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Surface tethered single-stranded DNA films are relevant biorecognition layers for 

oligonucleotide sequence identification. Also, hydration induced effects on these films 

have proven useful for the nanomechanical detection of DNA hybridization. Here, we 

apply nanomechanical sensors and atomic force microscopy to characterize in air and 

upon varying relative humidity conditions the swelling and deswelling of grafted single 

stranded and double stranded DNA films. The combination of these techniques 

validates a two-step hybridization process, where complementary strands first bind to 

the surface tethered single stranded DNA probes and then slowly proceed to a fully 

zipped configuration. Our results also demonstrate that, despite the slow hybridization 

kinetics observed for grafted DNA onto microcantilever surfaces, ex-situ sequence 

identification does not require hybridization times typically longer than 1 hour, while 

quantification is a major challenge. 
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Introduction 

A variety of nucleic acid biosensors, such as electrochemical, nanomechanical or 

optical biosensors, rely on single stranded DNA self-assembled monolayers on 

inorganic surfaces.1,2 In depth knowledge about the conformations of such self-

assembled monolayers (SAMs) is crucial to understand and control the performance of 

any surface based nucleic acid sensor. Particularly, the intriguing mechanical 

properties of these films on microcantilevers have been harnessed to develop label-

free nanomechanical sensors for DNA detection.2 The changes in surface stress 

induced by the hybridization of probe-target strands have been followed in buffer 

solutions to detect the hybridization in real time and with sufficiently high sensitivity as 

to avoid the need of pre-amplification steps in complex samples, such as cell lysate.3,4 

Hydration driven structural changes in DNA have recently gained further attention for 

the generation of responsive biomaterials.5,6 We have also previously demonstrated ex-

situ hybridization detection in air after incubation with the sample solutions by 

harnessing the hydration-induced tension in nucleic acid films7 or water desorption.8 

Surface stress biosensors have proven high sensitivity that adds to the advantages of a 

label-free technology. However, their application to clinical diagnosis will also demand 

for a method capable of providing hundreds of measurements in a short time, as well 

as manageable preparation steps for the microcantilever sensors that can still provide 

reproducible mechanical patterns.9,10 All the above reasons highlight the need to 

pursue in depth understanding of the hybridization process and of the conformations of 

the DNA layers.  

The experimental work carried out during the last decade on DNA SAMs on 

microcantilever surfaces has revealed that the mechanical signatures of SAMs of 

single and double stranded DNA (ssDNA and dsDNA) strongly depend on the 

immobilization protocols used,11,12 the gold nanostructure13,14 and even the electrostatic 
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forces during immobilization.15,16 Recent theoretical and experimental work has 

highlighted the fact that even slightly different experimental conditions, such as ionic 

strength, temperature or pH variations during immobilization, may lead to largely 

divergent mechanical effects.17,18 The final strand density in self-assembled 

monolayers plays a critical role in nanomechanical sensing9 and it is indeed far from 

being fully controllable.19,20-23 One singularly limiting difficulty has been to accomplish 

the anchoring of the ssDNA probes with a well-defined uniform density and a standing 

up conformation.19, 24 For such purpose, sophisticated nanografting methods need to be 

applied.25,26 Alternatively, the gold layer needs to comply with very restrictive conditions 

regarding surface roughness13 and surface electrostatics,16 while long incubation times 

are also applied,24 which bans the use of technologies for high multiplexing, such as 

ink-jet low volume dispensing.3,10  

In this work we study the effect of relative humidity (RH) changes in ssDNA and 

dsDNA SAMs on gold. Non-ideal DNA SAMs, as those obtained by ink-jet deposition 

and resulting in a coiled/lying down conformation of the DNA strands are used here. 

We demonstrate they provide predictable static nanomechanical responses and serve 

as an efficient bioreceptor layer for nanomechanical sensing. We also follow the 

dsDNA conformations with RH for two different hybridization times and two target 

concentrations. 

