 

R30min = 0.7984*R5min 0.998 

 

Unfortunately, in Ireland, UK and Scandinavian countries, no data were 

available at both resolutions (30-min and 60-min) necessary to contribute to 

the calibration of temporal resolutions. 
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4.3 Rainfall erosivity in Europe 

The mean R-factor of the 1,541 precipitation stations included in REDES is 

911.3 MJ mm ha-1 h-1 yr-1 with a high standard deviation of 844.9 MJ mm ha-1 h-

1 yr-1 as expected due to the high climate variability in Europe. The smallest R-

factors were calculated for two stations of the Ebro catchment (Spain), two 

stations in Slovakia (Gabcikovo, Komarno), and the stations in Tain Range (UK) 

and Inari Kaamanen (Finland) with values less than 100 MJ mm ha-1 h-1 yr-1. 

The maximum values were calculated for five stations in Slovenia (Kneške 

Ravne, Vogel, Kal Nad Kanalom, Log Pod Mangartom and Lokvein) and one 

station in north-eastern Italy (Tramonti di Sotto, close to Slovenia) with values 

greater than 5,000 MJ mm ha-1 h-1 yr-1.  

 

The map of rainfall erosivity in Europe (Fig. 2) gives a spatial overview of the 

erosive energy of rain. The Gaussian Process Regression (GPR) model used to 

interpolate the R-factor point values to a map showed a good performance 

for both the cross-validation dataset (R2 = 0.63) and the fitting dataset (R2 = 

0.72). From the large pool of parameters used in calculating the R-factor, the 

precipitation seasonality (coefficient of the variation of seasonal 

precipitation), latitude and elevation were found to have the strongest 

influence. 

 

The R-factor map (Fig. 2) of the 28 European Union Member States and 

Switzerland has an average value of 722 MJ mm ha-1 h-1 yr-1 and a standard 

deviation of 478.6 MJ mm ha-1 h-1 yr-1. The range of R-factor in Europe is 51.4 – 

6,228.7 MJ mm ha-1 h-1 yr-1. The distribution of R-factor values is skewed to the 

right, with 610 MJ mm ha-1 h-1 yr-1 in the 50th percentile, which implies that a 

few extremely high values increase the overall mean. The 25% of the study 

area with the lowest R-factor values (< 410 MJ mm ha-1 h-1 yr-1) is located in 

Scandinavia, western UK and eastern Germany (Fig. 2). As the definition of 

high rainfall erosivity depends on the study location, we adopt a statistical 

approach to define the values in the 4th quartile as high R-factors. The 25% of 

the study area shows high R-factor values exceeding 900 MJ mm ha-1 h-1 yr-1. 

In a quantitative comparison, the rainfall erosivity spatial pattern (Fig. 2) is 

similar to the results produced by Diodato and Bosco (2014). Both studies 



21 

 

predicted rainfall erosivity higher than 1,000 MJ mm ha-1 h-1 yr-1 in Italy, 

southern France, Switzerland, Slovenia, western Croatia, Pyrenees, Andalusia, 

Galicia (Spain) and North Portugal. 

 

The regions found to have the highest rainfall erosivity levels are in line with 

the three major regions identified by van Delden (2001) as having the highest 

frequency of thunderstorms. The first region includes the Southern Alps, the 

Apennines, Istria and Slovenia. The second region includes the gulf of Liguria 

and Corsica. In both regions the rainfall erosivity exceeded the 1,500 MJ mm 

ha-1 h-1 yr-1 in agreement also with the findings of Diodato and Bosco (2014). 

The third region expands (in an arch form) from the higher parts of Bavaria in 

southern Germany, to cross the Swiss plateau and the area close to Dijon, 

and ends in the Lyon valley. All of those regions have the three characteristics 

likely to produce thunderstorms: potential instability of atmospheric pressure 

(indicated by a decrease of the equivalent potential temperature with 

increasing height), high levels of moisture in the atmospheric boundary layer, 

and forced lifting (McNulty, 1995). Little thunderstorm activity was found in the 

Scandinavian countries studied (Finland and Sweden) by van Delden (2001). 
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Fig. 2: High-resolution (1-km grid cell) map of Rainfall Erosivity in Europe.  

