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Abstract

A very important issue in many applied fields is to construct the fitting curve that approximates
a given set of data points optimally in the sense of least-squares. This problem arises in a number
of areas, such as computer-aided design & manufacturing (CAD/CAM), virtual reality, medical
imaging, computer graphics, computer animation, and many others. This is also a hard problem,
because it is highly nonlinear, over-determined and typically involves a large number of unknown
variables. A critical step in this process is to obtain a suitable parameterization of the data points.
In this context, this paper introduces a new method to obtain an optimal solution for the parame-
terization problem of the least-squares fitting Bézier curve. Our method is based on a local search
metaheuristic approach for optimization problems called tabu search. The method is applied to
some simple yet illustrative examples for the cases of 2D and 3D curves. The proposed method is
simple to understand, easy to implement and can be applied to any kind of smooth data points. Our
experimental results show that the presented method performs very well, being able to fit the data
points with a high degree of accuracy.

1. Introduction

Fitting curves to data points is a very important issue in many applied fields such as computer-
aided design & manufacturing (CAD/CAM), virtual reality, medical imaging, computer animation,
and many others. Data can be either generated synthetically by direct application of a myriad
of CAD/CAM computer programs or acquired from real measurements of an existing geometric
entity, as it typically happens in the construction of car bodies, ship hulls, airplane fuselage and
other free-form objects [8, 10, 12, 25, 27, 38, 45]. This problem also appears in the shoes industry,
in archeology (reconstruction of archeological assets), in medicine (computer tomography) and in
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many other fields. In all those cases, it is desirable to obtain the fitting curve that approximates the
set of data points optimally in the sense of least-squares.

Owing to their remarkable mathematical properties, polynomial curves are usually applied to
tackle this issue. In particular, free-form parametric curves such as Bézier, B-spline and NURBS,
are widely applied in many industrial settings due to their great flexibility and the fact that they can
represent well any smooth shape with only a few parameters, thus leading to substantial savings in
terms of computer memory and storage capacity. Best approximation methods make commonly use
of least-squares techniques [11, 32, 33, 46]. In this paper we focus particularly in the case of Bézier
curves, where the goal is to obtain the control points of the optimal fitting curve in the least-squares
sense. This problem is far from being trivial; since the curve is parametric, we are confronted with
the problem of obtaining a suitable parameterization of the data points [7, 13]. In fact, the selection
of an appropriate parameterization is essential for a good fitting. Unfortunately, it is also a very
hard problem. It is well-known that it leads to a difficult over-determined nonlinear optimization
problem. It is also multivariate; in fact, it typically involves a large number of unknown variables
for a large number of data points, a case that happens very often in real-world examples.

The problem of Bézier curve parameterization has been the subject of research for many years
[4, 6, 37]. The usual goal is to obtain a parameterization as similar as possible to to the arc-length
parameterization. The ultimate reason for this is that a constant step on the parametric domain
automatically translates into a constant distance along an arc-length parameterized curve. In other
words, for constant parameter intervals, the curve exhibits a point spacing that is as uniform as pos-
sible. Therefore, this parameterization is very convenient for curve and surface interrogation issues
such as measuring distances on a surface. Further, since some industrial operations require an uni-
form parameterization, this property has several practical applications. For example, in computer
controlled milling operations, the curve path followed by the milling machine must be parameter-
ized such that the cutter neither speeds up nor slows down along the path [36]. This property is only
guaranteed when the curve is parameterized with the arc-length parameterization. Consequently,
this has been the most classical and most preferred choice for curve parameterization.

Some recent papers have shown that the application of Artificial Intelligence (AI) techniques can
achieve remarkable results regarding many parameterization problems [2, 35, 42]. Consequently, a
number of different methods, including metaheuristics such as Particle Swarm Optimization (PSO)
[1, 3, 16, 34, 41], Genetic Algorithms (GA) [19, 21, 23, 30], Harmony Search (HS) [39, 47],
Ant Colony Optimization (ACO) [43], Simulated Annealing (SA) [5], Bee Colony Optimization
(BCO) [29], Clonal Selection Algorithm (CSA) [20], and many others. Some of these methods
have been applied to the parameterization problem [8, 22, 24, 25, 27, 31]. Most of these methods
rely on some kind of neural networks, such as standard neural networks [22] and Kohonen’s SOM
(Self-Organizing Maps) nets [24]. The generalization to functional networks is also analyzed in
[8, 25, 26, 27, 28]. A previous paper in [9] describes the application of genetic algorithms and
functional networks yielding pretty good results. Other approaches are based on the application of
metaheuristic techniques, which have been intensively applied to solve difficult optimization prob-
lems that cannot be tackled through traditional optimization algorithms. Recent schemes in this area
are described in [10, 11, 13] for particle swarm optimization (PSO), [12, 40, 48] for genetic algo-
rithms (GA), [14, 44] for artificial immune systems, [49] for estimation of distribution algorithms,
and [15] for hybrid GA-PSO techniques.
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1.1. Aims and structure of the paper

