
REVIEW ARTICLE
published: 29 April 2014

doi: 10.3389/fpls.2014.00166

The intriguing plant nuclear lamina
Malgorzata Ciska and Susana Moreno Díaz de la Espina*

Department of Cell and Molecular Biology, Biological Research Centre – Consejo Superior de Investigaciones Científicas, Madrid, Spain

Edited by:

Katja Graumann, Oxford Brookes
University, UK

Reviewed by:

David Edgar Evans, Oxford Brookes
University, UK
Christophe Tatout, Blaise Pascal
University, France

*Correspondence:

Susana Moreno Díaz de la Espina,
Department of Cell and Molecular
Biology, Biological Research Centre –
Consejo Superior de Investigaciones
Científicas, Ramiro de Maeztu 9,
28040 Madrid, Spain
e-mail: smoreno@cib.csic.es

The nuclear lamina is a complex protein mesh attached to the inner nuclear membrane
(INM), which is also associated with nuclear pore complexes. It provides mechanical
support to the nucleus and nuclear envelope, and as well as facilitating the connection
of the nucleoskeleton to the cytoskeleton, it is also involved in chromatin organization,
gene regulation, and signaling. In metazoans, the nuclear lamina consists of a polymeric
layer of lamins and other interacting proteins responsible for its association with the INM
and chromatin. In plants, field emission scanning electron microscopy of nuclei, and thin
section transmission electron microscopy of isolated nucleoskeletons, reveals the lamina
to have a similar structure to that of metazoans. Moreover, although plants lack lamin genes
and the genes encoding most lamin-binding proteins, the main functions of the lamina are
fulfilled in plants. Hence, it would appear that the plant lamina is not based on lamins
and that other proteins substitute for lamins in plant cells. The nuclear matrix constituent
proteins are the best characterized structural proteins in the plant lamina. Although these
proteins do not display strong sequence similarity to lamins, their predicted secondary
structure and sub-nuclear distribution, as well as their influence on nuclear size and shape,
and on heterochromatin organization, suggest they could be functional lamin analogs. In this
review we shall summarize what is currently known about the organization and composition
of the plant nuclear lamina and its interacting complexes, and we will discuss the activity
of this structure in the plant cell and its nucleus.

Keywords: plant nuclear envelope, plant nuclear lamina, LINC proteins, NMCP proteins, CRWN proteins, SUN

proteins, Nup136, plant nucleocytoplasmic linkers

The nuclear lamina is a ubiquitous structure that can be observed
by transmission electron microscopy (TEM), forming a fibrous
layer between the nuclear envelope (NE) and the condensed chro-
matin masses in many eukaryote cells, including those of protozoa
and metazoans (Figure 1; Fawcett, 1966). The nuclear lamina is
associated to the inner nuclear membrane (INM) and the inner
side of the nuclear pore complexes (NPCs; Goldberg et al., 2008a,b;
Gerace and Huber, 2012), and it is a prominent component of the
nucleoskeleton (Simon and Wilson, 2011). The functions of the
lamina are well established: it provides mechanical support for the
nucleus and NE, it promotes the association between the nucle-
oskeleton and the cytoskeleton, facilitating nuclear movement and
migration, and it is also involved in many activities that occur in
the nucleus, such as chromatin organization and regulation and
signaling (Gerace and Huber, 2012).

The metazoan lamina is a complex protein mesh that consists
of a polymeric layer of lamins, intermediate filament proteins that
associate with numerous transmembrane lamin-binding proteins
that anchor the lamina to the INM, as well as chromatin associated
factors that tether chromatin to this structure (Ho and Lammerd-
ing, 2012; Simon and Wilson, 2013). Plants contain a nuclear
lamina with a similar organization to that of metazoans (Fiserova
et al., 2009; Moreno Diaz de la Espina, 2009), even though plant
genomes lack genes that code for lamins and lamin-binding pro-
teins, except for the Sad1/UNC84 (SUN) domain proteins (Mans
et al., 2004; Rose et al., 2004; Graumann et al., 2013) that par-
ticipate in LINC (linker of the nucleoskeleton to cytoskeleton)

complexes which bind the nucleoskeleton to the cytoskeleton in
metazoan. In light of the crucial roles played by the lamina and by
lamins in the nucleus and the cell, and given that the plant lamina is
not lamin-based, many studies have focused on this structure and
on the characterization of its ultrastructural and protein composi-
tion (Masuda et al., 1993, 1997; Dittmer et al., 2007; Fiserova et al.,
2009; Ciska and Moreno Díaz de la Espina, 2013; Ciska et al., 2013;
Sakamoto and Takagi, 2013). In this review, we use the term lam-
ina to refer to the complex filamentous protein network associated
with the INM, chromatin, nucleocytoplasmic bridging complexes,
and the NPCs following the conventions applied for other eukary-
otes including those that lack lamin genes. We also establish what
is currently known about the structure and nature of the plant
lamina, and we consider its implication in some of the activities
undertaken by the metazoan lamina, such as the regulation of
nuclear size and shape and chromatin organization, and also the
physical connections established between the nucleoskeleton and
cytoskeleton.

THE METAZOAN LAMINA
Although the first descriptions of the lamina in protozoa date
from the 1950s (Pappas, 1956; Beams et al., 1957), it was not
until it was described in mammalian cells that interest in the
lamina became more widespread (Fawcett, 1966). Thin section
TEM shows the lamina to be a thin fibrillar layer between the
NE and the condensed chromatin masses (Pappas, 1956; Beams
et al., 1957; Fawcett, 1966). The fibrous nature of the lamina
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FIGURE 1 | Presence of the lamina in Eukaryota and classification and

phylogenetic relationships between the lamina proteins in the different

groups. The lamina has been described in different Eukaryotic groups:
Metazoan, Embryophyta, Dictyostelia, Trypanosomatidae, Alveolate and
Tubulinea, although its constituent proteins differ in different groups. The main
components of the metazoan lamina are lamins. Most invertebrates express
a single lamin while vertebrates contain four genes encoding lamin B1, lamin
B2, lamin A, and lamin LIII (lost in mammals; Peter and Stick, 2012). In
Dictyostelia the lamina is made up of nuclear envelope 81 (NE81) protein,
which is considered an ancestor of lamins (Batsios et al., 2012; Kruger et al.,
2012). The lamina was also reported in the nucleus of various Alveolate
species: Amphidinium carterae, Gregarina melanopli, Tokophrya infusionum,
Tetrahymena thermophila, and in Amoeba proteus (Tubulinea) and Physarum
polycephalum (Dictyostelia) that do not contain a gene encoding the NE81
protein. The composition of the lamina in these species is not known. In
Trypanosomatidae it is made up of a single nuclear periphery 1 (NUP1) protein
(Rout and Field, 2001; Dubois et al., 2012). In Embryophyta the lamina is made