 

At country level, the highest levels of rainfall erosivity(R-factor) are found in 

Italy and Slovenia, while Croatia and Austria also have mean values that are 

greater than 1,000 MJ mm ha-1 h-1 yr-1 (Table 3). The lowest values were 

identified in Sweden and Finland followed by Denmark, the Netherlands and 

the three Baltic states (EE, LT, LV). The mean R-factor values of all of those 

North European countries are less than 500 MJ mm ha-1 h-1 yr-1 (Table 3). 
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The coefficient of variation (CV) is used as an indicator to identify the degree 

of variability of the R-factor inside a country. The Netherlands and Baltic States 

show a very smooth distribution of the R-factor, with a CV of less than 10% 

(Table 3). By contrast, the United Kingdom has a very pronounced erosivity 

gradient with a CV of more than 81%, with extremely high R-factors in Western 

Wales and Scotland and very low R-factors in the eastern parts of England 

and Scotland. Medium to high variability is found in Croatia (Adriatic coast–

inland), France (north–south gradient) and Greece (west–east gradient). The 

distribution of the R-factor values in the countries is skewed to the right with 

the exception of Baltic States, Hungary, Netherlands and Romania (normal). 

 

Table 3: R-factor descriptive statistics per country 

Country 

Mean 

Standard 

Deviation Minimum Maximum 

Coefficient 

of 

Variation MJ mm ha-1 h-1 yr-1 

AT Austria  1,075.5 517.1 346.9 4,345.7 0.48 

BE Belgium  601.5 106.6 412.7 1,253.8 0.18 

BG Bulgaria 695.0 151.8 79.8 1,447.1 0.22 

CH Switzerland 1,039.6 449.3 367.2 4,249.6 0.43 

CY Cyprus 578.1 115.1 223.6 1,353.5 0.20 

CZ Czech 
Republic  

524.0 118.5 218.0 1,093.5 0.23 

DE Germany  511.6 160.9 262.3 1,489.3 0.31 

DK Denmark  433.5 93.6 143.8 800.5 0.22 

EE Estonia  444.3 33.2 330.1 568.3 0.07 

ES Spain  928.5 373.0 164.8 3,071.2 0.40 

FI Finland  273.0 67.0 65.5 555.6 0.25 

FR France  751.7 353.5 235.2 2,661.1 0.47 

GR Greece 827.7 387.6 152.0 2,728.5 0.47 

HR Croatia 1,276.2 633.5 523.4 3,522.7 0.50 

HU Hungary  683.3 73.1 361.4 1,000.8 0.11 

IE Ireland  648.6 389.6 205.1 3,403.3 0.60 

IT Italy  1,642.0 598.0 477.6 6,228.8 0.36 
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LT Lithuania  484.2 32.6 371.5 605.3 0.07 

LU Luxembourg  674.5 97.6 436.8 1,002.8 0.14 

LV Latvia  480.4 42.1 373.9 602.4 0.09 

MT Malta 1,672.4 65.6 1,491.4 1,869.2 0.04 

NL Netherlands  473.3 46.1 348.3 646.0 0.10 

PL Poland  537.1 100.0 247.7 1,055.3 0.19 

PT Portugal  775.1 317.5 226.4 2,758.1 0.41 

RO Romania 785.0 95.6 462.2 1,150.1 0.12 

SE Sweden  378.1 152.6 51.4 2,033.8 0.40 

SI Slovenia  2,302.0 954.6 757.0 5,655.8 0.41 

SK Slovakia 579.7 93.6 330.8 1,111.2 0.16 

UK United 
Kingdom 

746.6 604.9 78.1 4,107.4 0.81 

 

The rainfall erosivity was further evaluated in the context of climatic zones. The 

official Biogeographical regions dataset (EEA, 2011) delineates the main 

climatic zones in Europe, and is independent of political boundaries. The 

Mediterranean climatic zone, which has hot summers and mild winters, has 

the highest mean rainfall erosivity, followed by the Alpine zone, which covers 

the Alps and the Pyrenees (Table 4). The Atlantic zone, which has a humid 

climate, has a high variability with high erosivity values in northern Spain, 

western France and western UK, and relatively low R-factor values in the 

Netherlands, eastern UK and northern France. The highest spatial variability is 

noticed in Alpine and Continental zones mainly due to orographic effect. The 

Continental zone, which is characterised by warm summers and cold winters, 

is the largest climatic zone and also has a high variability of rainfall erosivity. 