This paper introduces a new method to obtain an optimal solution for the parameterization prob-
lem of the least-squares fitting Bézier curve. Our method is based on a local search metaheuristic
approach for optimization problems called tabu search. This metaheuristic approach is based on
two driving ideas: the first one is the use of memory structures to store previously visited solutions
which are not allowed to be re-visited again in order to prevent from stagnation and cycling. As
it will be described later on, these memory structures storing non allowed moves are called tabu
lists and play a central role in the method. The second main idea is that not only potential solutions
but also attributes can be effectively used to drive the search for the optima in the problem space.
When properly applied, the use of these attributes (or rules) provides a much improved procedure
to manipulate the potential solutions, leading to a general improvement of the searching.

The structure of this paper is as follows: the principles and fundamentals of the tabu search,
the metaheuristic used in this paper, are briefly explained in Section 2. Then, Section 3 describes
the proposed method in detail. As the reader will see, the method is simple to understand, easy to
implement and can be applied to any kind of smooth data points.To check the performance of our
approach, it has been applied to four simple yet illustrative examples for the cases of 2D and 3D
curves, as described in Section 4. Our experimental results show that the presented method performs
very well, being able to yield the best approximating curve with a high degree of accuracy. The
paper closes with the main conclusions of this contribution and our plans for future work in the
field.

2. Tabu Search

Tabu Searchis a metaheuristic technique originally developed by Fred W. Glover in 1986 to allow
local search methods to overcome local optima [17]. The method is intended for discrete spaces
although it can be adapted to continuous problems, as we will show later on. Typically, tabu search
uses a local or neighborhood search procedure to iteratively move from one potential solution,S,
(usually chosen randomly at the initial stage) to an improved solution,S∗, in the neighborhood of
S, denoted byN(S).

The basic principle of tabu search is to pursue local search whenever a local optimum is reached
by allowing non-improving moves. In order to prevent the algorithm to reach into previously visited
solutions (thus falling into a cycle), the method make use of memory structures, calledtabu lists,
whose aim is to record the recent history of the search. Basically, a tabu list is a set of banned
solutions used to filter the solutions that will be admitted. In its simplest form, a tabu list is a short-
term set of the solutions that have been visited in the recent past (by short-term we mean a lifespan
of the lastn iterations of the process, wheren is the number of previous solutions to be stored,
usually called thetabu tenure; see [18] for details).

The search process can also be enriched with additional rules to drive the search towards promis-
ing areas of the search space as well as to promote diversity, playing the role of intermediate and
long-term memories, respectively. From this point of view, tabu search can be seen as a clever com-
bination of local search procedures with temporal memory structures. Furthermore, this memory is
both explicit andattributive, meaning that not only explicit solutions but also rules and attributes
can be included into the tabu lists. Indeed, in order to improve the effectiveness of tabu search, the
tabu lists can contain attributes rather than (or, in addition to) solutions. However, this variant might
introduce a new problem: tabu lists based on attributes may prohibit attractive moves, even when
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there is no danger of cycling, or they may lead to an overall stagnation of the searching process.
Therefore, we need a procedure to revoke (cancel) tabus by allowing a move, even if it is tabu, when
it results in a solution whose objective value is better than that of the current best-known solution
according to a given measure, calledfitness. This process is driven by theaspiration criteria, where
each rule to overcome tabus behaves, in practice, as an aspiration criterion.

In general, for any specific target problem, there are many more possible (and even, attractive)
neighborhood structures than search space definitions. This follows from the fact that there may
be several plausible neighborhood structures for a given definition of the search space. In fact,
once long-term memory is embedded into the model, tabu search may be viewed as a dynamic
neighborhood method. This means that the neighborhood of any given solution is not a static set,
but rather a set that can change according to the history of the search.

Once all tabu rules, lists and attributes are determined, the tabu search algorithm is executed
until a termination criterion is satisfied. The most commonly used stopping criteria in tabu search
are: (1) after a fixed number of iterations (or a fixed amount of CPU time); (2) after some num-
ber of iterations without any improvement in the objective function value (the criterion used in
most implementations); or, (3) when the objective reaches a pre-specified threshold value, which is
problem-dependent and usually specified by the user.