up of nuclear matrix constituent proteins (NMCPs; Masuda et al., 1997; Ciska
et al., 2013). NMCPs are classified in flowering plants into NMCP1-type
proteins and NMCP2. Monocots have one NMCP1 and one NMCP2 proteins
while dicots contain one NMCP2 and two or three NMCP1-type proteins. The
moss Physcomitrella patens contains two NMCP proteins (Ciska et al., 2013).
Selected species for the representation of the NMCP protein family: Allium
cepa (Ac), Arabidopsis thaliana (At), Daucus carota (Dc), Oryza sativa (Os),
Physcomitrella patens (Ppa), and Zea mays (Zm); NE81 proteins:
Dictyostelium discoideum (Dd), Dictyostelium fasciculatum (Df),
Dictyostelium purpureum (Dp), and Polysphondylium pallidum (Pp); NUP1
proteins: Trypanosoma brucei (Tb), Trypanosoma gambiense (Tg),
Trypanosoma cruzi (Tc), Trypanosoma vivax (Tv), and Leishmania major (Lm);
and lamins: Hydra vulgaris (Hv), Ciona intestinalis (Ci), Branchiostoma
lanceolatum (Bl), Danio rerio (Dr), Xenopus laevis (Xl), Mus musculus (Mm),
and Homo sapiens (Hs). LECA, the last eukaryotic common ancestor; SAR,
stramenopile, alveolate, Rhizaria; CCTH, cryptomonads, centrohelids,
telonemids, haptophytes.

was corroborated when its fibrils were seen to interconnect with
the NPCs in NE fractions from amphibian oocytes (Scheer et al.,
1976) and rat liver cells (Aaronson and Blobel, 1975; Dwyer and
Blobel, 1976). A decade later, the well organized filament net-
work of detergent extracted NEs from Xenopus laevis oocytes was
shown by TEM to have a crossover spacing of about 50 nm after
metal shadowing (Aebi et al., 1986). Since then, the ultrastructural
organization of the metazoan lamina has been characterized in
amphibian oocyte NEs by feSEM (field emission scanning electron
microscopy) as a regular orthogonal network of 10 nm filaments

connected to the NPCs (Goldberg et al., 2008a,b). However, study-
ing the filamentous network that constitutes the lamina in somatic
cells is difficult due to its association with chromatin, the lam-
ina displaying a more irregular structure in these preparations
(Goldberg et al., 2008b).

The lamina was first isolated in the 1970s from rat liver nuclei, in
which a conspicuous lamina could not be observed by thin section
conventional TEM (Aaronson and Blobel, 1975). Its three main
polypeptides were identified (Gerace et al., 1978) and later called
lamins (Gerace and Blobel, 1980). Lamins are ancestral members
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of the highly conserved intermediate filament protein superfamily
(Mckeon et al., 1986; Franke, 1987; Peter and Stick, 2012) and they
have the same typical tripartite structure, with a central coiled coil
domain formed by four coils that are separated by short linkers.
Flanking the coiled coil domain, lamins have a short N-terminus
that contains a conserved phosphorylation site for cdk1 and a
longer globular C-terminal tail with a second conserved cdk1 site,
as well as a nuclear localization signal (NLS), a highly conserved
Ig fold and a C-terminal cysteine, aliphatic residues, any amino
acid (CAAX) box (Dechat et al., 2008, 2010; Dittmer and Misteli,
2011).

All metazoans express lamins and while invertebrates contain
one or two lamin genes, there are three or four in vertebrates.
Lamins have been classified as types A or B according to their
structure, distribution, mitotic behavior, and biochemical charac-
teristics (Dittmer and Misteli, 2011; Ho and Lammerding, 2012).
Most invertebrates have a single type B lamin gene (Melcer et al.,
2007; Peter and Stick, 2012), while the three vertebrates type B
lamin genes are complemented with a forth lamin A gene that
encodes lamin A and an alternative splicing product, lamin C
found in mammals that have lost the gene for lamin LIII (Figure 1;
Peter and Stick, 2012). Except for lamin C, all lamins are expressed
as prelamins and they undergo highly regulated and extensive post-
translational modification of the CAAX box through farnesylation,
proteolytic cleavage, and carboxylation. Type B lamins remain per-
manently modified while the 15 terminal amino acids of prelamin
A are removed to produce the mature lamin A that lacks the modi-
fication (Dechat et al., 2010; Simon and Wilson, 2013). Lamins also
undergo other post-translational modifications such as sumoyla-
tion and phosphorylation. Conserved phosphorylation sites for
different kinases are involved in the polymerization and mitotic
disassembly of lamins, as well as in the regulation of conserved
functions. By contrast, unique phosphorylation sites probably
mediate the differential regulation of lamins in different tissues
(Simon and Wilson, 2013).

Besides lamins, the lamina contains numerous associated pro-
teins, most of which are transmembrane proteins of the INM that
bind to lamins and promote the association of the lamina with
the NE. In addition, lamin-binding proteins may interact with
DNA and some chromatin proteins, organizing the positioning
of chromatin at the NE. Thus, lamins interact with numerous
structural and regulatory proteins, many of which have mechan-
ical and structural roles: stabilizing the lamina and anchoring
lamin filaments to the INM; linking the lamina to the cytoskele-
ton; anchoring the lamina to NPCs; and tethering chromatin to
the INM. In addition, some of these proteins regulate signaling
and transcription. The lamin-binding proteins have been stud-
ied extensively (Wilson and Foisner, 2010; Ho and Lammerding,
2012; Simon and Wilson, 2013) and to date, in humans 54 bind-
ing partners have been identified for lamin A, 23 for lamin B1,
and seven for lamin B2. Indeed, the functional association of
many of these partners have been confirmed using molecular biol-
ogy tools, including that of LEM (lamin, emerin, MAN) domain
proteins, BAF (barrier to autointegration factor), Rb (retinoblas-
toma), and SUN domain proteins (Simon and Wilson, 2013). The
partners of lamin A are involved in different nuclear activities
and they include components of the nucleoskeleton and NPCs,

such as lamins B1 and B2, actin, nesprin1α and nesprin2, SUN1
and SUN2, nucleoporins Nup153 and Nup88, LCO1 (lamin com-
panion 1). In addition, lamin A can associate with LEM domain
proteins like LAP2a, MAN1, LEM2 and emerin, which are inte-
gral INM proteins that interact with lamins and BAF, and that
form complexes involved in nuclear architecture and in anchoring
chromatin to the NE. Other partners include chromatin associ-
ated proteins, such as BAF, PCNA, HP1 and histones, as well as
transcription factors like Rb or other proteins involved in tran-
scription and signaling (Simon and Wilson, 2013). The SUN
proteins associate with Klarsicht/ANC1/syne homology (KASH)
domain proteins of the outer nuclear membrane (ONM), forming
the core of the LINC complex that associates with the cytoskele-
ton (Sosa et al., 2012; Tapley and Starr, 2013). In this way, the
lamin polymer would constitute a base for the supramolecu-
lar assembly that connects the cytoskeleton with the NE and
chromatin.