Results and discussion 

We show here a comprehensive study of the mechanical response of ssDNA 

monolayers on microcantilevers, as well as those after incubation with their 

complementary sequences at two different hybridization times and for two target 

concentrations. For this study we have translated hybridization protocols optimized for 

well-established fluorescence based molecular biology technologies to the 

nanomechanical sensing field. The aim is to improve the specificity of the 
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nanomechanical assays for nucleic acid detection. Thus, we have chosen 

PerfectHybTM Plus from Sigma-Aldrich, which is a hybridization buffer optimized to yield 

maximum signal with minimum background. We have also performed the incubation at 

30 ºC, closer to the melting temperature of the hybrids, to avoid cross-hybridization. 

We have found that for the commercial gold coated microcantilevers and for the buffer 

solutions and functionalization protocols used in this study (see experimental section), 

the ssDNA strands are always found in a lying down/coiled conformation when the 

surfaces are removed from solution to air environment. This is derived from the 

average 2 nm height of the monolayers measured by AFM. The methodology for the 

monolayer height characterization is described in detail in Supplementary Materials 

section S5. Figure 1 shows the surface stress variation with relative humidity (RH) for 

40 microcantilevers functionalized with ssDNA, using the sequence referred to as 

Oligo1 (see table 1 in the experimental section for details). Five sensor chips with eight 

microcantilevers per chip were independently functionalized in TE – 1M NaCl, as 

detailed in the experimental section. Clearly, the ssDNA monolayers show highly 

reproducible surface stress hydration/dehydration patterns. We have also corroborated 

the high repeatability of the surface stress measurements by measuring eight 

cantilevers from one functionalized chip after each of 5 consecutive rinsing steps with 

their corresponding removal and re-alignment of the chip in the optical set-up (curves 

shown in Supplementary Materials FigureS1).   
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Figure 1 a) Sketch of the swelling and deswelling of surface tethered ssDNA strands on the 

microcantilever surface. b) Surface stress variation of ssDNA functionalized microcantilevers 

(sequence Oligo1). The shadowed area represents the standard deviation of the surface stress 

curves measured in 40 microcantilevers from five independently functionalized chips. 

The good reproducibility of the surface stress hydration/dehydration patterns 

highlights the relevance of evaluating if the coiled conformation, commonly considered 

as non-ideal for nanomechanical detection, may serve as a reliable bioreceptor layer 

for label-free DNA sequence identification. We have studied the surface stress 

hydration/dehydration patterns of microcantilevers functionalized with three different 

sequences Oligo1, Oligo2 and ControlOligo3 (used as negative control), and those 

after hybridization, as described in the experimental section.  

We study first the surface stress variation of the ssDNA probe layer with varying 

relative humidity (see figure 1b). The probe layer of ssDNA shows an increase in the 

compressive stress with increasing relative humidity from 0% to 70% that we attribute 

to the swelling of the polyelectrolyte layer. Since water acts as a solvent for the 

polyelectrolyte DNA, as RH rises, the persistence length decreases and ssDNA chains 
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explore a wider conformational space.18 Hence, the entropy penalty needs to be 

balanced by a larger bending at increasing relative humidity,11 as recorded by our read-

out instrument.  When relative humidity is decreased from 70% back to 0% the 

monolayer shrinks, showing a decrease of the compressive stress until a low humidity 

around 2 - 3 % when a peak related to tensile stress in the monolayer arises. Thus, in 

this dehydration curve, the ssDNA monolayer shrinks the most at the RH range 2 - 3 

%, while it adopts again a more extended conformation at 0% RH. We attribute this 

peak to the dominancy of hydration forces over conformational entropy.17,27,28 Rabin et 

al.18 explain this tensile stress peak by a model that considers that at low water vapor 

concentrations (below 2%) the adsorption of water is accompanied by enhanced 

expulsion of vacancies, and thus, compression of the monolayer. We must note that 

the tensile peak appears here (for initially coiled strands in air) in the dehydration curve 

and not in the hydration curve from 0% to higher relative humidity, as it is the case 

studied in the Rabin model and observed experimentally for high density monolayers in 

a standing up configuration (see Supplementary Materials). These features reveal the 

complex force landscape involved in the ssDNA swelling and deswelling process. We 

would also like to point out the fact that equilibrium is not reached during the process, 

given the rate of change of relative humidity (10.00 ± 0.08 % min-1) and the slow 

kinetics for conformational changes in the ssDNA SAM, that may extend for hours.18,29 