The Boreal zone (which is dominated by forests) includes the greater part of 

Scandinavia and the Baltic states, and has the lowest R-factor. The Boreal 

zone has a relatively low variability of rainfall erosivity considering its spatial 

extent. The mean R-factor of the Pannonian zone, also known as the central 

Danubian basin, is similar to that of Hungary. Finally, the Black Sea and 

Steppic zones have a relatively minor spatial extent in the study area, 

covering the eastern parts of Bulgaria and Romania. The third highest R-

factors were mapped for this climatic zone. 
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Table 4: R-factor descriptive statistics per Biogeographical region 

Climatic Zone 

 

Proportion 

of the study 

area Mean 

Standard 

Deviation 

Coefficient 

of Variation 

% MJ mm ha-1 h-1 yr-1  

Alpine 9.2 932.3 666.9 0.72 

Atlantic 17.7 678.2 446.7 0.66 

Black Sea 0.2 702.1 144.8 0.21 

Boreal 19.1 359.5 126.6 0.35 

Continental 29.7 695.7 394.3 0.57 

Mediterranean 20.4 1050.6 502.0 0.48 

Pannonian 2.9 660.1 100.5 0.15 

Steppic 0.8 729.8 91.0 0.12 

 

The R-factor map (Fig. 2) and the related statistics (Tables 3, 4) can be used 

for soil erosion modelling at European and national scale. At regional or local 

scale, it is recommended to modellers to use REDES plus local high resolution 

data for making their interpolations. Combining the relatively high R-factor 

values with the relatively high K-factor values (> 0.038 t ha h ha-1 MJ-1 mm-1) of 

the soil erodibility dataset (Panagos et al., 2014b), the modellers may identify 

the areas at high risk of soil erosion. The development of the remaining factors 

(topography, support practices, land use and management practices) will 

contribute to the perfecting of soil erosion modelling at the European scale. 

Furthermore, the calculation of monthly R-factor values in REDES will 

contribute to the seasonal estimation of rainfall erosivity in Europe. 

 

4.4 Erosivity density 

In the present study, the erosivity density is used for a post-assessment of 

rainfall erosivity patterns and type of precipitation involved in erosive events in 

Europe. Annual erosivity density is the ratio of the mean annual erosivity to the 

mean annual precipitation (Kinnell, 2010). In practice, erosivity density (ED) 

measures the erosivity per rainfall unit (mm), and is expressed as MJ ha�1 h�1.  
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ED = R / P     (4) 

where R is the average annual rainfall erosivity (MJ mm ha�1 h�1 yr-1) and P is 

the average annual rainfall (mm yr-1) according to the WorldClim database 

(Hijmans 2005).   

 

According to WorldClim statistics, the mean annual precipitation in the study 

area is 788.4 mm with a range from 246 to 3,094 mm and a standard 

deviation of 253 mm (Fig. 1). High erosivity density areas indicate that the 

precipitation is characterised by high intensity events of short duration 

(rainstorms). Particularly high erosivity density is observed in Italy, Slovenia and 

Spain (Fig. 3), where the R-factor is 2-3 times higher than the amount of 

precipitation. By contrast, the rain distribution is much smoother in northern 

parts of Europe (northern Germany, France, and the Netherlands), where 

relatively high amounts of precipitation have a smaller erosive effect (Fig. 3). 

 

The erosivity density has a mean value of 0.92 MJ ha�1 h�1, with high variability 

ranging from 0.1 to 4.47 MJ ha�1 h�1. This high variability highlights the fact that 

rainfall erosivity is not solely dependent on the amount of precipitation. 

Consequently, it is impossible to predict the R-factor in Europe exclusively 

based on precipitation levels. Regional patterns can be identified, and 

although regression functions may be developed, they cannot be 

extrapolated to other regions with different climatic characteristics. 
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Fig. 3: Erosivity density (rainfall erosivity per mm of precipitation).  

 

The erosivity density may contribute to the identification of risk areas, taking 

into account the precipitation volume. The precipitation (Fig. 1) and erosivity 

density (Fig. 3) data sets have been classified in nine combined categories 

that represent the four quartiles of each parameter. The highest risk is 

identified in areas where low annual mean precipitation is accompanied by 

high erosivity. Thus, highly erosive rainfall hits long-period dry soils which usually 
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causes great damage and is connected to a very high flood risk (Diodato et 

al., 2011). We define this category as the highest overall risk (1st quartile of 

precipitation volume which is less than 600 mm annually) with values of 

erosivity density higher than 1.2 MJ ha�1 h�1(4th quartile). The lowest risk is 

identified in those areas where, even though annual precipitation levels are 

high, the precipitation is relatively homogenously distributed and therefore 

has low erosivity (green in Fig. 4). Dry soils, which account for 9.6% of the study 

area, are identified in central and southern Spain, Sicily, Sardinia and Puglia 

(IT), the Greek islands, Cyprus, western Romania and central Hungary (Fig. 4). 