Although the process of lamin self assembly has been described
relatively well in vitro for chicken, human and Caenorhabdi-
tis elegans lamins, the supramolecular assembly of the higher
order arrays of lamins with their multiple associated proteins
remains somewhat unclear due to the difficulty of reconstitut-
ing the NE environment in vitro. Lamin polymerization involves
lamin dimerization, the longitudinal assembly of these dimers into
oligomers that can interact laterally to form protofilaments, and
the further assembly of these as 10 nm filaments (Ben-Harush
et al., 2009; Dittmer and Misteli, 2011). The rod domains play
important roles in lamin homodimerization and in the forma-
tion of lateral and longitudinal contacts (Kapinos et al., 2010;
Gangemi and Degano, 2013). However, there is little informa-
tion regarding how lamins are incorporated into the lamina
in vivo and most of this comes from studies on the amphib-
ian oocyte lamina. In vivo, lamins form an orthogonal mesh
in the lamina connected to the inner ring of NPCs (Goldberg
et al., 2008a,b; Gerace and Huber, 2012), whereby type A and
B lamins form separate filament networks, although these may
interact to varying degrees (Goldberg et al., 2008a,b; Kolb et al.,
2011). FRAP (fluorescence recovery after photobleaching) analysis
demonstrates that lamins are stably integrated into the lam-
ina and along with lamin-associated transmembrane proteins,
although the latter are more mobile than lamins (Moir et al., 2000;
Ostlund et al., 2006).

The lamina is involved in many nuclear and cellular func-
tions that are fulfilled by its multiple lamin-dependent complexes.
The lamina fulfills several structural functions, regulating the
size, shape, and mechanical properties of the nucleus, stabilizing
the NE, positioning the NPC, mediating the physical connection
between the nucleus and cytoskeleton, and positioning hete-
rochromatin at the NE. However, it is also involved in other
processes, including epigenetic modification, chromatin organi-
zation, DNA replication, repair and transcription, as well as cell
proliferation, and differentiation (Dechat et al., 2008, 2009, 2010;
Ho and Lammerding, 2012; Burke and Stewart, 2013).

THE LAMINA IN NON-METAZOANS
As mentioned above, the nuclear lamina is not a structure that
is only found in metazoans that express lamins. A well organized
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lamina has been identified by TEM in several Protozoa species
from diverse groups, including phylogenetically unrelated uni-
cellular eukaryotes (Frajola et al., 1956; Pappas, 1956; Rudzinska,
1956; Beams et al., 1957; Lang and Loidl, 1993; Chen et al., 1994;
Minguez et al., 1994), and it has also been isolated from Try-
panosoma (Rout and Field, 2001; Figure 1). Except for that in
Amoeba proteus and Gregarina melanopli (Frajola et al., 1956;
Beams et al., 1957; Schmidt et al., 1995), the protozoan lamina
resembles that of metazoans, particularly once isolated (Rout
and Field, 2001). However, protozoa lack lamin orthologs and
thus, their lamina is likely to be based on different proteins
with similar functions. Yet to date, only two constituent pro-
teins of the protozoan lamina that fulfill similar functions to
lamin have been characterized in Dictyostelium discoideum and
Trypanosoma brucei (Batsios et al., 2012; Dubois et al., 2012;
Kruger et al., 2012).

Dictyostelids belong to a group of Amoebozoa that are rela-
tively close to metazoans. The Dictyostelium lamin-like protein
NE81 is restricted to the class Dictyostelia (Figure 1) and it is
currently considered to be an evolutionary precursor of metazoan
lamins, in particular given that it shares important structural and
functional features with them, such as: size; the distribution of
the coiled coils in the rod domain; the position of the cdk1 phos-
phorylation consensus site preceding the rod domain; the NLS in
the tail; and the terminal CAAX box. Moreover, the generation
of knockout and over-expression mutants has demonstrated that
like lamins, NE81 plays an important role in maintaining nuclear
integrity, chromatin organization, and the mechanical stability of
cells (Batsios et al., 2012; Kruger et al., 2012).

Trypanosomatids are highly divergent unicellular eukaryotes
and in T. brucei, NUP-1 has been shown to be the major com-
ponent of the isolated lamina (Rout and Field, 2001). NUP-1 is
restricted to trypanosomatids, which have a single NUP-1 ortholog
(Figure 1). This is a 400 kDa long coiled coil protein containing
20 repeats of a 144 amino acid sequence. NUP-1 is not related
to lamins but it does share structural features with them, and it
is also implicated in processes controlled by lamins, such as: the
regulation of nuclear shape and size, the distribution of NPCs,
heterochromatin organization and epigenetic control of develop-
mentally regulated genes (Rout and Field, 2001; Dubois et al.,
2012). Accordingly, the trypanosomatid lamina appears to be
based on NUP-1, even though this is a protein phylogenetically
unrelated to lamins.

In conjunction, the above indicates that the lamina is a ubiqui-
tous nuclear structure with conserved functions in eukaryotes, yet
the proteins that constitute the lamina in Protozoa, a group that
includes phylogenetically unrelated unicellular eukaryotes, might
have evolved separately from those that make up this structure in
metazoans.

THE PLANT LAMINA
Although conventional thin section TEM of plant cells does not
reveal a conspicuous lamina underlying the nucleoplasmic side of
the NE (Figure 2A), a peripheral fibrillar layer with associated
NPCs was evident in demembrated nuclei (Figure 2E), simi-
lar to the metazoan lamina, as well as in the nucleoskeleton of
both monocot and dicot cells after the elimination of membranes,

chromatin and soluble proteins from the nucleus (Moreno Diaz
de la Espina et al., 1991; Li and Roux, 1992; Masuda et al., 1993;
Minguez and Moreno Diaz de la Espina, 1993; Moreno Diaz de
la Espina, 1995, 2009). Moreover, an analysis of the plant NE
by feSEM confirmed the presence of a lamina similar to that of
metazoans attached to the INM that was called plamina (Fiserova
et al., 2009; Fiserova and Goldberg, 2010). With this technique
the plant lamina appears to be a complex, organized filamen-
tous structure that underlies the INM and that is connected to
the nucleoplasmic ring of the NPCs (Figures 2B,C). Well defined
tightly packed filaments were observed at the INM of tobacco
cells, suggesting that the lamina would be formed by proteins
that can form filaments (Figure 2C). The filaments in the lam-
ina were 10–13 or 5–8 nm thick, similar dimensions to those
observed in isolated lamina fractions from pea nuclei (Li and
Roux, 1992; Blumenthal et al., 2004; Fiserova et al., 2009). On
view of the structural similarities of the metazoan and plant
lamina, the specific term plamina recently coined for the plant
lamina is not necessary, adds confusion to the field and should be
avoided.