Thus, we believe that the dominant contribution being that of conformational entropy or 

hydration forces in the swelling and deswelling dynamics of the ssDNA polyelectrolyte 

largely depends on the initial density and conformation of the monolayer measured.28,30 

Based on reference XPS measurements we estimate a surface coverage in the range 

of 2.5 - 3.5 x 1013 molecules/cm2 in the present experiments, where the AFM 

characterization of the surfaces clearly shows a laying down conformation of the 

ssDNA. Also, we have found that the surface stress curves do not significantly differ for 

the two sequences studied, despite the difference in length (four bases) and base 
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composition. We speculate that small variations in the surface density may hinder the 

expected increase in the surface stress variation for longer ssDNA chains.11 We do not 

consider the effect of electrostatic interactions in this study, as previous work with 

uncharged PNA molecules did not show remarkable differences in the surface stress 

response with relative humidity of this uncharged DNA mimic.7  

The surface stress variation of ssDNA films as a function of the RH, shown in figure 

1, reveals distinct hydration/dehydration features after incubation with the target 

solution depending on the hybridization conditions. For the sake of simplicity, we will 

focus from this point onwards only on the swelling curve to study the behavior of the 

oligonucleotide monolayer after incubation with a target solution.  

After incubation of the microcantilevers functionalized with sequence ControlOligo3 

(used as negative control), in the solution having no complementary strands to this 

probe sequence, we do not observe any changes in the surface stress pattern of the 

monolayer, as measured by the microcantilever bending variations with RH. See figure 

2a and 2b. Note that we have performed an accurate calibration of the surface stress, 

as described in the Supplementary Materials. We label this unchanged surface stress 

pattern as A.  

After incubation of the microcantilevers functionalized with the probe sequence 

Oligo1 in the solution containing complementary sequences ComplOligo1 at a 

concentration of 300 nM, we observe two distinct patterns depending on the 

hybridization time. We see an increase in the surface stress variation upon hydration 

when incubation time is limited to one hour (figure 2c). We label this stress pattern as 

B. We hypothesize that the hybridization has only partially occurred in most of the 

strands involved. It is well known that the complementary strand association during 

hybridization on surfaces proceeds through a complex set of intermediate steps and 

that surface tethering slows down hybridization kinetics up to three orders of 

magnitude.31,32 Recent theoretical work has advanced our knowledge about the 
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complex processes occurring during DNA duplex formation on surfaces. Medalion et al. 

hypothesize that the kinetic effects of oligonucleotide hybridization on grafted surfaces 

might result from hindered diffusion of target DNA into networks formed by cross-

hybridization.33 This might as well explain the known lower hybridization efficiency, but 

higher stability, of the duplex for surface tethered oligonucleotides.31, 34, 35 Thus, the 

added strands, in a non-zipped configuration, imply a larger configurational entropy 

penalty, as the non-zipped strands have short persistence length and the increased 

number of molecules in the same surface area implies a larger surface stress upon the 

ssDNA polyelectrolyte swelling. Molecular dynamics simulations of DNA hybridization 

on surfaces have also shown that the cited non-zipped intermediate states occur during 

the hybridization process.36-38  

When the incubation with the complementary strands is performed overnight, we find 

that surface stress variation with increasing humidity (swelling curve) is largely reduced 

compared to ssDNA stress pattern. (See pattern C in figure 2d). Double stranded DNA 

has a much higher persistence length than single stranded DNA (in solution, LpdsDNA   

50nm, LpssDNA   0.75nm).11 Given this and the short length of the oligonucleotides under 

study, a minimum swelling is expected for dsDNA when RH rises from 0 to 70% and 

thus, we expect a reduced cantilever bending variation when most of the strands on the 

