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INTRODUCTION 

Since this Thesis is going to be presented in a Faculty of Chemistry, it would 

be convenient to start answering a simple question: What can do a Chemist in 

Oceanography? The study of the physical, biological and geochemical 

processes occurring in the oceans, and their interactions with the continents 

and the atmosphere, requires a multidisciplinary approach. Therefore, 

Oceanography is based on the need for the combination of all basic science to 

understand the marine environment. In this context, Chemical Oceanography 

consists on solving oceanographic problems by means of the concepts and 

methods of Chemistry. It should be noted that Chemical Oceanography (which 

consider the marine environment as a chemical reactor) is quite different from 

Marine Chemistry (which just uses suitable analytical techniques in the marine 

environment). It is remarkable the lack of Chemists devoted to Oceanography 

in Spain in particular, but in Europe in general. 

The study of aquatic ecosystems is gaining more and more attention due to 

its implications for global climate change. The ocean can regulate climate 

controlling the exchange of water, heat and greenhouse gases with the 

atmosphere (Fig. 1.1). Therefore, the way these gases distribute between the 

atmosphere and the ocean is a remarkable scientific issue. In this sense, 

chemical oceanographers analyse the sequestration of anthropogenic CO2 in 

the oceans by means of the solubility and the biological pumps. The solubility 

pump involves only physical processes. On the other hand, the biological 

pump promotes the flux of biogenic carbon towards deep waters. The role of 

dissolved (DOM) and particulate organic matter (POM) in the recycling and 

export of biogenic carbon is crucial to understand these processes. So, 

chemical oceanographers 1) develop the adequate analytical methods to 

estimate the dissolved organic carbon, nitrogen and phosphorus pools,           

2) characterise the DOM (molecular weight, isotopic abundance, chemical 
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composition, optical properties) and 3) study the biological, chemical and 

photochemical reactivity of organic matter. 

Dissolved organic matter cycling in open ocean waters 

Conceptually, DOM is the organic material that is not susceptible to sink. 

From an operative point of view, DOM is the organic matter that passes a 0.2-

1.0 µm filter, and can include small bacteria and all viruses. This dissolved 

material constitutes the largest reservoir of organic matter in the oceans. The 

most recent estimations indicate that the DOM pool is 685-700 Gt-C (Schimel 

et al. 1996, Hansell & Carlson 1998a), equalling the CO2 accumulated in the 

atmosphere (Falkowski et al. 2000). In comparison, the sum of detritus (20 Gt-

C), phytoplankton (4 Gt-C) and zooplankton (0.1 Gt-C) only represents 3% of 

the total organic matter. Most of this dissolved material (~90%) has been 

formed in situ as a result of phytoplankton primary production (~50 Gt-C per 

year) and transformed into DOM throughout different biological (exudation, 

grazing, autolysis or virolysis) and photochemical processes (Fig. 1.1). The 

main function of DOM, from the point of view of the solubility and biological 

pumps, is the recycling and export of biogenic material. In addition, DOM 

takes part in other relevant processes (Sunda 1995): 

 1) DOM complexes trace metals operating like a buffer that controls the 

bioavailability of free metal ions, avoiding high concentrations and ensuring 

metal availability in the long-term. 

2) DOM acts as electron-donor in Fe and Mn photo-reduction and 

solubilization processes, enhancing their availability and preventing their 

exportation to the deep ocean. 

3) Some phytoplankton groups produce dimethysulphoniopropionate 

(DMSP) that is transformed in dimethyl sulphide (DMS). This organic 

compound is susceptible to exchange with the atmosphere, where it is oxidized 

to sulphuric acid, contributing to the regulation of the Earth climate. 
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4) Humic acids constitute a significant fraction of the organic matter in 

continental waters. Their anionic nature promotes their capability to regulate 

the pH between 3 and 5. 

5) Humic substances are also coloured compounds that absorb visible 

radiation. Large concentrations of these compounds reduce the quantity and 

quality of light radiation available for phytoplankton, decreasing the total 

production. 

6) Phytoplankton exudates organic compounds with surfactant properties, 

which diminish the gas exchange with the atmosphere. 

7) The photolysis of some DOM compounds produces trace gases that 

exchange with the atmosphere.  

 

Figure 1.1 Below, scheme of the main 
processes that occur in the ocean and in 
the atmosphere-ocean interaction. Left, 
scheme of the biological pump: inorganic 
carbon (CO2) exchanged between the 
ocean and the atmosphere is transformed 
into organic carbon (C-org), sequestered 
in the deep-ocean or, to a lesser extent, 
preserved in the sediments. 
From http://www.uea.ac.uk/env/solas 
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The study of DOM was accentuated in the 1980s because of the 

development of suitable analytical techniques, as the high temperature catalytic 

oxidation (HTCO) method, which produced 5-10 times higher DOM 

concentrations than the classical wet oxidation methods (Suzuki et al. 1985, 

Sugimura & Suzuki 1988). Although these authors retracted from their results 

(Suzuki 1993), they contributed to focus the interest of marine scientists on 

DOM, developing new and better methods of analysis and promoting 

intercalibration exercises (Sharp et al. 2002, 2004). In parallel with the progress 

in the study of DOM, other concepts, such as the new (NP) and regenerated 

production (RP), were revisited. The NP of a given system is the production 

supported by external (either temporally or spatially) nutrients, whereas RP is 

maintained by nutrients recycled within the boundaries of the ecosystem. Both, 

inorganic and organic nutrients support NP and RP. 

DOM comprises a myriad of compounds with recycling times ranging from 

hours to thousands of years, which are usually grouped in three different 

categories as a function of its lability: 

1) labile DOM (l-DOM), with turnover times of minutes to days (Keil & 

Kirchman 1999). This pool supports the short-time-scale variability of DOM 

(Kirchman 2000) and it is recycled within the boundaries of the study 

ecosystem, i.e. it contributes to the RP of surface waters (Fig. 1.2). 

2) semi-labile DOM (s-DOM), with turnover times of months to years, 

resists rapid microbial degradation (Cherrier et al. 1996). This material supports 

the seasonal variability of DOM and it is exported out of the boundaries of the 

study ecosystem, i.e. it contributes to the NP (Carlson 2002). An example is 

shown in Figure 1.3. 
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Figure 1.2 Short-time-scale variability of DOM by Leboulanger et al. (1997). They 
observed how the daily changes in the concentration of dissolved glycolic acid 
represents from 50% of the total primary production (1 g C m-2 d-1) in eutrophic waters 
to 100% of the total primary production (0.5 g C m-2 d-1) in oligotrophic waters of the 
North Atlantic, although this compound only represented <2% of the DOC pool 
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Figure 1.3 Carlson et al. (1994) showed an annual cycle of DOC at the BATS (Bermuda 
Atlantic Time Series) station where DOC accumulates after the spring bloom, it is 
partially consumed during summer and autumn and, finally, the remanent DOC 
accumulated in the surface layer (s-DOM) dilutes homogenously in the winter mixed 
layer to be consumed in deeper waters 
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3) refractory DOM (r-DOM), with turnover times of centuries to millennia 

(Williams & Druffel 1987), supports the long-term variability involved in the 

large-scale ocean circulation and contributes to the immobilisation of 

phytogenic materials, partially produced from anthropogenic CO2. However, 

Hansell & Carlson (1998b; Fig. 1.4) demonstrated that refractory does not 

mean eternal: DOM in deep ocean waters decreases by 30% from the recently 

formed North Atlantic deep waters (48 µM C) to the 2 ky older North Pacific 

deep waters (34 µM C). 