PROTEIN COMPONENTS OF THE PLANT LAMINA
Despite the structural similarities of the plant and metazoan lam-
ina, plants lack orthologs of lamins and of the lamin-binding
proteins, except for the SUN domain proteins that are conserved
in all kingdoms (Mans et al., 2004; Rose et al., 2004; Moriguchi
et al., 2005; Graumann et al., 2010; Murphy et al., 2010; Field et al.,
2012). However, the critical functions performed by lamins and
their partners in metazoan cells (see above) are fulfilled in the
plant cell. Hence, the plant lamina must be established by proteins
that evolved separately to those in metazoans, as is the case of the
NUP-1-based lamina in trypanosomids (Figure 1; Rout and Field,
2001; Dubois et al., 2012). Similarly, such proteins would represent
functional plant homologs of lamins, with similar characteristics
rather than sequences. These lamin-like proteins should have a
coiled coil structure similar to lamins and NUP-1, and they should
be able to form filaments, to become stably integrated into the
nucleoskeleton, and to participate in structural and biochemical
interactions related to the formation of networks and multiprotein
complexes.

Since the discovery of the plant lamina several insoluble pro-
teins have been proposed as putative plant lamin-like proteins,
mainly based on their localization in the lamina, their cross reac-
tivity with vertebrate lamins and intermediate filaments (Li and
Roux, 1992; Minguez and Moreno Diaz de la Espina, 1993; Moreno
Diaz de la Espina, 1995, 2009), and on their ability to form fila-
ments in vitro (Blumenthal et al., 2004). However, the sequences of
these proteins are still not available to analyze and compare them
with lamins.

The best candidates to fulfill the functions of lamins in plants
are the NMCPs (nuclear matrix constituent proteins) that in
Arabidopsis thaliana were later called LINC (little nuclei) and
very recently renamed as crowded nuclei (CRWN; Table 1),
known to be components of the lamina (Figures 2D,E; Masuda
et al., 1993; Ciska et al., 2013; Ciska and Moreno Díaz de la
Espina, 2013; Sakamoto and Takagi, 2013). These proteins have
a tripartite structure with a central coiled coil domain, and
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FIGURE 2 | Ultrastructure of the plant nuclear lamina and localization

of the NMCP proteins. (A) Conventional thin section TEM image of the
nuclear periphery of an onion meristematic root cell, showing a portion of
the NE with its two membranes, and the dense NPCs (arrows) that
traverse it. The heterochromatin (chr) is tightly attached to the INM but the
thin lamina is not conspicuous with this technique. Cytoplasm (cyt).
(B) Cytoplasmic face of the NE of a tobacco BY-2 cell nucleus extracted
with Triton X-100 to remove the membranes and visualized by feSEM. The
filaments of the lamina interconnecting the NPCs are evident (arrows).
(C) feSEM image of the nucleoplasmic face of the NE of a BY-2 nucleus

that has been fractured but not extracted with Triton X-100. Arrows indicate
the filaments of the lamina in the membrane. (D,E) Detection of NMCP1 in
the lamina of isolated meristematic onion nuclei extracted with Triton X-100
after immunofluorescence and DAPI staining (D), or TEM immunogold
labeling (E). After removing the membrane, the lamina with a lower
electron density than chromatin and containing NMCP1 proteins is evident
at the nuclear periphery. The association with NPCs (arrows) and the tight
attachment to the condensed chromatin masses (chr) can be seen.
(B,C courtesy of Drs J. Fiserova and M. W. Goldberg). Bars in D = 10 μm
and in E = 100 nm.

they are predicted to dimerize and probably form filaments like
lamins (Masuda et al., 1999; Dittmer et al., 2007; Ciska et al.,
2013; Ciska and Moreno Díaz de la Espina, 2013). They also
participate in the nuclear functions mediated by lamins, such
as the regulation of nuclear shape and size, and heterochro-
matin organization (Dittmer et al., 2007; Dittmer and Richards,
2008; van Zanten et al., 2011, 2012; Sakamoto and Takagi,
2013; Wang et al., 2013). NMCPs are highly conserved in land
plants (Ciska et al., 2013; Ciska and Moreno Díaz de la Espina,
2013) and although they do not share sequence similarity with
lamins, their predicted structure and subnuclear distribution sug-
gest that they participate in the formation of the plant lamina
network.

NMCP PROTEINS, THE PLANT ANALOGS OF LAMINS
The first NMCP protein (DcNMCP1) was described as a residual
130 kDa protein component of the carrot nuclear matrix (Masuda
et al., 1993). The determination of its cDNA sequence enabled its
structure to be predicted, similar to that of lamins with a central
coiled coil domain predicted to mediate dimerization and a NLS in

the tail domain (Masuda et al., 1997). Also DcNMCP1 assembled
and disassembled in mitosis as occurs with lamins (Masuda et al.,
1999). NMCP1 was later isolated and characterized in a monocot,
Oryza sativa (Moriguchi et al., 2005). Another homolog, NMCP2,
was later identified in carrot and celery (Kimura et al., 2010), and
four homologs were identified in a genome-wide search for coiled
coil proteins in A. thaliana (Rose et al., 2004), which were later
called LINC (little nuclei) 1–4 due to the phenotype of the corre-
sponding mutants (Dittmer et al., 2007). However, this name was
misleading as it had already been attributed to the LINC complex
of the NE (Crisp et al., 2006). On view of this, the same group
recently renamed the proteins as CRWN according to another
phenotype of the mutants (Wang et al., 2013) which adds more
confusion to the nomenclature of the proteins. In our opinion
the original terminology of NMCP is more appropriate not only
because it was the first adopted and is currently in use for all species
but A. thaliana (Table 1), but also because it refers to an intrinsic
feature of the proteins. For the purposes of this review we will
use the original terminology of NMCP and LINC/CRWN only
for A. thaliana proteins, but the importance of the proteins and
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Table 1 |Terminology used for NMCP proteins reported in different plant species.

Species Accession

number

Protein Reference

Daucus carota (carrot) BAA20407 DcNMCP1 Masuda et al. (1993, 1997), Ciska et al. (2013), Ciska and Moreno Díaz de la Espina (2013),

Kimura et al. (2014)

BAI67718 DcNMCP2 Kimura et al. (2010), Ciska et al. (2013), Ciska and Moreno Díaz de la Espina (2013)

BAN14787 DcNMCP3 Ciska and Moreno Díaz de la Espina (2013)

Apium graveolens (celery) BAI67715 AgNMCP1 Kimura et al. (2010), Ciska et al. (2013), Ciska and Moreno Díaz de la Espina (2013)

BAI67716 AgNMCP2 Kimura et al. (2010), Ciska et al. (2013), Ciska and Moreno Díaz de la Espina (2013)

Oryza sativa (rice) AB110204 OsNMCP1 Moriguchi et al. (2005), Ciska et al. (2013), Ciska and Moreno Díaz de la Espina (2013)

AB110205 OsNMCP2 Ciska et al. (2013), Ciska and Moreno Díaz de la Espina (2013)

Allium cepa (onion) AB673103 AcNMCP1 Ciska et al. (2013), Ciska and Moreno Díaz de la Espina (2013)

Arabidopsis thaliana At1g67230 NMCP1 like Rose et al. (2004)

LINC1 Dittmer et al. (2007), Ciska et al. (2013), Sakamoto and Takagi (2013)

CRWN1 Wang et al. (2013)

At1g13220 NMCP1 like Rose et al. (2004)

LINC2 Dittmer et al. (2007), Ciska et al. (2013), Sakamoto and Takagi (2013)

CRWN2 Wang et al. (2013)

At1g68790 NMCP1 like Rose et al. (2004)

LINC3 Dittmer et al. (2007), Ciska et al. (2013), Sakamoto and Takagi (2013)

CRWN3 Wang et al. (2013)

At5g65770 NMCP1 like Rose et al. (2004)

LINC4 Dittmer et al. (2007), Ciska et al. (2013), Sakamoto and Takagi (2013)

CRWN4 Wang et al. (2013)

the expected future development of the field deserve an agree-
ment of the different groups involved to establish a common
terminology.