SAM have fully hybridized. We have repeatedly found this behavior for probe sequence 

Oligo1 after overnight (O/N) incubation with samples containing ComplOligo1 at 300 

nM. Surprisingly, most of the chips functionalized with sequence Oligo2 show pattern B 

instead, even for overnight incubation in 300 nM of complementary strand 

ComplOligo2. See figure 2f. We hypothesize this arises due to slower hybridization 

kinetics for sequence Oligo2. Hybridization kinetics on surfaces depend on multiple 

factors, such as probe length, base composition,20,39,40 or competition effects.41 Even 

sequences designed to have similar melting temperatures may have hybridization rate 

constants that may vary by an order of magnitude when probes are immobilized on 
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surfaces31 and multiple target strands are involved in the hybridization process.41 In 

addition to the kinetics variations due to probe length or sequence composition, we 

cannot disregard here other sources for slight variations in the hybridization kinetics, as 

the cited variations in the grafting density28 or sequence dependent interstrand cross-

linking.33 

This has important implications when target sequences are used for the 

quantification of expression levels, regardless the methodology used, as unless 

equilibrium is reached at very long incubation times, or the hybridization rates for each 

used sequence are well known, quantification devises impossible. We find the 

methodology presented here shares the cited challenges with the fluorescent 

microarrays,34 as we will discuss later on.  

In order to test the consistency of our assumptions, we have studied the response of 

both Oligo1 and Oligo2 functionalized cantilevers after O/N incubation but with a lower 

concentration of target to slow down the hybridization. We have consistently found 

pattern B for both sequences Oligo1 and Oligo2 for a target concentration of 30 nM 

(see Supplementary Materials S4). 

The surface stress measurements have been complemented by AFM 

characterization of the biolayers at 0% RH, after hydration to 37% RH and after drying 

the surface back to 0% RH. Gold coated silicon surfaces for AFM characterization were 

prepared in parallel to the microcantilevers, as described in the experimental section. 

AFM characterization of the SAMs of ssDNA indicates they swell when relative 

humidity is increased in air from 0% to 37%, with an increase in the measured height 

by AFM of 0.230 nm ± 0.035 nm. The layer shrinks and the height goes back to the 

initial 2.051 ± 0.025 nm value when the environment is dried again to 0% RH. 

Consistently with the surface stress measurements showing pattern A, the height 

variation remains the same after overnight incubation of the surfaces immobilized with 
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sequence ControlOligo3 (negative control) in the sample containing non-

complementary strands. The initial behavior of the ssDNA layer changes when the 

ssDNA SAM is incubated with solutions containing fully complementary sequences at 

300 nM concentration. We again observe two different behaviors depending on the 

incubation time and on the immobilized sequence. The height increases (monolayer 

swelling) the most for samples prepared in parallel to those showing surface stress 

pattern B. Samples immobilized with Oligo1 and incubated for 1 hour with ComplOligo1 

and those immobilized with Oligo2 at both hybridization times, give an average height 

variation of 0.290 ± 0.014 nm. Consistently with the surface stress measurements, the 

height measured by AFM remains constant with RH variations for samples prepared in 

parallel to those giving surface stress pattern C. This is, Oligo1 functionalized 

cantilevers after overnight hybridization at 300 nM give and average height variation 

within the measurement error, of 0.035 ± 0.035 nm. We interpret that most of the 

strands on the surface have adopted a fully zipped conformation. The increased rigidity 

and larger persistence length of the fully zipped dsDNA implies a lower extension of the 

dsDNA strands when humidity increases from 0% to larger relative humidity, and thus, 

a negligible variation in AFM height.  
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Figure 2. Distinct surface stress hydration/dehydration patterns found after hybridization of the 

functionalized microcantilevers in different incubation conditions. a) Representative surface 

stress curve for changing relative humidity of the ssDNA functionalized cantilever (sequence 

ControlOligo3) before (black dotted line) and after (orange solid line) incubation for 1 hour with 

the sample solution containing no complementary sequences to the surface probe. We label 

this surface stress pattern as A. b) Same as a) but for overnight (O/N) incubation. c) Surface 

stress curve for changing relative humidity before (black dotted line) and after (red solid line) 

incubation for one hour of the cantilever functionalized with Oligo1 sequence with the sample 

solution containing complementary strands to the surface probe at a concentration of 300 nM. 