3. Our method

We assume that the reader is familiar with the main concepts of free-form parametric curves [7].
A free-form parametric B́ezier curveC(t) of degreen is defined as:

C(t) =
n

∑

j=0

PjB
n
j (t) (1)

wherePj are vector coefficients (usually referred to as thecontrol points), Bn
j (t) are theBernstein

polynomials of indexj and degreen, given by:

Bn
j (t) =

(

n

j

)

tj (1 − t)n−j

andt is thecurve parameter, defined on a finite interval[0, 1]. Note that in this paper vectors are
denoted in bold. By convention,0! = 1.

Let us suppose now that we are given a set of data points{Qi}i=1,...,m in R
d (usuallyd = 2

or d = 3). Our goal is to obtain the free-form parametric Bézier curveC(t) that fits the data
points better in the discrete least-squares sense. To do so, we have to compute the control pointsPj

(j = 0, ..., n) of the approximating curveC(t) by minimizing the least-squares error,E, defined as
the sum of squares of the residuals:

E =
m

∑

i=1



Qi −
n

∑

j=0

PjB
n
j (ti)





2

(2)

where we need a parameter valueti to be associated with each data pointQi, i = 1, . . . ,m.
Considering the column vectorsBj = (Bn

j (t1), . . . , B
n
j (tm))T , j = 0, . . . , n, where(.)T means

transposition, and̄Q = (Q1, . . . ,Qm), Eq. (2) becomes the following system of equations (called
thenormal equation):
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





BT
0 .B0 . . . BT

n .B0

...
...

...
BT

0 .Bn . . . BT
n .Bn













P0

...
Pn






=







Q̄.B0

...
Q̄.Bn






(3)

which can be compacted as:
M.P = R (4)

with M =





m
∑

j=1

Bl(tj)Bi(tj)



 andR =





m
∑

j=1

QjBl(tj)



 for i, l = 0, . . . , n.

Due to the fact that the blending functionsBn
j (t) are nonlinear int, the least-squares minimiza-

tion of the errors is a strongly nonlinear problem, with a high number of unknowns for large sets
of data points, a case that happens very often in practice. On the other hand, if values are assigned
to theti, the problem becomes a classical linear least-squares minimization, with the coefficients
{Qi} as unknowns. Therefore, it is clear that solving the parameterization problem is the key to
obtain an optimal fitting Bézier curve of data.

Our strategy for solving such a problem consists of applying the taboo search algorithm to de-
termine suitable parameter values for the least-squares minimization of functionalE according to
(2). In this paper we consider a tabu listL comprised of a fixed numberN of banned solutions,
N being a parameter of the method. The potential solutions are a collection of parametric vectors
{Tj}j=1,...,N , where eachTj = (tj

1
, t

j
2
, . . . , t

j
m) ∈ [0, 1]m and the{tji}i are strictly increasing pa-

rameters. These parametric vectors are sorted according to the functionalE and the bestd solutions
are selected for the tabu listL. Then, the best current solution undergoes further transformations,
according to the following rule: a random integeri ∈ {1, . . . ,m} is chosen; then, itsi-th compo-
nent is transformed ast∗i = rand(ti−1, ti+1), whererand represents a uniform random variable in
the given interval. This operation is repeatedp times, wherep is also a parameter of the method.
The resultingT∗

j are then inserted into the list of potential solutions, which are subsequently ranked
according toE, and the tabu list is updated accordingly. The process is performed iteratively for a
given number of iterations, until the convergence of the minimization of the error is achieved.

4. Experimental results

This section discusses the performance of our tabu search-based method for Bézier curve pa-
rameterization through four simple yet illustrative examples, corresponding to the cases of bi- and
three-dimensional curves. These examples have been carefully chosen to reflect the variety of sit-
uations our method can be applied to. Many other examples have also been tested with excellent
results in all cases. They are not reported here because of limitations of space.

4.1. Two-dimensional examples

Figures 1 and 2 show two examples corresponding to two-dimensional curves: the epicycloid
and the spiral hyperbolic tangent, respectively. As the reader can see, both have challenging fea-
tures: the epicycloid curve has several non-differentiable turning points, while the spiral hyperbolic
tangent curve exhibits several changes of concavity. In our figures, the original data points are dis-
played as red emptied circles whereas the reconstructed points appear as blue plus symbols. The
number of data points for these two examples ism = 200 andm = 300, respectively. The fol-
lowing values for the parameters of the tabu search method have been used:N = 50, d = 50, and
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Figure 1. Applying the tabu search algorithm to a 2D B ézier curve parameterization:
original (red emptied circles) and reconstructed (blue + symbols) data points for the
epicycloid curve.

p = 30. An initial population of100 randomly chosen solutions is considered; then, the method
is executed for50 iterations. Note the excellent matching between the original and the recon-
structed data points. In fact, we got a RMSE fitting error of4.3 × 10−6 for the epicycloid curve
and1.21 × 10−5 for the spiral hyperbolic tangent, indicating that the reconstructed Bézier curve
fits the data points with extremely high accuracy. We also computed the absolute mean value of the
difference between the original and the reconstructed data points for each coordinate, and obtained
excellent results:(3.42 × 10−6, 4.78 × 10−6) (left) and(0.98 × 10−5, 1.32 × 10−6).