 
Figure 1.4 Hansell & Carlson (1998b) showed a DOM decrease in deep ocean waters 
from the North Atlantic to the North Pacific 
 
The development of better analytical methods promoted the change in the 

conceptual model of the classical biological pump (Eppley & Peterson 1979) to 

introduce DOM. Traditionally, the biological pump (Fig. 1.5) was based only 

on the POM produced by phytoplankton from CO2, which falls downwards 

(Knauer 1993). Fifty percent of this organic material was respired in the upper 

water column (100-300 m) and the corresponding CO2 returned to the 

atmosphere in short time scales (100-101 years; Martin et al. 1987). The rest 

reached the bottom layers (>500 m) where it was transformed into CO2, and 

sequestered for 102-103 years in the deep-ocean circulation (Wong & Hirai 
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1997). Only a minimal percentage of the primary production (~0.1%) is 

preserved in the sediments (Wollast 1998). 
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Figure 1.5 Classical scheme of the biological pump of nitrogen that was fuelled only by 
particulate organic matter (PON) 
 
The l-DOM is the most reactive fraction and constitutes a primary nutrient 

and energy source to bacteria (Rich et al. 1997, Skoog et al. 1999). Thus, the 

extracellular release of l-DOM has to be considered as an intermediate step 

during nutrient recycling (Fig. 1.6). In this sense, phytoplankton cells are able 

to assimilate other regeneration products than NH4
+, as urea, some amino acids 

and nitrogen bases (adenine and guanine). These products are present in 

seawater, for example, urea concentrations in surface open ocean waters are of 

the same order as NH4
+ (Bronk 2002). Usually the contribution of l-DOM to 

the total pool is low; nevertheless, the l-DOM fluxes could be high. In average, 

20-40% of the total production (TP = NP + RP) is recycled through DOM 

(Azam et al. 1983, Cole et al. 1988, Carlson 2002). 
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Figure 1.6 Scheme of the biological pump of nitrogen fuelled by particulate organic 
matter (PON) and labile DOM (LDON) 
 
The s-DOM is accumulated or exported, especially after the end of a 

phytoplankton bloom. The downward transport of this phytogenic organic 

matter in the dissolved form becomes larger than the sedimentation in some 

areas, such as the Sargasso Sea and the NW Mediterranean, where winter 

mixing succeeds summer stratification (Copin-Montégut & Avril 1993, Hansell 

& Carlson 2001). Most of the organic matter export to deep waters in 

temperate ecosystems occurs at two well-defined periods: 1) after the spring 

bloom, with the massive sedimentation of phytogenic materials; and 2) during 

deep winter convection, when the DOM accumulated in the summer mixed 

layer is transported downwards. In addition, it is necessary to consider the 

partial solubilization of sinking organic matter, to be transformed into DOM. 

Therefore, the downward flux of DOM and the DOM which results from the 

solubilization of sinking particles have to be added to the organic material 

collected on sediment traps to calculate export rates properly, which have to be 
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equalled to the entry of new nutrients under the assumption of steady-state 

conditions of the biological pump (Carlson et al. 1994, Antia 2005; Fig. 1.7). 
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Figure 1.7 Scheme of the biological pump of nitrogen fuelled by particulate organic 
matter (PON), labile (LDON) and semilabile DOM (SDON) 
 
On the other hand, the transformation of biogenic material into r-DOM in 

surface ocean waters reduces the bioavailability of C, N and P, contributing to 

sequestrate part of the anthropogenic CO2 excess initially used by marine 

phytoplankton (Fig. 1.8). The r-DOM accumulated in surface waters can be 

exported in situ (101 km), as the s-DOM, towards deep waters during winter 

mixing (100 years) or horizontally by means of the oceanic circulation (104 km, 

101-102 years; Legendre & Le Fèvre 1995). Some authors argued that r-DOM 

could be the sink of the missing fraction (20%) of anthropogenic CO2 (1.3 ± 

1.5 Gt-C y-1; Schimel et al. 1996). 
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Figure 1.8 Scheme of the biological pump of nitrogen, fuelled by particulate organic 
matter (PON), labile (LDON), semilabile (SDON) and refractory DOM (RDON) 
 

Chemical composition of DOM  

DOM concentrations in the ocean are too low to perform a direct and 

complete characterisation. Actual knowledge about the composition of 

phytoplankton exudates (Myklestad 1995, Biddanda & Benner 1997, Nagata 

2000) includes carbohydrates (mono-, poly- and oligosaccharides), nitrogen 

compounds (amino acids, polypeptides and proteins), fatty acids and other 

carboxylic acids (glycolate, tricarboxylic acids, vitamins…). The major advances 

have been achieved with the combination of ultrafiltration methods (Amon & 

Benner 1996) and nuclear magnetic resonance (NMR) techniques (Table 1.1). 

Thus, the ultrafiltrated DOM (UDOM, > 1nm = 10 Ǻ, 1 kDa, 20-35% of 

DOM) is used to assess the chemical composition of DOM, despite its 

properties are not exactly the same as the bulk DOM pool. By 13C-NMR 

studies, Benner et al. (1992) estimate that the contribution of carbohydrates to 

ultrafiltrated DOC vary from 50% at the surface to 25% at the bottom layers. 
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McCarthy et al. (1997) studied the UDOM composition by 15N-NMR and 

observed contributions through the water column of 66-86% of amides, 8-10% 

of peptides and 6-25% of indols and pyrroles. On the other hand, Clark et al. 

(1998) pointed to a higher contribution of phosphoric esters (75%) compared 

to fosfonates (25%) using 32P-NMR techniques. 

 
Table 1.1 Relation of some NMR studies in ultrafiltered DOM 

technique compounds references

13C NMR polysaccharides (25-50% of C) Benner et al. (1992)
amides (66-86% of N)
peptides (8-10% of N)

indols and pirrols (6-25% of N)
phosphoric esters (75% of P)

fosfonates (25% of P)
carbohydrate (60-80% of C)

acetate (5-7% of C)
1H NMR Aluwihare et al. (2005)

ultrafiltered DOM

15N NMR McCarthy et al. (1996)

32P NMR Clark et al. (1998)

(>1 kDa, 20-40% of DOM)

 
In addition, NMR spectroscopy allowed to distinguish between two different 

pools of organic nitrogen accumulated in the ocean, taken advantage of the 

change in the acid lability of the amide bonds (Aluwihare et al. 2005). 

The coastal margins 

Coastal margins represent less than 8% and 1% of the total surface and 

volume of sea, respectively, but there occurs between 20 and 50% of NP 

(Walsh 1991, Chavez & Toggweiler 1995, Wollast 1998), and its sediments 

retained 87% of the organic carbon preserved in the marine environment 

(Middelburg et al. 1993). In these areas, biogeochemical processes (production, 

respiration, vertical and horizontal export…) are intensified, enhancing, 



Chapter 1 

14 

consequently, the fluxes of anthropogenic CO2 between the surface waters and 

the atmosphere. 