We find that the surface stress variation with increasing relative humidity increases after 

hybridization. We label this surface stress pattern as B. d) Same as c) for overnight incubation. 

We find that the surface stress variation with increasing RH flattens after hybridization. We label 

this surface stress pattern as C. e) Surface stress curve for changing relative humidity before 
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(black dotted line) and after (red solid line) incubation for one hour of the cantilever 

functionalized with Oligo2 sequence with the sample solution containing complementary strands 

to the surface probe at a concentration of 300 nM. f) Same as d) for overnight incubation. 

Microcantilevers functionalized with sequence Oligo2 show pattern B after O/N incubation, 

indicating hybridization kinetics is sequence dependent. The depictions shown on the insets 

illustrate our hypothesis about the conformational changes giving rise to each surface stress 

pattern.  

Based on the previous study of the different surface stress patterns after 

hybridization, we arbitrarily define our sensor response signal, ΔS as the absolute 

value of the difference in surface stress at 30% RH for the swelling curve, before and 

after incubation with the target sample solution, ΔSI30%,ssDNA 30%,dsDNAI, (see ΔS 

in figure 2).  We have intentionally chosen the absolute value of the signal to account 

for both the typical response for short incubation times (pattern B), as well as pattern C 

for the fully hybridized films. The inclusion of pattern B as a positive detection signal is 

relevant, as a fast response time for a biosensor is key for its application in diagnosis.  

In order to investigate if ΔS can be used as a reliable sensor signal for sequence 

specific detection, we have studied 24 chips (192 microcantilevers) in diverse 

conditions (See Experimental Section). We present the results for the 177 measured 

microcantilevers in figure S7 in Supplementary Materials, as 15 cantilevers broke 

during the experiments. Each experiment comprises three different sequences 

immobilized in three chips with eight cantilevers each. The three chips, two 

measurement chips and one control for each experiment, were incubated for 1 h or 

overnight (O/N) at 30 ºC in aliquots of the same sample solution containing fully 

complementary strands to sequences Oligo1 and Oligo2 (ComplOligo1 and 

ComplOligo2), and a competing unrelated strand (InterferingSeq). See Table 1 in 

Experimental Section for base composition of each sequence. The concentrations used 
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are 30 nM and 300 nM, as indicated in figure 3. We depict the average value and 

standard deviation of the sensor response signal ΔS for the conditions under study. We 

also show the average value and standard deviation of ΔS for the 64 control 

microcantilevers used. By defining a threshold value for the signal ΔS as the mean 

value of the control plus twice the standard deviation, sensitivity is of 0.95 and 

specificity of 0.98, defined as the rate of true positives in the assay and true negatives 

in the controls, respectively; demonstrating the suitability of the methodology for 

oligonucleotide sequence identification.  

 

Figure 3. Mean and standard deviation of the sensor signal, ΔS, defined as the 

absolute value of the surface stress difference at 30% RH before and after 

hybridization, ΔSI30%,ssDNA30%,dsDNAI, measured in 177 microcantilevers 

functionalized with sequences Oligo1 (blue columns), Oligo2 (green columns) and 

ControlOligo3 (orange columns). Hybridization experiments were performed for two 
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different incubation times (1 hour and overnight) and for two target concentrations (30 

nM and 300 nM).  