Recent searches of plant genomes have revealed that NMCP
genes are conserved in land plants, which contain genes cod-
ing for two or more NMCP proteins (Kimura et al., 2010;
Ciska et al., 2013; Ciska and Moreno Díaz de la Espina, 2013).
NMCPs constitute a highly conserved family of proteins in plants,
except in single cell plants, and they are absent from meta-
zoans and fungi (Ciska et al., 2013; Ciska and Moreno Díaz de
la Espina, 2013). NMCP proteins have been classified into two
clusters following their first denominations: NMCP1 and NMCP2
(Figure 1; Masuda et al., 1993, 1997; Kimura et al., 2010; Ciska
et al., 2013; Ciska and Moreno Díaz de la Espina, 2013; Wang
et al., 2013). Monocots have one NMCP1 and one NMCP2 gene,
while dicots carry a single NMCP2 gene and several NMCP1-
type genes encoding NMCP1-related proteins called NMCP1 and
NMCP3. A. thaliana and some other dicots contain two NMCP3-
type genes, while two Solanum species, Solanum tuberosum and
S. lycopersicum have two NMCP1 genes and no genes encod-
ing NMCP3. AtLINC1/CRWN1 encodes an NMCP1, whereas
AtLINC2/CRWN2 and AtLINC3/CRWN3 encode NMCP3-type
and AtLINC4/CRWN4 encodes an NMCP2 protein (Ciska et al.,
2013; Ciska and Moreno Díaz de la Espina, 2013; Wang et al.,
2013). The two NMCP genes of the moss Physcomitrella patens

evolved from a common NMCP progenitor gene and they are
included in the NMCP2 cluster, suggesting that the archetypal
NMCP progenitor was actually an NMCP2 protein (Ciska et al.,
2013; Ciska and Moreno Díaz de la Espina, 2013). All LINC/CRWN
genes are expressed in whole A. thaliana plants (Sakamoto and
Takagi, 2013) and their expression is developmentally regulated
(Ciska et al., 2013; Ciska and Moreno Díaz de la Espina, 2013),
as occurs with lamins (Benavente et al., 1985; Broers et al., 1997;
Peter and Stick, 2012).

The predicted structure of NMCP proteins is well characterized
(Figure 3; Ciska et al., 2013; Ciska and Moreno Díaz de la Espina,
2013). As indicated above, they have a tripartite structure similar
to that of lamins with a highly conserved central coiled coil rod
domain that is predicted to dimerize, and less conserved non-
coiled coil head and tail domains. The structure and length of the
rod domain are conserved across the NMCP family, suggesting that
it plays an important role in oligomerization. Moreover, at each
end of the rod domain of NMCPs and in the predicted linkers there
are five highly conserved and family specific regions. Lamins have
a similar distribution of conserved motifs although there is no
significant sequence similarity between these two protein families
(Figure 3). NMCPs also contain several conserved motifs in the
tail domain, including a stretch of acidic amino acids that is also
present in vertebrate lamins, a NLS and a NLS-linked conserved
motif in NMCP1’s, both necessary for association of the protein
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FIGURE 3 | Comparison of the structure of plant NMCP proteins and

metazoan lamins. Both proteins have a similar tripartite structure with a
central coiled–coil domain (green boxes) flanked by a short head and a long
tail domains. The rod domain which is responsible for dimerization and higher
order assembly in lamins, presents highly conserved regions at both ends
(magenta bars) involved in head to tail association of dimers in the case of

lamins. The rod domain is flanked by conserved cdk1 phosphorylation sites in
both cases. In the tail domain both have a NLS (red boxes) and a conserved
C-terminus (magenta box in NMCP1 and CAAX box in lamins). NMCPs lack
the Ig fold for partner protein binding typical of lamins (blue oval). The
conserved regions marked with a yellow star are involved in NMCP1
association to the nuclear periphery (Kimura et al., 2014).

to the NE (Kimura et al., 2014). The later is identical to a specific
actin binding site in lamin A. NMCPs lack a CAAX box but their C-
terminus is highly conserved, except for that in the dicot NMCP2
(Ciska et al., 2013). They also lack the Ig fold in the tail that is
involved in the interaction of lamins with some of their protein
partners (Simon and Wilson, 2013).

The general organization of the rod domain in NMCPs and
lamins is similar, although the former is twice as long as that in
lamins, with a similar distribution of conserved motifs, including
those at their ends (Ciska and Moreno Díaz de la Espina, 2013) that
mediate head to tail associations in lamins (Kapinos et al., 2010;
Davidson and Lammerding, 2013). The analogous structures, the
similar location of the conserved motifs in the rod domain and
the presence of consensus sequences for cdk1 at either side of
the rod domain, suggest a similar mechanism of oligomerization
and protofilament formation for NMCPs and lamins (Figure 3).
As yet, NMCP proteins have not been polymerized in vitro and
their mechanisms of assembly in the lamina are poorly known.
Very recently it has been established that DcNMCP1 associates
to the nuclear periphery by coordinate action of the NLS and
a NLS-linked conserved motif and the 141 amino acids at the
N-terminus of the protein comprising the head and the highly
conserved N-terminus of the rod domain (Kimura et al., 2014; see
Figure 3). The N-terminal region of NMCP1 could be involved in
head to tail assembly of dimers and polymer assembly stabiliza-
tion as occurs in lamins (Davidson and Lammerding, 2013) and
may be critical for the integration of the proteins in the lamina
network. The immuno-feSEM experiments that are in progress
should help to detect the NMCP1 protein in the filaments of the
plant lamina.

The functions of NMCP proteins are poorly understood as
the phenotypic effects of their mutations are not as severe as
those caused by mutations in lamins (Butin-Israeli et al., 2012; Ho
and Lammerding, 2012). NMCP proteins are involved in essen-
tial processes as quadruple NMCP/LINC/CRWN mutants are not
viable. By contrast, single, double and some triple mutants are
viable (Dittmer et al., 2007; Sakamoto and Takagi, 2013; Wang
et al., 2013), which in conjunction with the lack of phenotype of
single mutants, indicates that there is complementation between
different proteins.