Most of Ireland, the northern United Kingdom and small parts of Germany 

were found to have the lowest risk (4th quartile of precipitation which is higher 

than 890 mm annually), with erosivity density values that are lower than 0.55 

(1st quartile). The combination of high levels of rainfall and high erosivity 

densities (blue areas in Fig. 4) may also be associated with some risk: high 

rainfall amounts falling on moist or even saturated soils could trigger landslides 

or wetland erosion. 
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Fig. 4: Risk areas based on precipitation and erosivity density 

4.5 Mapping of rainfall erosivity and related uncertainties 

Catari et al. (2011) identified the following main sources of uncertainty in 

estimating rainfall erosivity:  

(1) measurement errors of precipitation stations,  

(2) the efficiency of the equation used (methodology) to derive the 

kinetic energy of rainfall from its intensity,  
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(3) the efficiency of regressions obtained between daily precipitation 

(or even annual precipitation) levels and the R-factor,  

(4) the temporal variability of annual rainfall erosive values, and  

(5) the spatial variability.  

The third point is not addressed here, as the R-factor values were calculated 

based on high temporal resolution precipitation data. While the calibration of 

different temporal resolutions could be considered to be a source of 

uncertainty, this source of uncertainty is minimised by the amount of 

experimental data and the excellent performance of the regression functions 

used (Table 4). 

 

With respect to instrumental errors, the participatory approach of involving 

the major meteorological services in Europe has a high likelihood of yielding 

high data quality. In addition, the RIST software calculates all the individual 

erosive events. Possible outliers (single events of >1,000 MJ mm ha-1 h-1) were 

verified with the source data.  The RUSLE R-factor equation used to derive 

rainfall kinetic energy from intensity (see equation 3) is empirical and was 

derived from long-term experiments (Brown and Foster, 1987). It is applied in 

the majority of studies worldwide.  

 

In the present study, the uncertainty due to temporal variability is lessened by 

averaging long-term time-series (average 17.1 years per station). Regarding 

the spatial uncertainty, the extensive data collection exercise was carried out 

on a dense network with good geographical coverage. Furthermore, the 

dataset is representative of all possible elevation and climatic levels covered 

in the regression analysis.  

 

The application of the Gaussian Process Regression (GPR) spatial interpolation 

model allowed us to derive not only the R-factor but also the standard error of 

the estimate. In this study, the map of standard error (Fig. 5) was directly used 

to estimate the uncertainty of the prediction model. Using the standard error 

to estimate the dispersion of prediction errors, the highest uncertainty was 

found to be in north-western Scotland, north-western Sweden and northern 

Finland due to the relatively small number of precipitation stations and high 
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diversity of environmental features (Fig. 5). The model prediction was also 

found to have increased uncertainty levels in the southern Alps and the 

Pyrenees. Medium uncertainty is noticed in Spain, northern Poland, the west 

of Ireland, North Cyprus and the Aegean islands due to a lack of stations. In 

general, the model had a good prediction rate with low standard errors in the 

majority of the study area. 

 

Fig. 5: Uncertainty of the R-factor prediction calculated with the GPR spatial 

interpolation model 
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4.6 Potential applications of R-factor dataset 

Rainfall erosivity (R-factor) in Europe is a key parameter for estimating soil 

erosion loss and soil erosion risk, but the use of this dataset can be widely 

extended to other applications. The R-factor dataset can be used by 

landslide experts as a predictor to improve landslide susceptibility assessment 

in Europe (Günther et al., 2014). The landslide susceptibility map is the spatial 

probability of generic landslide occurrence based on topographic and 

climatic conditions. 

 

Flood risk is of crucial importance for civil protection, due to the large 

numbers of people affected and the related economic costs. According to 

Barredo (2007), 40% of the flood-related casualties in Europe during the 

period 1950–2006 were due to flash floods. Flash floods are associated with 

short and high-intensity rainfall events, and their likelihood of occurrence 

increases exponentially when such rainfall events occur on dry and hydrophic 

soils (see Fig. 4). Flash flood occurrence is generally more intense in 

Mediterranean countries than in continental areas (Marchi et al., 2010), in line 

with the rainfall erosivity pattern. Differences in the spatial and temporal 

scales of the rainfall events (and rainfall erosivity) should be taken into 

account in the design of flash flood forecasting and warning systems.  