However, our results also point out that the signal ΔS is very sensitive to the 

experimental conditions discussed above, as seen by the differences in its average 

value and standard deviation for the experiments performed. Also, ΔS shows large 

deviations not only among the two different sequences, but also in experiments 

performed with the same sequence and in identical incubation conditions (see error 

bars in green column for Oligo2 at 300nM and 24 h incubation time in figure 3). Thus, 

quantification of the concentration of complementary strands in the solution is not 

possible with the present methodology. Quantification will require a better control of the 

immobilization and hybridization conditions, even if a chip is used as a control 

reference. Other methodologies based on surface grafted DNA, such as fluorescent 

microarrays, have shown variations of up to 20% in the measurement of expression 

levels, even when they were performed by the same user, equipment and in the same 

conditions.34 

Previous theoretical works reveal that small amounts of disorder in the DNA 

monolayer can affect cantilever deflection.28,42-44 Moreover, Kosaka et al.19, proved the 

heterogeneity of highly packed DNA monolayers on gold obtained by self-

assembly. We speculate that the observed variations in the value of ΔS from sample to 

sample, for the same sequence and incubation conditions, could arise due to slight 

probe density differences or inhomogeneities. These differences may arise from 

uncontrolled variations in the amount of disulfide groups formed within the thiolated 

DNA aliquots, that may arise due to several reasons: firstly, thiol groups oxidize over 

time, even when keeping thiolated DNA aliquots freezed; secondly, since buffer 

degassing is done at room temperature (note that the concentration of dissolved gas in 

water is temperature dependent), it is difficult to have a strict control of the dissolved 
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oxygen removal in the immobilization buffer; and, finally, oxygen dissolves again in the 

buffer during overnight probe immobilization in agitation. We have previously 

demonstrated the effect of thiol or disulfide attachment over the strand density and 

surface stress on microcantilevers, and demonstrated that thiol grafting produces a 

larger surface stress, related to higher strand densities, while disulfides produce less 

dense monolayers and lower surface stress upon grafting.45      

Conclusions 

We have found that hybridization kinetics and their dependency on base composition 

play a relevant role in the sequence identification through ex-situ nanomechanical 

detection. For the DNA monolayers studied, that are far from a standing up brush 

configuration, different conformations are found for the hybridized layers that arise due 

to a slow hybridization mechanism on surfaces, in which multiple nucleation events are 

involved, followed by definitive helix zipping up. This work reveals that these 

hybridization phases lead to significant qualitative differences on the sensor 

nanomechanics. The gained knowledge about the grafted monolayers has allowed 

DNA sequence identification in less stringent conditions for the functionalized 

microcantilevers. We demonstrate identification of DNA strands for short incubation 

times (1 h) and concentrations as low as 30 nM. However, quantification of the target 

DNA concentration is challenging for this ex-situ label-free methodology. We expect the 

observed variability in the sensing signal value might as well be managed by a better 

control of the initial gold surface, improved buffer degassing to avoid thiol oxidation, 

tailored blocking steps capable of better tuning the initial conformation of the SAM layer 

with high reproducibility or the use of alternative chemistries, such as silanization. 

Accurate knowledge of the hybridization rates for different probe sequences would also 

allow quantification by background substraction or corrections similar to those 

performed in fluorescent based microarrays.46  
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In our experiments with 177 microcantilevers, we found 1 false positive out of 64 

negative controls and 6 false negatives out of 113 positive samples, which proves ex-

situ nanomechanical detection as a promising method for high throughput and large 

multiplexing oligonucleotide sequence identification by hybridization.   
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Experimental Section 

DNA sequences: All thiol modified single stranded DNA and the complementary/non 

complementary strands (table 1) were purchased from Stab Vida (Caparica, Portugal).  