Biogeochemical cycles in the coastal zone differ from those in the open 

ocean in four main issues: 

1) Carbon and nutrient cycles in ocean margins are fuelled by the input of 

nutrients salts from the continents, the atmosphere, and the adjacent ocean. In 

the global coastal zone, 70% of the nitrogen input comes from the ocean, 22% 

from the continents and 8% from the atmosphere (Wollast 1998). However, 

the percentages are very variable from site to site. Continental inputs could 

become dominant in large drainage basins dedicated to intensive agriculture 

and farming, where rivers play a major role in the transference of materials 

from land to sea and influence significantly processes in coastal waters. 

Atmospheric inputs are especially relevant in high-industrialised coastal areas 

(Duce et al. 1991). Finally, the open ocean is the main source of external 

nutrient salts in the coastal upwelling areas associated to ocean eastern 

boundary currents (Walsh 1991). 

2) The primary production (PP) per unit area is significantly higher than in 

the oceans due to the larger nutrient input. Coastal margins produce ~210 g C 

m-2 y-1, almost twice than the open ocean. 

3) The sediments receive ~30% of PP in opposition with ~0.1% in the open 

ocean. In addition, the mineralization in the sediments becomes more notable 

and operates as a source of nutrients for the water column. Nevertheless, 

whereas in the ocean sediments the mineralization is predominantly aerobic, in 

the coastal regions is usual to observe denitrification, sulphatereduction or, 

even, fermentation (Middelburg et al. 1993).  

4) About 75% of the total organic N (Wollast 1993) or 87% of the total 

organic C (Middelburg et al. 1993) is preserved in the coastal sediments, so 

they constitute the most effective trap for anthropogenic carbon in the sea. 
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Coastal areas in Europe cover four main zones: the Baltic Sea, Mediterranean 

Sea, Black Sea and the European Atlantic coast including the North Sea, with 

high diversity of habitats and communities. The mean value of PP in these 

coastal waters is 180 g C m-2 y-1, whereas, in average, benthic community 

respiration consumes approximately 40% of the pelagic organic matter 

production (Gazeau et al. 2004). The average PP in the European Atlantic / 

North Sea region was higher (224 g C m-2 y-1) but the benthic community 

presented lower respiration rates (~30% of PP). 

The importance of DOM for carbon and nutrient cycles is enhanced in 

coastal waters, where exudation by aquatic organisms and degradation of 

marine and terrestrial plant matter produce large amounts of DOM (Nagata 

2000, Carlson 2002). DOM production is especially intense in coastal upwelling 

areas, where the shelf wind regimen supports a strong exchange with the 

adjacent ocean waters (Barber & Smith 1981, Walsh 1991), which promotes a 

high nutrient fertilisation (Hansell & Carlson 1998a, Doval et al. 1997, Álvarez-

Salgado et al. 2001a). Organic matter produced in upwelling areas can 

experience extreme oxidising and reducing conditions (Gagosian et al. 1978). 

DOM in the Iberian Upwelling System 

The Iberian Upwelling System is located between 37º and 43ºN, in the 

northern boundary of the Iberian-NW Africa upwelling system (Fig. 1.9) and 

includes the Rías Baixas at 42-43ºN, four large (>2.5 km3) V-shaped 

embayments, and the adjacent shelf. The rías are characterised by a 2-layered 

residual circulation pattern, with an ongoing bottom current and an outgoing 

surface current during upwelling events and a reversal of the flow during 

downwelling conditions. Therefore, these embayments respond to the 

influence of shelf winds despite that island protect them (Gilcoto et al. 2001). 

In addition, continental runoff modulates also the circulation of the rías, 

mainly at the innermost segment, which behaves as a partially mixed estuary 



Chapter 1 

16 

driven by tidal currents (average tidal range, 3 m) and river runoff. The 

circulation of shelf waters off the Rías Baixas is more complex; it is composed 

of a wind-driven along-shore current and an across-shore exchange with the 

adjacent ocean and the Rías Baixas. During the upwelling season, shelf surface 

waters are imported from the rías, and the bottom waters of the rías enter from 

the shelf. On the contrary, during the downwelling season, a convergence front 

between the shelf and the rías develops. The position of that front in the 

along-shore direction depends on the relative strength of coastal winds and 

continental runoff (Álvarez-Salgado et al. 2000; Fig. 1.10). 

The NW Iberian Peninsula presents two conspicuous characteristics; first, 

the annual cycle is divided in an upwelling season, with short relaxation 

intervals that enhance the productivity (Álvarez-Salgado et al. 1999), and other 

season dominated by downwelling episodes, distinguished by low primary 

production. During upwelling events northerly winds cause the uplift of 

Eastern North Atlantic Central Water (ENACW) over the shelf, entering the 

bottom of the ría and enhancing the positive residual circulation pattern 

(Rosón et al. 1997). Another remarkable phenomenon in this region is the 

intrusion of the Iberian Poleward Current (IPC) along the slope during the 

winter, carrying subtropical waters to our latitudes (Haynes & Barton 1990, 

Álvarez-Salgado et al. 2003). 
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Figure 1.9 Localization of the NW Iberian upwelling system 
 
The NW Iberian upwelling is an ideal system due to 1) the large spatial and 

temporal variability at different scales, 2) the knowledge about its circulation 

and C, N, P and Si cycles, and 3) the economic significance of the area due to 

fishing and aquaculture resources. 
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Figure 1.10 Water circulation patterns in the NW Iberian upwelling system during the 
upwelling and downwelling season 
 
The interest in the role played by the DOM in the biogeochemical cycles in 

the NW Iberian upwelling system emerged in 1989, during a cruise in the Ría 

de Arousa (Fig. 1.9). The use of an inverse box model (Rosón et al. 1997) 

revealed, before the HTCO methods, that more of 40% of the inorganic C and 

N consumption during the upwelling season was probably transformed in 

DOM (Álvarez-Salgado et al. 1996a, 1996b, Rosón et al. 1999). The 

development of HTCO methods (Álvarez-Salgado & Miller 1998) made 

possible to go deeply in the study of the contribution of DOM to the 

biogeochemical cycles in this system. Thus, Doval et al. (1997) and Álvarez-

Salgado et al. (1999) produced a complete dissolved and particulate organic 

carbon and nitrogen data collection in the middle Ría de Vigo and the adjacent 

shelf. A surface accumulation of DOM, in comparison with the concentration 

expected from the mixing between continental runoff waters and ENACW, 

was observed during the upwelling season. The C/N ratio of POM increased 
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significantly from the surface (6.3) to the bottom (8.8), due to the lability of N 

compounds in the water column and sediments (Copin-Montégut & Copin-

Montégut 1983). Particulate organic carbon (POC) and nitrogen (PON) 

profiles presented two maxima, the largest at the surface and the second at the 

bottom layer. On the other hand, the concentrations of dissolved organic 

carbon (DOC) and nitrogen (DON) decrease monotonically from a surface 

maximum to a bottom minimum. The DOC/DON molar ratio did not change 

significantly with depth, ranging from 11 to 18. POM accumulates during 

upwelling ‘spin down’, when nutrient concentrations are still high and the 

horizontal transport is low (Zimmerman et al. 1987, Álvarez-Salgado et al. 