To date, the best analyzed function of NMCP/LINC/CRWN
proteins is the regulation of nuclear size and shape (Dittmer
et al., 2007; van Zanten et al., 2011; Sakamoto and Takagi, 2013;
Wang et al., 2013), a function also fulfilled by lamins (Ho and
Lammerding, 2012). NMCP/LINC/CRWN mutations result in a
decrease in nuclear size and alterations to the shape of differenti-
ated cells, with a predominant influence of the LINC1/CRWN1
and LINC4/CRWN4 genes (Dittmer et al., 2007; Dittmer and
Richards, 2008; van Zanten et al., 2011; Sakamoto and Tak-
agi, 2013; Wang et al., 2013). In addition, over-expression of
LINC4 results in an increase in nuclear size (Sakamoto and
Takagi, 2013), although the underlying molecular mechanisms
involved remain unknown. Other proteins of the plant NE that
also affect nuclear size and shape are those forming the nucleo-
cytoplasmic linker in plants, such as the SUN domain proteins
(Oda and Fukuda, 2011; Zhou et al., 2012), the KASH-like WIP
(WPP domain interacting proteins) proteins (Zhou et al., 2012)
and the WIT (WPP domain-interacting tail-anchored) proteins
(Tamura et al., 2013), as well as nucleoporin Nup136 (Tamura
et al., 2010; Tamura and Hara-Nishimura, 2011). These results
suggest that the proteins forming the plant nucleocytoplasmic
linker interact with NMCPs, as well as Nup136, a component
of the nucleoplasmic basket of NPCs that has been proposed
to link the NPC to the lamina in plants (Tamura and Hara-
Nishimura, 2013), thereby cooperating in the regulation of nuclear
morphology.

The role of NMCP proteins in chromatin organization
remains unclear. A decrease in the number of chromocen-
tres was reported in linc1/crwn1-linc2/crwn2 mutants (Dittmer
et al., 2007), although the relative heterochromatin fraction
and the distribution of specific heterochromatin regions dur-
ing seed germination was unaltered in these mutants (van
Zanten et al., 2011, 2012). Nevertheless very recent results
using different mutants showed that chromocentre organiza-
tion is disrupted in linc4/crwn4 mutants, as demonstrated
by the dispersion of 5S RNA genes and centromeric repeat
arrays (Wang et al., 2013). Accordingly, it was suggested that
NMCP/LINC/CRWN proteins play a role in maintaining proper
heterochromatin organization. Thus, NMCP1/LINC1/CRWN1
and NMCP3/LINC2/CRWN2 could prevent chromocentre
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aggregation while NMCP2/LINC4/CRWN4 would have a
complementary role in maintaining chromocentre integrity
(Wang et al., 2013).

Lamins mediate nuclear positioning and movement through
an interaction between lamin A with SUN proteins, which asso-
ciate with KASH proteins to form the metazoan LINC complex
that connects the lamina to the cytoskeleton (Sosa et al., 2012;
Tapley and Starr, 2013). Very recently, a nucleocytoplasmic linker
has been described in plants, which is involved in nuclear posi-
tioning and movement in response to environmental stimuli. It
consists of a plant-specific Myosin Xl-i motor that binds to the
actin filaments of the cytoskeleton, and also to the WIT proteins
in the ONM that form a complex with WIP proteins, in turn
interacting with SUN proteins (Tamura et al., 2013). Thus, the
complex formed by the WIT, WIP, and SUN proteins in plants
would be analogous to the metazoan LINC complex. While con-
nections between this complex and NMCP proteins (or other
intranuclear components) are yet to be defined, an interac-
tion between NMCP and SUN has been recently demonstrated
(Graumann, 2014). The analysis of linc/crwn1–4 and linc/crwn2–
3 mutants apparently rules out a role for NMCP proteins in
blue light-induced nuclear movement (Sakamoto and Takagi,
2013), although protein complementation cannot be completely
discarded.

As indicated above, NMCPs show many analogies to lamins
(Ciska and Moreno Díaz de la Espina, 2013) and in the future,
even more may emerge as our understanding of these proteins
improves. For all these reasons, and also because they are con-
served in all land plants and they localize in the lamina (Masuda
et al., 1993, 1997; Dittmer et al., 2007; Ciska et al., 2013; Sakamoto
and Takagi, 2013), NMCPs are considered to be the plant analogs
of lamins and the main components of the filament mesh that
constitutes the plant lamina.

OTHER COMPONENTS OF THE PLANT LAMINA
While the plant lamina and its main structural components, the
NMCP proteins, have now been relatively well characterized,
the proteins anchoring this structure to the INM, NPCs, chro-
matin and the cytoskeleton remain largely unknown. Plants lack
orthologs of the metazoan lamin-interacting proteins that attach
the lamina to the INM, such as the LBR (lamin B receptor),
LEM domain proteins and nesprins, or to NPCs, such as Nup153
(Mans et al., 2004). Hence, it would appear likely that they have
evolved specific NMCP-interacting proteins that anchor the lam-
ina to the NE and NPCs, also participating in the attachment
of chromatin, and in the control of other nuclear and cellu-
lar activities regulated by lamins in metazoans. Searching for
the partners of NMCPs in the lamina is fundamental to under-
stand the functions and organization of this structure, yet to
date, only one NMCP binding protein has been unequivocally
identified (Graumann, 2014), even though the functional analy-
sis of mutants suggests that direct or indirect interactions could
occur with several proteins in the NPCs and NE, such as Nup136
(Tamura and Hara-Nishimura, 2011), SUN proteins (Graumann
et al., 2010; Oda and Fukuda, 2011; Zhou et al., 2012; Graumann,
2014); WIPs (Zhou et al., 2012) and WITs (Tamura et al., 2013;
Figure 4).