 

Strand name Type of sequence Strand Sequence 

Oligo1 Probe 5´-CAATGCAGATACACTTTTTT-C3H6-SH-3´ 

Oligo2 Probe 5´-GTCGGACTCAAGCTATCACTTTTT-C3H6-SH-3´ 

ControlOligo3 Negative control 5´-GACCACCACAAGCTAACACTTTTT-C3H6-SH-3´ 

ComplOligo1 Target 5´-AGTGTATCTGCATTG-3´ 

ComplOligo2 Target 5´-GTGATAGCTTGAGTCCGAC-3´ 

InterferingSeq Unrelated sequence 5´-GACACTGACATGCCA-3´ 

 

 

The thiolated sequences have a tail of 5 thymines between the C3H6 spacer and the 

sequence of interest in order to keep the hybridization bases away from the gold 

surface, due to the low affinity for gold of thymine. A higher hybridization efficiency is 

expected for this configuration.47  

Reagents: toluene, methanol, tris-ethylenediaminetetraacetic acid (Tris-EDTA), sodium 

chloride (NaCl), 20x saline sodium citrate (SSC), hydrochloric acid (HCl), 10% sodium 

Table 1. DNA sequences 
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dodecyl sulfate (SDS), commercial 2x prehybridization solution, commercial 

hybridization buffer PerfectHybTM Plus Hybridization Buffer, NaBH4 and ethanol were 

purchased from Sigma Aldrich (St. Louis, USA). Sulfuric acid (H2SO4) and hydrogen 

peroxide (H2O2) were also used and were obtained from Panreac (Barcelona, Spain). 

Buffers and solutions: All buffers were prepared using molecular biology grade water. 

The immobilization buffer consisted on 1x Tris-EDTA (which consists in 10 mM Tris-

HCl and 1 mM disodium EDTA) with NaCl 1 M and pH 7.5. In order to remove the 

dissolved oxygen, and thus minimize thiol oxidation, the buffer was degassed by 

simultaneous sonication and bubble extraction with a vacuum pump for 20 min. 

Thiolated DNA aliquots were prepared with the degassed 1x TE-NaCl 1 M buffer. Low 

and high stringency wash buffers contained 0.1% SDS and 2X SSC and 0.5X SSC, 

respectively.  1x SSC buffer was prepared by diluting 20x SSC in water.  

Surface functionalization: Arrays of eight silicon microcantilevers with 20 nm gold 

coating were purchased from Concentris (Basel, Switzerland). The cantilevers are 500 

µm long, 100 µm wide and 1 µm thick. Prior to use, cantilever arrays were deeply 

cleaned by two consecutive procedures that remove organic contaminants. They were 

immersed in toluene, methanol and deionized water; dried under a stream of dry 

nitrogen and irradiated in a UV-Ozone cleaner for 1 hour. Then, the corresponding 

thiolated DNA was diluted in the immobilization buffer to a final concentration of 5 µM. 

The cantilever arrays were incubated in each DNA solution overnight at 25 ºC. 

Afterwards, the arrays were cleaned with low and high stringency hybridization wash 

buffers to wash out the physisorbed DNA away from the micro cantilever surface and 

finally rinsed with plenty of Milli-Q water. Cleansing steps were carried out at 25 ºC as 

well. 

Equivalent gold coated silicon surfaces were used for the AFM experiments. Samples 

were cut in 5 mm2 squares from a silicon wafer. The squares were cleaned in piranha 
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solution (piranha solution is highly corrosive and must be handled with extreme 

caution), extensively rinsed with water and dried under nitrogen. Silicon pieces were 

coated by e-beam evaporation with a 20 nm gold layer on top of a 2 nm adhesion layer 

of chromium at a deposition rate of 0.02 nm s-1. The gold coated squares were cleaned 

as described before for the gold coated microcantilevers and the protocol followed for 

the gold surface functionalization was the same as the one used for the microcantilever 

arrays.  

We have been able to re-use gold coated microcantilevers that had been previously 

functionalized with thiolated DNA strand by following the procedure described by M. 

Yuan et al.48, 49 Prior to surface detachment of the thiolated DNA, we cleaned the chips 

in piranha solution to remove any physisorbed organic compound derived from 

prehybridization and hybridization buffers. Then, the chips were immersed in 0.5 M 

NaBH4 solution in 1:1 H20:EtOH (caution, NaBH4 reacts with H2O and releases 

hydrogen gas) for 2h. Afterwards, they were rinsed with ethanol and Milli-Q water and 

ready for use. Re-used microcantilevers showed equivalent responses to new ones. 