1996b, Doval et al. 1997). However, DOM accumulation occurs several days 

after the upwelling relaxation, when phytoplankton growth is limited by 

nutrient depletion. Álvarez-Salgado et al. (1999) concluded that the Rías Baixas 

operate as sources of biodegradable DOM for the adjacent shelf waters. The 

probable fate of DOM produced in the rías is the dilution with ENACW (poor 

in DOM) with export to the adjacent ocean waters during upwelling events, 

and in situ consumption during relaxation-downwelling events (Álvarez-Salgado 

et al. 2001a). In addition, it was found that 50% of the material exported from 

the shelf to the ocean by a filament in August 1998 was DOM (Álvarez-

Salgado et al. 2001b). 

In March 1992, an extensive survey of nitrogen forms and phytoplankton of 

the euphotic zone on the northern Spanish shelf showed an accumulation of 

DON in relation with the mixing of continental runoff waters and ENACW 

(Bode et al. 2001). It was also found in this study an uncoupling between 

phytoplankton and DON production, which suggest the participation of 

microplanktonic grazers in the release of DON. Later research in the Ría de A 

Coruña (NW Spain; Fig. 1.9) achieved high rates of N regeneration, indicating 

that a large proportion of the organic matter produced after an upwelling pulse 
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was recycled in the water column through the microbial food web (Bode et al. 

2004a). This behaviour was also suggested by Teira et al. (2003) in a cruise off 

this ría, indicating the autotrophic nature of this coastal system, which exported 

between 1 and 86% of total primary production from the euphotic layer in the 

form of POC. In addition, carbon and nitrogen fluxes pointed out that the 

release of carbon was produced preferentially at the surface, whereas the 

release of nitrogen occurred near the base of the euphotic zone (Bode et al. 

2004b). 

The relationship between phytoplankton size-structure and DOC production 

was also established in the NW Iberian upwelling system by Teira et al. (2001a, 

2001b). Thus, picoplankton-dominated communities showed net heterotrophic 

or balanced metabolisms and relatively high rates of DOC production in 

relation to the total primary production. Nevertheless, during stratification or 

downwelling conditions, dominated by large-sized cells, a net autotrophic 

metabolism occurred and low rates of DOC production in relation to PP. In 

this sense, Teira et al. (2001a) found three different conditions: during summer 

upwelling they estimated that DOC production was 6% of PP with autotrophic 

conditions, during summer stratification DOC production increased up to 20% 

and the metabolism was balanced, and, finally, during autumn downwelling, 

DOC production reached the largest values (~33%) whereas the heterotrophic 

nature was dominant (Fig. 1.11). Moreover, DOC and POC production rates 

were linearly related during upwelling conditions, however, in oligotrophic 

relaxation and downwelling conditions they did not correlate, which suggests 

different DOC release processes in both situations (Teira et al. 2001b). 
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Figure 1.11 Carbon budgets for three contrasting environments studied in the coastal-
transition zone off NW Iberian Peninsula (summer upwelling, summer stratification and 
autumn downwelling). Percentages represent the relative contribution of any given flux 
or phytoplankton size class with respect to total organic carbon production or total 
phytoplankton biomass, respectively (From Teira et al. 2001a) 
 

36 ± 9%

91%

137 ± 41%

85 ± 1%

15 ± 1%

Phytoplankton biomass 

>2 µm  88 ± 4% 

<2 µm  12 ± 4% 

Phytoplankton biomass 

>2 µm  32% 

<2 µm  68% 

Phytoplankton biomass 

>2 µm  48 ± 7% 

<2 µm  52 ± 7% 

DOC
6 ± 2%

DOC
19%

DOC
33 ± 4%

45%

55%

HCO3- 

72 ± 6%

28 ± 6%

HCO3- 

HCO3- 



Chapter 1 

22 

Marañón et al. (2004) were the first to present concurrent DOC and POC 

production rates during a seasonal cycle in the Ría de Vigo. No marked 

seasonal patterns were detected and DOC production contributed 15-25% of 

PP, remaining constant or even increasing with depth. On the other hand, 

POC production decreased markedly below the surface. In this sense, the 

results of Marañón et al. (2004) argue against the view that the release of DOC 

is an overflow mechanism occurring preferentially under conditions of high 

irradiance and low nutrient concentration. In addition, Varela et al. (2003) 

suggested that physiological processes (such as carbohydrate exudation by 

diatoms) seem to be the cause of large DOC accumulation, whereas trophic 

processes (such as grazing) are more likely the cause of enhanced DON 

release.  
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Hypotheses and objectives 

The general hypothesis of this work is: 

The spatial (ría, shelf and slope systems) and temporal variability, either at the 

seasonal (upwelling, downwelling or transitional periods) or event (coastal wind 

stress/relaxation cycles) scale influences strongly the exchange of materials 

between the different systems and, consequently, the partition (dissolved and 

suspended phases), the chemical composition and the reactivity of the 

produced (or consumed) materials. 

This general hypothesis has been divided into four specific objectives, that 

we will try to demonstrate in this work: 

1) Fractionation during organic matter mineralization. The chemical 

composition (C/N/P stoichiometry) and the optical properties (fluorescent 

dissolved organic matter) of the produced, transported or consumed organic 

matter in these waters vary from the coast to the ocean and from surface to 

bottom layer. 

2) Partitioning during organic matter mineralization. The contribution of 

dissolved, suspended and sinking organic matter to mineralization processes 

changes from the coast to the ocean and from the surface to the bottom layer. 

3) Carbohydrates cycling in a coastal upwelling system. Carbohydrates are a 

major component of the biogenic organic carbon produced and accumulated in 

the upper layer of the NW Iberian upwelling system. The partition in mono- 

and polysaccharides allows to characterize labile and semilabile material, 

respectively. 

4) DOM fluorescence as a suitable tracer for microbial and photochemical 

processes. The fluorescent fraction of DOM is biological and photochemically 

reactive, in such way that the spatio-temporal variability of certain fluorophores 

(humic- and protein-like materials) can be used as a tracer of labile material 

production-consumption, mineralization and photodegradation processes. 



Chapter 1 

24 



Introduction 

25 

INTRODUCCIÓN (en castellano) 

Pensando en el hecho de que esta Tesis va a ser presentada en una Facultad 

de Química es conveniente comenzarla contestando a una simple cuestión: 

¿Qué puede hacer un Químico en Oceanografía? El estudio de los procesos 

físicos, biológicos y geoquímicos que ocurren en los océanos, y de sus 

interacciones con los continentes y la atmósfera, requiere un tratamiento 

multidisciplinar. Por tanto la Oceanografía está basada en la necesidad de 

combinar toda ciencia básica para así entender el medio marino. En este 

contexto, la Oceanografía Química consiste en resolver problemas 

oceanográficos mediante conceptos y métodos químicos. En este punto debe 

hacerse notar que existe una gran diferencia entre Oceanografía Química (la 

cual considera el ambiente marino como un reactor químico) y la Química 

Marina (la cual solamente aplica las técnicas analíticas adecuadas en el ambiente 

marino). Así, se observa que en España en particular, pero en toda Europa en 

general, existe una carencia de químicos dedicados a la Oceanografía. 