4.2. Three-dimensional examples

Figures 3 and 4 show two examples corresponding to three-dimensional curves: the Viviani
curve and the conic helix curve, respectively. We applied our method to these curves for the same
parameter values withm = 100 andm = 500 data points, respectively. Once again, we obtained
very good results, with a RMSE fitting error of3.98 × 10−5 for the Viviani curve and4.76 × 10−5

for the the conic helix curve, respectively. Note the excellent matching between the original and the
fitted data points, which is clearly visible in all our figures.

4.3. Computational issues

All computations in this paper have been performed on a 2.9 GHz. Intel Core i7 processor with 8
GB. of RAM. The source code has been implemented by the authors in the native programming lan-
guage of the popular scientific programMatlab, version 2010b. Regarding the computation times,
all examples we tested can be obtained in less than a second (excluding rendering). Obviously,
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Figure 2. Applying the tabu search algorithm to a 2D B ézier curve parameterization:
original (red emptied circles) and reconstructed (blue + symbols) data points for the
spiral hyperbolic tangent curve.

the CPU time depends on several factors, such as the number of data points and the values of the
different parameters of the method, making it hard to determine how long does it take for a given
example to be reconstructed.

5. Conclusions and future work

This paper presents a tabu search-based method for Bézier curve parameterization. Given a set
of data points, the method computes a suitable parameterization of data points in order to obtain the
Bézier curve that fits the data points better in the least-squares sense. This problem is far from being
trivial as soon as no parameterization of data points is assumeda priori. Furthermore, data points
are subjected to noise in their parametric values (this fact is clearly noticeable from the simple
visual inspection of the uneven distribution of data in all our figures), meaning that the uniform
parameterization is by no means a feasible solution; instead, a proper non-trivial parameterization
is actually required. The method is applied to some simple yet illustrative examples for the cases
of 2D and 3D curves. Our experimental results show that the presented method performs very well,
being able to fit the data points with a high degree of accuracy.

Future work includes the extension of this method to other families of parametric curves, such
as the B-splines and NURBS, where the existence of additional parameters (such as knots and
weights) can modify our procedure significantly. We are also working towards the applicability of
this approach in several industrial problems.
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original (red emptied circles) and reconstructed (blue + symbols) data points for the
Viviani curve.

sity, the University of Cantabria, and the Instituto de Fı́sica de Cantabria, a mixed research center
of the University of Cantabria and CSIC-Consejo Superior de Investigaciones Cientı́ficas.

References

[1] Abdel-Kader, R.F.: An Improved Discrete PSO with GA Operators for Efficient QoS-Multicast Rout-
ing. International Journal of Hybrid Information Technology, 4 (2), (2011) 23-38.

[2] Baguda, Y.S., Fisal, N., Rashid, R.A., Yusof, S.K., Syed, S.H., Shuaibu, D.S.: Biologically-Inspired
Optimal Video Streaming over Unpredictable Wireless Channel.International Journal of Future Gen-
eration Communication and Networking, 5(1), (2012) 15-28.

[3] El Bakrawy, L.M., Ghali, N.I., Kim, T.H., Hassanien, A.E.: A Block-wise-based Fragile Watermark-
ing Hybrid Approach using Rough Sets and Exponential Particle Swarm Optimization.International
Journal of Future Generation Communication and Networking, 4(4), (2011) 77-88.

[4] Barnhill, R.E.:Geometric Processing for Design and Manufacturing. SIAM, Philadelphia (1992)

[5] Benaddy, M., Wakrim, M.: Simulated Annealing Neural Network for Software Failure Prediction.
International Journal of Software Engineering and Its Applications, 6(4), (2012) 35-46.

8

International Journal of Software Engineering and Its Applications 
Vol.7, No.5 (2013) 

290 Copyright ⓒ 2013 SERSC



−1 −0.5 0 0.5 1
−1

0

1

0

5

10

15

20

25

30

35

Figure 4. Applying the tabu search algorithm to a 3D B ézier curve parameterization:
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