CONNECTION OF THE PLANT LAMINA WITH THE NPCs
As occurs in metazoa (Aaronson and Blobel, 1975) and protozoa
(Rout and Field, 2001), NPCs associate with the isolated plant
lamina (Moreno Diaz de la Espina, 2009). Moreover, feSEM anal-
ysis of the plant NE suggests that a direct interaction may occur
between the filaments of the plant lamina and the inner ring of
the NPCs (Figure 2C; Fiserova et al., 2009). However, the proteins
that mediate this interaction are yet to be defined. In vertebrates,
Nup153 is a mobile nucleoporin that is located in the inner ring
of the NPCs and it associates with the Ig fold of both type A
and B lamins (Al-Haboubi et al., 2011). Thus, Nup153 is believed
to be involved in the interaction between the lamina and NPCs
(Smythe et al., 2000; Walther et al., 2001), although other proteins
may also participate in this interaction. Plants have a functional
homolog of Nup153, Nup136 that was proposed to link the NPCs
to the plant lamina (Tamura and Hara-Nishimura, 2011, 2013).
Nup136 is unique to higher plants and while it shares no sequence
similarity with vertebrate Nup153, it has some characteristics in
common with the latter and it is also mobile, as demonstrated by
FRAP analysis (Tamura et al., 2010). Although a direct interaction
of NMCPs with Nup136 has not been proved, over-expression and
down-regulation experiments showed that Nup136 and linc/crwn
mutants have similar morphological alterations in the nucleus
(Dittmer et al., 2007; Tamura et al., 2010; Sakamoto and Takagi,
2013), suggesting that both proteins interact and regulate nuclear
morphology, and that Nup136 also links the NPC to the lamina
(Tamura and Hara-Nishimura, 2011). It has been speculated that
nuclear pore anchor (NUA), a nucleoporin of the nuclear pore
basket, is involved in establishing nuclear architecture (Xu et al.,
2007a,b). NUA is the plant homolog of the vertebrate nucleo-
porin Tpr, a long coiled coil protein that constitutes the scaffold of
the nuclear pore basket (Strambio-De-Castillia et al., 2010). NUA
accumulates in the inner side of the NE but its interaction with
NMCP proteins and its role in nuclear organization have yet to be
defined.

THE LAMINA AND NUCLEOCYTOPLASMIC BRIDGING
COMPLEXES IN PLANTS
Amongst the integral proteins of the INM that bind to lamins in
the metazoan lamina are the SUN domain proteins, which inter-
act with the KASH domain proteins in the perinuclear space of
the ONM to form the LINC complexes. The latter constitute the
core of the connection between the nuclear lamina and the per-
inuclear cytoskeleton, forming a nucleocytoplasmic continuum.
The LINC complexes fulfill a mechanical role in nuclear position-
ing and movement, centrosome attachment to the ONM, linking
the nucleoskeleton to the cytoskeleton, and telomere positioning
during meiosis, as well as participating in non-mechanical events
regulating nuclear shape and size, and acting as specialized NE
receptors (Tzur et al., 2006; Razafsky and Hodzic, 2009; Starr and
Fridolfsson, 2010; Rothballer and Kutay, 2013; Sosa et al., 2013;
Tapley and Starr, 2013; Stewart and Burke, 2014).

SUN proteins are highly conserved in eukaryotes, and while sin-
gle cell eukaryotes have one SUN protein, C. elegans and Drosophila
have two, and mammals and plants have multiple SUN pro-
teins expressed at different times during development. The two
major mammalian SUN proteins, SUN1 and SUN2, are widely
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expressed, while SUN3, 4, and 5 expression is restricted to the
testis (Starr and Fridolfsson, 2010; Sosa et al., 2013; Zhou and
Meier, 2013). Metazoan SUN proteins have a conserved domain
layout, with a nucleoplasmic N-terminus that interacts directly
with the Ig fold of lamins, followed by a transmembrane domain,
a predicted coiled coil segment that localizes to the perinuclear
space and allows trimerization, and a C-terminal SUN domain of
about 175 amino acids that interacts with the KASH domain of
KASH proteins (Tzur et al., 2006; Sosa et al., 2012). KASH domain
proteins are more diverse. Yeast and Drosophila have two KASH
proteins, C. elegans has three and mammals have six such pro-
teins, called nesprins (Zhou and Meier, 2013). KASH proteins
have an N-terminal cytoplasmic segment of varying size, struc-
ture and function, and a conserved C-terminal KASH domain
that includes a transmembrane domain and a luminal domain of
20–30 amino acids. A PPPX motif can be found at the end of the
C-terminus of typical KASH proteins, with conserved hydropho-
bic residues that lie upstream of it, both features that are essential
for interactions with KASH and SUN domains (Rothballer and
Kutay, 2013). In the formation of metazoan LINC complexes,
the SUN proteins in the INM form homotrimers through the
association of their coiled coil domains. The three adjacent SUN
domains form clover-like trimers that interact with the KASH
domains of three independent proteins anchored to the ONM, and
binding is further stabilized by the formation of an intermolec-
ular disulphide bond that covalently links the SUN and KASH
domains. The cytoplasmic domains of KASH proteins anchored
in the ONM interact with microtubule motors or actin filaments
at the nuclear surface in order to move nuclei or to generate forces
at the NE (Starr and Fridolfsson, 2010; Sosa et al., 2012, 2013;
Tapley and Starr, 2013).

Plants encode up to five different SUN domain proteins that
can be categorized into two classes: the canonical C-terminal SUN
proteins SUN1 and SUN2 that are the structural homologs of
the animal and yeast SUN1 and SUN2 proteins, and that con-
tain a conserved domain layout with a NLS in the N-terminal
domain, a transmembrane domain, a coiled coil domain and
a highly conserved C-terminal SUN domain (Graumann et al.,
2010, 2013; Murphy et al., 2010; Oda and Fukuda, 2011); and
the plant prevalent mid-SUN3 proteins that contain three trans-
membrane domains, one at the N- and two at the C- terminus,
as well as a SUN domain in the middle of the protein, which is
followed by a highly conserved PAD (PM3-associated) domain of
unknown function and a coiled coil domain (Murphy et al., 2010;
Graumann et al., 2013). Unlike C-terminal SUNs, mid-SUN pro-
teins have not yet been physiologically investigated. AtSUN1 and
AtSUN2 are highly immobile intrinsic components of the NE, as
demonstrated by FRAP analysis (Graumann et al., 2010). More-
over, recent results indicate that they interact with NMCP proteins
(Graumann, 2014), suggesting an association with the lamina.
They also form homomers and heteromers in vivo through the
interaction of their coiled coil domains, as demonstrated by FRET
(Graumann et al., 2010), indicating that they may function as mul-
timer complexes. The predicted 3D structure of the SUN domain
of AtSUN1 revealed that the essential structures and amino acids
involved in KASH binding are conserved in relation to HsSUN2,
but not the residues dispensable for the SUN–KASH interaction

(Zhou and Meier, 2013). AtSUN1 and AtSUN2 are involved in reg-
ulating nuclear shape (Oda and Fukuda, 2011; Zhou et al., 2012),
anchoring protein complexes to the NE (Zhou et al., 2012), and
linking the nucleus to cytoskeleton (Tamura et al., 2013). Hence,
like their animal counterparts, plant SUN proteins appear to be
key components involved in different protein networks, including
the lamina, NE and nucleocytoplasmic bridging complexes.