Surface blocking: Prior to hybridization, the voids on the surface of the functionalized 

microcantilever chips and on the samples for AFM inspection were blocked by 

incubation in a 1x prehybridization solution (Sigma-Aldrich) for 30 minutes at the 

hybridization temperature (30 ºC). The excess of blocking agent was removed by 

incubating the samples in SSC 1x buffer for 15 minutes at 25 ºC. Then, the samples 

were rinsed with Milli-Q water. 

Target preparation: Complementary sequences to probe oligonucleotides were diluted 

directly to the corresponding concentration in PerfectHybTM Plus Hybridization Buffer 

(Sigma-Aldrich) and mixed vigorously to homogenize the solution.  

Measurement setup: The experiments were performed both in a SCALA-Bio platform 

(MecWins, Spain) where read-out was made directly from a 96-well plate coated with 
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polydimethylsiloxane (PDMS) to attach the arrays to its surface, and also in a similar 

home-built equipment with capability for read-out of single chips of eight cantilevers. In 

both instruments, the read-out of the microcantilever deflections is based in the 

automated two-dimensional scanning of a laser beam across the surface of each 

microcantilever, and the collection of the reflected beam on the surface of a two-

dimensional position sensing linear detector (PSD) orthogonally oriented to the 

reflected beam. Both systems were equipped with an environmental chamber with 

capability to keep temperature at 25.00 ± 0.02 ºC degrees and to change relative 

humidity at a rate of 10.00 ± 0.08% min-1. Prior to the measurement of the surface 

stress, the cantilevers were equilibrated at 0% relative humidity under a flow of dry 

nitrogen for one hour. The systems were calibrated as described in the Supplementary 

Materials in order to attain accurate values of the surface stress. 

 

Hybridization experiments: In one set of experiments, we incubated three different 

chips, each containing eight microcantilevers functionalized with one of the three 

sequences (Oligo1, Oligo2 and ControlOligo3) in three incubation wells filled with 

aliquots of the same sample solution. The sample contains the two fully complementary 

strands to sequence Oligo1 and sequence Oligo2 (ComplOligo1 and ComplOligo2), 

and a competing strand non-complementary to any of the three probe sequences 

(InterferingSeq).  Note that we have chosen two sequences that differ only in 6 bases 

(see Oligo2 and ControlOligo3 in table 1) and used one of them as negative control, in 

order to test the specificity of the assay. The response of each microcantilever before 

and after incubation with the problem solution was recorded. This response 

comparison serves as an excellent reference to filter out any spurious mechanical 

signals and deviations in the response between cantilevers with different mechanical 

properties.  
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In a different set of experiments, we immobilized the three probe strands (Oligo1, 

Oligo2 and ControlOligo3) in alternate cantilevers on the same cantilever array chip by 

inkjet deposition with sciFLEXARRAYER (Scienion AG, Germany), while leaving one 

blank microcantilever between the functionalized ones to avoid cross contamination 

(see Supplementary Materials S4). We then incubate the full chip in the sample 

solution containing ComplOligo1, ComplOligo2 and InterferingSeq in a single well, 

wash and dry the chip after reaching the hybridization time in the experiment and 

measure all cantilevers simultaneously.50 We found consistent results for the two 

measurement methodologies. 

 

Hybridization conditions: The hybridization solution consisted of a mix 1:1:1 of the 

corresponding complementary strands and non-complementary sequence. 

Hybridization was performed at 30 ºC for two different incubation times: 1 hour and 

overnight; at final concentrations of 30 nM and 300 nM. At 30 ºC, the hybridization 

temperature was well below the melting temperature for every complementary DNA 

duplex (37-45 ºC), as indicated by the manufacturer of the buffer PerfectHybTM Plus 

Hybridization Buffer (Sigma-Aldrich) for our hybridization conditions. After hybridization, 

cantilever arrays and AFM samples were cleaned with low and high stringency 

hybridization wash buffers and extensively rinsed with plenty of Milli-Q water. The 

higher stringency wash was carried out at the hybridization temperature.   
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