Cada vez se concede más atención al estudio de los ecosistemas acuáticos 

debido a su implicación en el cambio climático global. El océano puede regular 

el clima controlando el intercambio con la atmósfera de agua, calor y gases 

invernadero (Fig. 1.1). En consecuencia, el modo en el que estos gases se 

distribuyen entre la atmósfera y el océano se convierte en una relevante 

cuestión para la ciencia. En este sentido, los oceanógrafos químicos analizan el 

secuestro de CO2 antropogénico en los océanos mediante las bombas de 

solubilidad y biológica. La bomba de solubilidad involucra únicamente 

procesos físicos, mientras que la bomba biológica promueve el flujo de 

carbono biogénico hacia aguas más profundas. Para entender estos procesos es 

crucial conocer el papel de la materia orgánica disuelta y particulada en el 

reciclado y la exportación del carbono biogénico. Para ello, los oceanógrafos 

químicos 1) desarrollan los métodos analíticos adecuados para estimar las 
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concentraciones de carbono, nitrógeno y fósforo orgánico disuelto, 2) 

caracterizan la materia orgánica disuelta (peso molecular, riqueza isotópica, 

composición química, propiedades ópticas) y 3) estudian su reactividad 

biológica, química y fotoquímica. 

El ciclo de la materia orgánica disuelta en aguas oceánicas 

Conceptualmente, la materia orgánica disuelta es el material orgánico que no 

es susceptible de sedimentar. Desde un punto de vista operativo, la materia 

orgánica disuelta es el material orgánico que pasa a través de filtros de 0.2-1.0 

µm, e incluye pequeñas bacterias y todos los virus. Este material disuelto 

constituye la mayor reserva de materia orgánica en los océanos. Las 

estimaciones más recientes indican que el conjunto de la materia orgánica 

disuelta alcanza los 685-700 Gt-C (Schimel et al. 1996, Hansell & Carlson 

1998a), igualando el CO2 acumulado en la atmósfera (Falkowski et al. 2000). 

En comparación, la suma de detritus (20 Gt-C), fitoplancton (4 Gt-C) y 

zooplancton (0.1 Gt-C) solo representa el 3% de la materia orgánica total. La 

mayor parte de este material disuelto (~90%) ha siso formado in situ como 

resultado de la producción primaria del fitoplancton (~50 Gt-C por año) y 

transformado en materia orgánica disuelta a través de diferentes procesos tanto 

biológicos (exudación, herbivoría, autolisis o virolisis) como fotoquímicos (Fig. 

1.1). La principal función de la materia orgánica disuelta, desde el punto de 

vista de las bombas biológica y de solubilidad, es el reciclado y la exportación 

del material biogénico. Además, este material participa en otros procesos 

relevantes (Sunda 1995): 

1) La materia orgánica disuelta compleja metales traza, operando como un 

tampón que preserva los iones metálicos libres, evitando las altas 

concentraciones y asegurando su disponibilidad a largo plazo. 
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2) La materia orgánica disuelta actúa como dador de electrones en los 

procesos de foto-reducción y solubilización de Fe y Mn, aumentando su 

disponibilidad y previniendo su exportación hacia el océano profundo. 

3) Algunos grupos fitoplanctónicos producen dimetilsulfoniopropionato 

(DMSP) el cual es transformado en dimetil sulfóxido (DMS). Este compuesto 

orgánico es susceptible de intercambiarse con la atmósfera, donde es oxidado a 

ácido sulfúrico, contribuyendo a la regulación del clima en la Tierra. 

4) Los ácidos húmicos constituyen una fracción significante de la materia 

orgánica en las aguas continentales. Su naturaleza aniónica es la responsable de 

su capacidad de regular el pH entre 3 y 5. 

5) Las sustancias húmicas son además compuestos coloreados que absorben 

radiación visible. Cuando se encuentran en grandes concentraciones provocan 

una reducción en la calidad y cantidad de la radiación luminosa disponible para 

el fitoplancton, disminuyendo así la producción total. 

6) El fitoplancton exuda compuestos orgánicos con propiedades 

surfactantes, los cuales disminuyen el intercambio de gases con la atmósfera. 

7) La fotolisis de algunos compuestos incluidos en la materia orgánica 

disuelta produce gases que pueden ser intercambiados con la atmósfera. 

El estudio de la materia orgánica disuelta se acentúo en los años 80 debido al 

desarrollo de técnicas analíticas adecuadas como el método de la oxidación 

catalítica a alta temperatura (HTCO), que originó concentraciones de materia 

orgánica disuelta 5-10 veces mayores que los métodos clásicos de oxidación 

por vía húmeda (Suzuki et al. 1985, Sugimura & Suzuki 1988). Aunque estos 

autores acabaron retractándose de sus resultados (Suzuki 1993), los mismos 

contribuyeron a enfocar el interés de los científicos marinos en la materia 

orgánica disuelta, desarrollando nuevos y mejores métodos de análisis y 

promoviendo ejercicios de intercalibración (Sharp et al. 2002, 2004). 
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En paralelo con el progreso en el estudio de la materia orgánica disuelta, 

otros conceptos, como la producción nueva y regenerada, fueron revisados. La 

producción nueva de un sistema dado es la producción sostenida por 

nutrientes externos (tanto temporal como espacialmente), mientras que la 

producción regenerada es mantenida por nutrientes reciclados dentro de los 

límites del ecosistema. Ambas producciones son sostenidas tanto por 

nutrientes inorgánicos como orgánicos. 

La materia orgánica disuelta abarca una miríada de compuestos con tiempos 

de reciclado comprendidos entre horas y miles de años, los cuales son 

normalmente agrupados en tres categorías diferentes en función de su labilidad: 

1) materia orgánica disuelta LÁBIL (l-DOM), con tiempos de reciclado de 

minutos a días (Keil & Kirchman 1999). Estos compuestos sostienen la 

variabilidad de la materia orgánica disuelta a corta escala (Kirchman 2000) y 

son reciclados dentro de los límites del sistema de estudio, i.e., contribuyen a la 

producción regenerada de las aguas superficiales (Fig. 1.2). 

2) materia orgánica disuelta SEMILÁBIL (s-DOM), con tiempos de reciclado 

de meses a años, es resistente a la rápida degradación microbiana (Cherrier et 

al. 1996). Este material sostiene la variabilidad estacional de la materia orgánica 

disuelta y es exportado fuera de los límites del sistema de estudio, i.e., 

contribuye a la producción nueva (Carlson 2002). Se muestra un ejemplo en la 

Figura 1.3. 

3) materia orgánica disuelta REFRACTARIA (r-DOM), con tiempos de 

reciclado de cientos a miles de años (Williams & Druffel 1987), sostiene la 

variabilidad a largo plazo, implicada en la circulación oceánica de larga escala, y 

contribuye a la inmovilización de materiales fitogénicos, parcialmente 

producidos a partir de CO2 antropogénico. De todas formas, Hansell & 

Carlson (1998b; Fig. 1.4) demostraron que refractario no significa eterno: la 

materia orgánica disuelta disminuye en un 30% desde las aguas profundas del 
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Atlántico Norte (recientemente formadas; 48 µM C) hasta las aguas profundas 

del Pacífico Norte (envejecidas durante 2 años; 34 µM C). 