 

Most forest fires in Europe occur in the south - 75% of the total area burnt 

every year in the European Union is located in Portugal, Spain, the south of 

France, Italy, Greece and Cyprus (European Commission, 2009). The post-fire 

effect in areas that susceptible to highly erosive events may accelerate the 

risk of flash floods and soil loss due to lack of vegetative protection. The rapid 

damage assessment carried out by the European Forest Fire Information 

System (EFFIS) (San-Miguel-Ayanz et al., 2012) generates burnt area maps at 

250-m spatial resolution. In combination with the R-factor dataset, such maps 

can help identify areas that are at high risk of soil erosion, in order to decide 

where critical prevention measures should be swiftly applied so as to avoid 

further disasters.  
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In the context of the European Common Agricultural Policy (CAP), sustainable 

agricultural practices should take into account the soil and water resources 

and specific local or regional conditions such as climate. As an example, 

Renschler et al. (1999) showed the high impact of rainfall erosivity in 

evaluating the vulnerability of different crop rotation scenarios in Andalusia. It 

has been found that extreme rainfall events and high erosivity can reduce or 

completely destroy yields of permanent crops (olives, vineyards, fruit trees), 

which are of particular importance in the Mediterranean (Maracchi  et al., 

2005). The R-factor dataset should therefore be taken into account in the 

application of crop-rotation scenarios, agricultural management, and 

conservation policies. 

 

REDES can also be used to identify the trends and threats of climate change. 

It was found that the increase of extreme rainfall events between 1960 and 

2001 in the Carpathian region (Romania, Slovakia, Czech Republic, Hungary, 

southern Poland) was coupled with a lower frequency, leading to constant 

precipitation totals (Bartholy and Pongrácz, 2007). On the other hand, Fiener 

et al. (2013) and Verstraeten et al. (2006) have reported higher erosivity 

values in their areas of study (North Rhine Westphalia, Ukkel) after the 1990s. 

Also, Diodato et al. (2011) have found increased erosive events in low 

Mediterranean latitudes in the last 50 years. Future research will focus on 

subset of REDES precipitation stations with high temporal scale (<30 minutes) 

and long continuous records (>20 years) well distributed in Europe. The 

objective will be to identify trends of rainfall erosivity in Europe and 

incorporate them in future climatic scenarios for predicting soil loss. 

 

The R-factor data availability is a key issue for modellers who have no access 

to high temporal resolution data. With the publication of this study, modellers 

and in general scientists will be able to download the R-factor dataset from 

the European Soil Data Centre (ESDAC, 2012). Besides the application for soil 

erosion modelling, the European rainfall erosivity dataset can be used in 

different areas such as landslide risk assessment, flood risk forecasting, post-fire 
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conservation measures, agricultural management and design of crop 

rotation scenarios.  

 

5 Conclusions 

The R-factor was successfully mapped at 1-km grid cell resolution for the 

European Union and Switzerland, applying the Gaussian Process Regression 

model. The spatial interpolation model showed a very good performance (R2 

= 0.62 for the cross validation, R2=0.73 for the fitting dataset). The low number 

of stations and the high diversity of environmental features resulted in high 

prediction uncertainty in North Scandinavia, West Ireland, Scotland, high Alps 

and parts of Spain. The high variability of climatic and terrain conditions in an 

area of more than 4.4 Million km2 resulted in a broad spectrum of rainfall 

erosivity, ranging from 51.4 to 6,228.7 MJ mm ha�1 h�1 yr-1, with a  mean value 

of 722 MJ mm ha�1 h�1 yr-1. The Mediterranean and Alpine regions were found 

to have the highest R-factor values, while Scandinavia countries were found 

to have the lowest.  

 

There is a large amount of data available regarding rainfall intensity. The 

inclusive participatory data collection approach applied in this study showed 

that high temporal precipitation data is available free of charge for the 

European Union. Even though the selected approach was time-consuming 

and requested laborious pre-processing, it has resulted in Rainfall Erosivity 

Database at European Scale (REDES), with R-factor estimations for 1,541 

stations across Europe.  

 

Due to different temporal resolutions of input data, the proposed conversion 

to 30-min based R-factor was an important step towards a homogeneous 

database. Comparisons between different temporal resolutions showed that 

the use of 60-min precipitation data for the calculation of the R-factor results 

in a strong underestimation (56%) compared to the use of 30-min data.  

 

Using the large number of R-factor stations available on a large scale 

(Europe), it was found that R-factor does not solely depend on precipitation. 



35 

 

The erosivity density indicator showed that the R-factor per unit of 

precipitation is highly variable. Therefore, the choice of regression equations 

should be made with caution and should be based on local climate studies 

and high temporal resolution data. The Mediterranean countries and the 

Alpine areas have a relatively high erosivity density and high rainstorm 

frequency compared to northern Europe, where the erosivity density is much 

lower. Furthermore, an assessment of the erosivity density and the risk areas 

which combine low amounts of precipitation with high erosivity density 

demonstrates that the Mediterranean regions have the highest risk not only of 

erosive events, but also of floods and/or water scarcity.  
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