Despite the conservation of SUN proteins, plants do not
contain homologs of the opisthokont KASH proteins, although
novel plant-specific SUN-interacting proteins were identified in
Arabidopsis, WIPs (tryptophan-proline-proline [WPP] domain
interacting proteins). WIPs are ONM anchored proteins with a
cytoplasmic coiled coil domain, a transmembrane domain and
a C-terminal tail in the perinuclear space, and they have a ter-
minal conserved VPT motif that is essential for the interaction
with SUN proteins (Zhou et al., 2012). Arabidopsis has three WIP
homologs AtWIP1, AtWIP2, and AtWIP3 that interact with SUN
proteins through the SUN domain. Accordingly, the SUN–WIP
bridge would be the plant counterpart of the SUN–KASH bridge
that forms the metazoan LINC complex. WIP proteins also redun-
dantly anchor the RanGAP (Ran GTPase activating protein) to the
NE through an interaction involving the N-terminal specific WPP
domain of RanGAP and the coiled coil domain of WIPs. In this
way, the SUN–WIP interaction provides a NE bridging complex
and the anchoring of RanGAP to this structure suggests additional
functions for these complexes (Figure 4; Zhou et al., 2012; Zhou
and Meier, 2013). The possibility that the SUN–WIP bridges could
connect with the cytoskeleton was recently enhanced with the dis-
covery of a new type of plant nucleocytoplasmic linker involved in
the regulation of nuclear shape and movement. This linker con-
sists of a plant-specific myosin motor (Myosin Xl-i) that binds
to both the actin filaments of the perinuclear cytoskeleton and
the ONM WIT (WPP domain interacting tail anchored) proteins,
with a similar domain organization to WIPs (Zhao et al., 2008),
and which in turn interacts with the SUN–WIP bridge (Figure 4;
Tamura et al., 2013).

Hence, NE bridging complexes connected to the lamina exist
in plants. In this regard, while the INM components of these
complexes are conserved in plants, the SUN proteins, their ONM
partners are plant-specific and share no similarity with the KASH
proteins. Thus, while the linkers of the nucleoskeleton to cytoskele-
ton (LINC) complexes are conserved in animals, they appear to
have partially diverged in plants. The reported plant LINC com-
plexes are involved in connecting the nucleus with actin filaments
through a myosin motor that interacts with a plant-specific ONM
protein, a mechanism that is unique to plants (Tamura et al.,
2013). They are also implicated in the control of nuclear shape
and movement in response to environmental stimuli, yet not in
light-induced nuclear movement (Tamura et al., 2013). Hence, dif-
ferent mechanisms driving nuclear movement apparently exist in
plants. As indicated above, plant LINC complexes also perform
other unique functions, such as the anchoring of RanGAP to the
ONM (Zhou et al., 2012).

PERSPECTIVES
Significant advances have been made in recent years in terms
of the structural characterization of the plant lamina (Fiserova
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FIGURE 4 | Proposed model of the nuclear lamina organization and

its main interacting partners in plants. The plant lamina is made
up of NMCP proteins and it is attached to the INM of the NE
through its interaction with INM proteins not yet identified. The
lamina is also attached to NPCs, probably through its interaction with
Nup136 and NUA. The factors involved in chromatin association to the
lamina in plants remain unknown. The lamina associates to
plant-specific nucleocytoplasmic linkers probably by interaction of
NMCPs with SUN proteins, which are currently divided into three
different types. The type A linker can be considered as a plant LINC
complex because it connects the lamina with the actin cytoskeleton.
The core organization of this complex is similar to that of type B
linkers. The linker element that interacts with the cytoskeleton is
myosin Xl-i, which binds to both the perinuclear actin filaments and

the WIT protein in the ONM, that in turn interacts with the
SUN–WIP bridge (Tamura et al., 2013). The type B linker is formed by
SUN proteins anchored to the INM that form a bridge with the WIPs
in the ONM, which may in turn complex with WIT proteins in some
cases. This type of complex is necessary for RanGAP to associate
with the NE (Zhou et al., 2012; Zhou and Meier, 2013). Recently a
model for the attachment of γ-TuCs (γ-tubulin complexes) to the NE
has been proposed (type C linker). In this complex, the interaction of
a small component, GIP (GCP3-interacting protein), with TSA1, an
ONM protein that contains a VIPt motif similar to the ϕ-VPT motif of
WIPs, would facilitate an interaction with SUNs (Batzenschlager et al.,
2013). Proteins in the different complexes are represented as
monomers for simplification. Non-proven interactions are indicated
by question marks.

et al., 2009), as well as in the identification of its major pro-
tein components, the NMCP proteins considered to be functional
analogs of metazoan lamins (Ciska and Moreno Díaz de la Espina,
2013). Nevertheless, considerable work is still needed, not only
to advance in the knowledge of the mechanisms of assembly of
NMCP proteins in the lamina and their functions but also, to
fully understand the complete protein composition of this struc-
ture, the interactions therein and the roles it fulfills. One of the
issues pending is the determination of the set of plant-specific
proteins that drive the association of the lamina with the INM,
NPCs, nucleocytoplasmic bridging complexes and chromatin, and
the molecular interactions responsible for the association of these
structures with NMCPs. The characterization of these proteins
would represent an important advance in our understanding of
the composition of the plant lamina and the protein interactions
therein.

The bridging complexes that connect the plant lamina with the
cytoskeleton are now beginning to be characterized. Their INM
components (SUN proteins) are conserved, while those associated
with the ONM are plant-specific (WIP proteins), evidence that
the eukaryotic LINC complexes have partially diverged (Zhou
et al., 2012; Zhou and Meier, 2013). The plant SUN–WIP core
complexes are involved in connecting the nucleoskeleton with the
actin cytoskeleton through a mechanism other than that involving
animal LINC complexes. This interaction involves a plant-specific
myosin motor that interacts with both actin filaments and a WIT
protein, the latter associating with the WIP core protein of the
complex (Tamura et al., 2013). The SUN–WIP complexes are also
involved in anchoring protein complexes to the NE, like RanGAP,
which fulfills plant-specific functions (Zhou et al., 2012). Apart

from the association of NMCPs and SUNs (Graumann, 2014) the
mechanisms that are responsible for stabilizing these complexes in
the lamina remain unknown. The γ-Tubulin complexes (γ-TuCs)
that nucleate MTs at the ONM are speculated to associate through
the interaction of the small protein components of these com-
plexes, GIPs (GCP3-interacting proteins). GIPs are required for
correct γ-TuC localization at the NE, partnering TSA1 (TonSoKu
[TSK]-associating protein 1), which has been proposed to inter-
act with SUNs in the perinuclear space through its VIPT motif
(Figure 4; Batzenschlager et al., 2013). Hence, the nucleocytoplas-
mic linker involved in the association of these complexes appears
to display a quite diverse composition.

Despite the advances in our understanding of the plant lam-
ina in the last few years, we still have very limited information
about this NE component, and there are still many questions to be
answered regarding the composition and functions of this struc-
ture. Which proteins link the NMCP-based lamina to the INM,
nucleocytoplasmic linkers and chromatin? How is the plant lam-
ina involved in chromatin tethering, organization and regulation?
What are the functional capacities of the plant lamina? The study of
the plant lamina is a field with great potential in plant nuclear biol-
ogy, which will shed light on the mechanisms regulating nuclear
shape and architecture, the connection of the nucleoskeleton to the
cytoskeleton, nuclear positioning and movement, chromosome
organization and positioning, gene expression, etc.
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