El desarrollo de mejores métodos analíticos promovió el cambio en el 

modelo conceptual de la bomba biológica clásica (Eppley & Peterson 1979) 

para introducir la materia orgánica disuelta. Tradicionalmente, la bomba 

biológica estaba basada solamente en la materia orgánica particulada producida 

por el fitoplancton a partir del CO2 (Fig. 1.5; Knauer 1993). El 50% de este 

material era respirado en la parte superior de la columna de agua (100-300 m) y 

así, el correspondiente CO2 regresaba a la atmósfera en escalas de tiempo 

pequeñas (100-101 años; Martin et al. 1987). El resto alcanzaba las capas 

inferiores (>500 m) donde era transformado en CO2 y secuestrado durante 102-

103 años en la circulación del océano profundo (Wong & Hirai 1997). En los 

sedimentos se preserva solamente un porcentaje mínimo de la producción 

primaria (~0.1%; Wollast 1998). 

La materia orgánica lábil constituye la fracción más reactiva lo cual la 

convierte en un nutriente primario y una fuente de energía para las bacterias 

(Rich et al. 1997, Skoog et al. 1999). Esto provoca que la liberación extracelular 

de l-DOM sea considerada como un paso intermedio durante el reciclado de 

nutrientes (Fig. 1.6). En este sentido, las células fitoplanctónicas son capaces de 

asimilar productos regenerados que no sean NH4
+, como por ejemplo urea, 

algunos aminoácidos y bases nitrogenadas (adenina y guanina). Estos 

productos están ampliamente presentes en el agua de mar, por ejemplo las 

concentraciones de urea en la superficie del océano abierto son del mismo 

orden que las de amonio (Bronk 2002). Generalmente la contribución de los 

flujos de l-DOM es alta: en promedio el 20-40% de la producción total se 

recicla a través de la materia orgánica disuelta (Azam et al. 1983, Cole et al. 

1988, Carlson 2002). 
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La materia orgánica disuelta semilábil es acumulada o exportada, 

especialmente al final de un ‘bloom’ de fitoplancton. En ciertas áreas, como en 

mar de los Sargazos y en el NO del mar Mediterráneo donde la mezcla invernal 

sucede después de la estratificación estival, el transporte hacia el fondo de este 

material fitogénico en forma disuelta sobrepasa las tasas de sedimentación 

(Copin-Montégut & Avril 1993, Hansell & Carlson 2001). En los ecosistemas 

de la zona templada, la mayor parte de la materia orgánica se exporta a las 

aguas profundas en dos periodos muy bien definidos: 1) después del ‘bloom’ 

primaveral, con una sedimentación masiva de materiales fitogénicos; y 2) 

durante la convección invernal profunda, cuando la materia orgánica disuelta 

acumulada en la capa de mezcla durante el verano es transportada hacia el 

fondo. Como complemento, es necesario considerar la solubilización parcial de 

la materia orgánica que está sedimentando, que es así transformada en disuelta. 

De este modo, el nuevo material disuelto que es exportado hacia las capas 

inferiores debe añadirse al material recogido en las trampas de sedimentos para 

calcular apropiadamente tasas de exportación, las cuales deben ser igualadas a 

la entrada de nuevos nutrientes bajo la condición de estado-estacionario de la 

bomba biológica (Carlson et al. 1994, Antia 2005; Fig. 1.7). 

Por otro lado, la transformación de material biogénico en r-DOM en las 

oceánicas superficiales reduce la biodisponibilidad de C, N y P, contribuyendo 

a secuestrar parte del exceso del CO2 antropogénico usado inicialmente por el 

fitoplancton marino (Fig. 1.8). La r-DOM acumulada en las aguas superficiales 

puede ser exportada in situ (101 km), como la s-DOM, hacia las aguas 

profundas durante la mezcla invernal (100 años) u horizontalmente mediante la 

circulación oceánica (104 km, 101-102 años; Legendre & Le Fèvre 1995). 

Algunos autores argumentan que la r-DOM puede ser la fracción perdida 

(20%) del CO2 antropogénico (1.3 ± 1.5 Gt-C por año; Schimel et al. 1996). 
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Composición química de la materia orgánica disuelta 

La concentración de la materia orgánica disuelta en el océano es demasiado 

baja para llevar a cabo una caracterización directa y completa. El conocimiento 

actual sobre los exudados de fitoplancton (Myklestad 1995, Biddanda & 

Benner 1997, Nagata 2000) incluye carbohidratos (mono-, poli- y 

oligosacáridos), compuestos de nitrógeno (aminoácidos, polipéptidos y 

proteínas), ácidos grasos y otros ácidos carboxílicos (glicolato, ácidos 

tricarboxílicos, vitaminas…). Los mayores avances se han producido mediante 

la combinación de métodos de ultrafiltración (Amon & Benner 1996) y las 

técnicas de resonancia magnética nuclear (NMR; Tabla 1.1). Así, la materia 

orgánica disuelta ultrafiltrada (UDOM, >1nm = 10 Ǻ, 1 kDa, constituye el 20-

35% de la materia orgánica disuelta) es utilizada para discernir la composición 

química de la materia orgánica disuelta, a pesar de que sus propiedades no son 

exactamente las mismas que el conjunto global. Mediante estudios de 

resonancia magnética nuclear de 13C, Benner et al. (1992) estimaron que la 

contribución de los carbohidratos al material ultrafiltrado varía desde el 50% en 

la superficie al 25% en las capas de fondo. McCarthy et al. (1997) estudiaron la 

composición de la UDOM mediante resonancia magnética nuclear de 15N y 

observaron que las amidas constituyen en promedio, en la columna de agua, el 

66-86%, los péptidos el 8-10% y los indoles y pirroles el 6-25% del material 

ultrafiltrado. Por otra banda, Clark et al. (1998) señalaron una mayor 

contribución a la materia orgánica disuelta ultrafiltrada de los ésteres fosfóricos 

(75%) en comparación con los fosfonatos (25%) utilizando técnicas de 

resonancia magnética nuclear de 32P. 

Además, la espectroscopia de resonancia magnética nuclear permite distinguir 

entre dos conjuntos diferentes de nitrógeno orgánico acumulado en el océano, 

aprovechando el cambio de labilidad de los enlaces amida (Aluwihare et al. 

2005). 
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Los márgenes costeros 

Los márgenes costeros representan menos de un 8% y un 1% de la superficie 

y el volumen total de los ecosistemas marinos, respectivamente, sin embargo, 

en ellos sucede entre el 20 y el 50% de la producción nueva (Walsh 1991, 

Chavez & Toggweiler 1995, Wollast 1998), y los sedimentos costeros retienen 

el 87% del carbono orgánico preservado en los ambientes marinos (Middelburg 

et al. 1993). Los procesos biogeoquímicos (producción, respiración, 

exportación vertical y horizontal…) están intensificados en estas áreas, 

aumentando, consecuentemente, los flujos de CO2 antropogénico entre las 

aguas superficiales y la atmósfera. 

Los ciclos biogeoquímicos de las zonas costeras se diferencian de los ciclos 

en océano abierto en cuatro aspectos: 

1) Los ciclos de carbono y nutrientes en los márgenes oceánicos están 

mantenidos por el aporte de sales nutrientes desde los continentes, la atmósfera 

y el océano adyacente. Globalmente, en la zona costera el 70% de los aportes 

de nitrógeno provienen del océano, el 22% de los continentes y el 8% de la 

atmósfera (Wollast 1998). De todas formas, estos porcentajes son muy 

variables en función de la zona de estudio. Los aportes continentales se pueden 

convertir en dominantes en cuencas de elevado drenaje dedicadas a la 

agricultura y ganadería intensiva, donde los ríos juegan un papel principal en la 

transferencia de materiales desde la tierra al mar, e influencian procesos de gran 

importancia en las aguas costeras. Los aportes atmosféricos son especialmente 

relevantes en las áreas costeras altamente industrializadas (Duce et al. 1991). 

Por último, decir que el océano abierto es la principal fuente de nutrientes 

externos en los sistemas de afloramiento costero asociados a las corrientes de 

borde este (Walsh 1991). 
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2) La producción primaria por unidad de superficie es significativamente 

mayor que en los océanos debido la mayor entrada de nutrientes. Los márgenes 

costeros producen ~210 g C m-2 por año, casi el doble que en los océanos. 

3) Los sedimentos reciben ~30% de la producción primaria, en 

contraposición con el ~0.1% en océano abierto. Además la mineralización en 

los sedimentos adquiere gran importancia, actuando como una valiosa fuente 

de nutrientes para la columna de agua. Sin embargo, mientras en los 

sedimentos oceánicos la mineralización es predominantemente aeróbica, en las 

regiones costeras es habitual observar la desnitrificación, sulfato-reducción e 

incluso la fermentación (Middelburg et al. 1993). 

4) El 75% del nitrógeno orgánico total (Wollast 1993), o el 87% del carbono 

orgánico total (Middelburg et al. 1993), es preservado en los sedimentos 

costeros, por lo que constituyen la trampa más efectiva para el carbono 

antropogénico en el mar. 

Las zonas costeras en Europa cubren cuatro regiones principales, el mar 

Báltico, el mar Mediterráneo, el mar Negro y la costa europea atlántica, 

incluyendo el mar del Norte, presentando una amplia diversidad de hábitats y 

comunidades. El valor promedio de la producción primaria en estas aguas es de 

180 g C m-2 por año, mientras que, en promedio, la respiración de la 

comunidad bentónica consume aproximadamente el 40% de la producción 

pelágica de materia orgánica (Gazeau et al. 2004). La producción primaria 

media en la región que abarca la zona costera Atlántica y el mar del Norte es 

mayor (224 g C m-2 por año), sin embargo la comunidad bentónica presenta 

menores tasas de respiración (~30% de la producción primaria). 

La importancia de la materia orgánica disuelta en los ciclos de carbono y 

nutrientes está intensificada en las aguas costeras, donde tanto la exudación 

producida por los organismos acuáticos como la degradación de la materia 

vegetal marina y terrestre produce grandes cantidades de materia orgánica 
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disuelta (Nagata 2000, Carlson 2002). La producción de este material disuelto 

es especialmente elevada en las áreas de afloramiento costero, donde el régimen 

de vientos en la plataforma sustenta un fuerte intercambio con las aguas del 

océano adyacente (Barber & Smith 1981, Walsh 1991), lo que provoca una 

elevada fertilización de nutrientes (Hansell & Carlson 1998a, Doval et al. 1997, 

Álvarez-Salgado et al. 2001a). Además, esta materia orgánica producida en las 

zonas de afloramiento es susceptible de experimentar unas condiciones 

extremas de oxidación y reducción (Gagosian et al. 1978). 

La materia orgánica disuelta en el Sistema de Afloramiento Ibérico 

El Sistema de Afloramiento Ibérico está localizado entre el 37º y el 43ºN, en 

el límite septentrional del sistema de afloramiento Ibérico-NO de África (Fig. 

1.9) e incluye las Rías Baixas en la zona del 42-43ºN, cuatro largos (>2.5 km3) 

entrantes de mar en forma de V, y la plataforma adyacente. Las rías están 

caracterizadas por un patrón de circulación residual en dos capas, con una 

corriente de fondo de entrada y una corriente superficial de salida durante los 

eventos de afloramiento; y con inversión de los flujos durante condiciones de 

hundimiento. Estas bahías responden a la influencia de los vientos de 

plataforma, aún a pesar de estar protegidas por islas (Gilcoto et al. 2001). Los 

aportes continentales modulan también la circulación de las rías, 

principalmente en el segmento más interior, el cual se comporta como un 

estuario parcialmente mezclado cuya circulación está dominada por las 

corrientes de marea (rango mareal medio, 3 m) y los aportes fluviales. La 

circulación de las aguas de plataforma fuera de las Rías Baixas es más compleja; 

está compuesta por una corriente a lo largo de la costa dirigida por el viento y 

un intercambio perpendicular a la costa con el océano adyacente y las Rías 

Baixas. Durante la estación de afloramiento, las aguas superficiales de la 

plataforma son importadas desde las rías, provocando así la entrada de agua de 

la plataforma por las capas más profundas hacia el interior de las rías. Por el 
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contrario, durante la estación de hundimiento, se desarrolla un frente de 

convergencia entre la plataforma y las rías. La posición de este frente a lo largo 

de la costa depende de la fuerza relativa de los vientos costeros y de los aportes 

continentales (Álvarez-Salgado et al. 2000; Fig. 1.10). 

El noroeste de la Península Ibérica presenta dos notables características; la 

primera, el ciclo anual está dividido en una estación de afloramiento, con 

cortos intervalos de relajación que aumentan la productividad (Álvarez-Salgado 

et al. 1999), y otra estación dominada por episodios de hundimiento, que se 

distingue por una baja producción primaria. Durante los eventos de 

afloramiento los vientos del norte provocan la elevación del Agua Central del 

Atlántico Norte Oriental (ENACW) sobre la plataforma, entrando por el 

fondo de la ría e impulsando el modelo de circulación residual positiva (Rosón 

et al. 1997). Otro notable fenómeno de esta región es la intrusión de la 

Corriente Ibérica hacia el Polo (IPC) a lo largo de la costa durante el invierno, 

transportando aguas subtropicales hasta nuestras latitudes (Haynes & Barton 

1990, Álvarez-Salgado et al. 2003). 

El afloramiento del NO Ibérico es un sistema de estudio ideal debido a 1) la 

amplia variabilidad espacial y temporal a diferentes escalas, 2) el conocimiento 

existente acerca de su circulación y de los ciclos de C, N, P y Si, y 3) la 

importancia económica de esta zona por sus recursos pesqueros y de 

acuicultura. 

El interés en el papel jugado por la materia orgánica disuelta en los ciclos 

biogeoquímicos en el sistema de afloramiento del NO Ibérico emergió en 

1989, durante una campaña en la Ría de Arousa (Fig. 1.9). El uso de un modelo 

inverso de cajas (Rosón et al. 1997) reveló, antes del uso de métodos HTCO, 

que más del 40% del consumo de carbono y nitrógeno inorgánico durante la 

estación de afloramiento era probablemente transformado en materia orgánica 

disuelta (Álvarez-Salgado et al. 1996a, 1996b, Rosón et al. 1999). El desarrollo 
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de las técnicas HTCO (Álvarez-Salgado & Miller 1998) hicieron posible 

profundizar en el estudio de la contribución de la materia orgánica disuelta a 

los ciclos biogeoquímicos en este sistema. Así, Doval et al. (1997) y Álvarez-

Salgado et al. (1999) produjeron una completa colección de datos de carbono y 

nitrógeno orgánico disuelto y particulado en el segmento medio de la Ría de 

Vigo y en la plataforma adyacente. Durante la estación de afloramiento se 

observó una acumulación superficial de materia orgánica disuelta, en 

comparación con la concentración esperada por la mezcla entre aguas 

continentales y aguas centrales oceánicas. La relación C/N del material 

orgánico particulado presentó un aumento desde las capas superficiales (6.3) 

hasta las de fondo (8.8), debido a la labilidad de los compuestos de nitrógeno 

en la columna de agua y los sedimentos (Copin-Montégut & Copin-Montégut 

1983). Los perfiles de carbono y nitrógeno orgánico particulado presentaron 

dos máximos, el mayor en la superficie y el secundario en la capa de fondo. Por 

otro lado, las concentraciones de carbono y nitrógeno orgánico disuelto 

decrecieron desde un máximo superficial a un mínimo en el fondo. La relación 

molar entre el carbono y el nitrógeno orgánico disuelto no cambia 

significativamente con la profundidad, oscilando entre 11 y 18. La materia 

orgánica particulada se acumula durante la relajación del afloramiento, cuando 

la concentración de nutrientes es aún alta y el transporte horizontal es bajo 

(Zimmerman et al. 1987, Álvarez-Salgado et al. 1996b, Doval et al. 1997). Sin 

embargo, la acumulación de materia orgánica disuelta ocurre varios días 

después de la relajación del afloramiento, cuando el crecimiento del 

fitoplancton está limitado por agotamiento de nutrientes. Álvarez-Salgado et al. 

(1999) concluyeron que las Rías Baixas operan como fuentes de materia 

orgánica disuelta biodegradable para las aguas de la plataforma adyacente. El 

probable destino de la materia orgánica disuelta producida en las rías es, 

durante los eventos de afloramiento, la dilución con las aguas centrales 
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atlánticas (pobres en esta materia orgánica) junto con la exportación hacia las 

aguas del océano adyacente, y consumo in situ durante los eventos de 

relajación-hundimiento (Álvarez-Salgado et al. 2001a). Asimismo, se ha 

observado que el 50% del material exportado desde la plataforma al océano 

por un filamento en agosto de 1998 era materia orgánica disuelta (Álvarez-

Salgado et al. 2001b). 

En marzo de 1992, un exhaustivo estudio de las formas nitrogenadas y del 

fitoplancton de la zona eufótica de la plataforma del norte de España mostró 

una acumulación de nitrógeno orgánico disuelto, en comparación con la 

mezcla de las aguas de los aportes continentales y las aguas centrales (Bode et 

al. 2001). También se observó en este estudio un desacoplamiento entre el 

fitoplancton y la producción de nitrógeno orgánico disuelto, lo que sugiere la 

participación de herbívoros microplanctónicos en la liberación de nitrógeno 

orgánico disuelto. Un posterior trabajo en la Ría de La Coruña (NO España; 

Fig. 1.9) encontró altas tasas de regeneración de nitrógeno, indicando que una 

amplia proporción de la materia orgánica producida después del pulso de 

afloramiento fue reciclada en la columna de agua a través del bucle microbiano 

(Bode et al. 2004a). Teira et al. (2003) sugirieron un comportamiento similar en 

una campaña llevada a cabo en el exterior de esta ría, indicando la naturaleza 

autotrófica de este sistema costero, el cual exporta desde la capa eufótica entre 

el 1 y el 86% de la producción primaria total en forma de carbono orgánico 

particulado. Del mismo modo, los flujos de carbono y nitrógeno señalaron que 

la liberación de carbono se producía preferentemente en la superficie, mientras 

que la liberación de nitrógeno ocurría cerca de la base de la zona eufótica 

(Bode et al. 2004b). 

La relación existente entre la estructura de tamaños del fitoplancton y la 

producción de carbono orgánico disuelto fue también establecida en el sistema 

de afloramiento del NO Ibérico por Teira et al. (2001a, 2001b). De este modo, 
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las comunidades dominadas por el picoplancton mostraron metabolismos 

netamente heterotróficos o equilibrados y tasas relativamente elevadas de 

producción de carbono orgánico disuelto en relación a la producción primaria 

total. Sin embargo, durante condiciones de estratificación o hundimiento, en 

las que dominan células de mayor tamaño, se observa un metabolismo 

netamente autotrófico y bajas tasas de producción de carbono orgánico 

disuelto en relación con la producción primaria total. En este sentido, Teira et 

al. (2001a) encontraron tres ambientes distintos: 1) durante el afloramiento 

estival estimaron que la producción de carbono orgánico disuelto constituía el 

6 % de la producción primaria total bajo condiciones autotróficas, 2) durante la 

estratificación estival la producción de carbono orgánico disuelto aumentó 

hasta el 20% y el metabolismo se encontraba netamente equilibrado, y 3) 

durante el hundimiento otoñal, la producción de carbono orgánico disuelto 

registró los máximos valores (~33%), mostrando una naturaleza heterotrófica 

(Fig. 1.11). Además, se observó una relación lineal entre las tasas de 

producción de carbono orgánico disuelto y particulado bajo condiciones de 

afloramiento, sin embargo, en ambientes oligotróficos, durante eventos de 

relajación y hundimiento, no se observó esta correlación, lo que sugiere 

diferentes procesos de liberación del carbono orgánico disuelto para cada 

situación (Teira et al. 2001b). 

Marañón et al. (2004) presentaron por primera vez tasas de producción de 

carbono orgánico disuelto y particulado simultáneos durante un ciclo estacional 

en la Ría de Vigo. No se encontraron patrones estacionales destacables y la 

producción de carbono orgánico disuelto contribuyó en un 15-25% de la 

producción primaria total, permaneciendo constante o incluso aumentando 

con la profundidad. Por otro lado, la producción de carbono orgánico 

particulado en la columna de agua disminuyó notablemente bajo la capa 

superficial. En este sentido, los resultados de Marañón et al. (2004) contradicen 
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la idea de que la liberación de carbono orgánico disuelto ocurre 

preferentemente bajo condiciones de alta irradiancia y baja concentración de 

nutrientes. Así mismo, Varela et al. (2003) sugirieron que los procesos 

fisiológicos (como la exudación de carbohidratos por diatomeas) parecen ser la 

causa de la elevada acumulación de carbono orgánico disuelto, mientras que los 

procesos tróficos (como la herbivoría) son la causa más probable de la elevada 

liberación de nitrógeno orgánico disuelto. 
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Hipótesis general de trabajo: 

La variabilidad espacial (ecosistemas de ría, plataforma y océano adyacente) y 

temporal, tanto a escala estacional (periodos de afloramiento, hundimiento y de 

transición) como de evento (ciclos de tensión/relajación del viento costero) 

tiene un efecto determinante sobre el intercambio de materiales entre los 

distintos ecosistemas y, en consecuencia, sobre la partición (fases disuelta y en 

suspensión), la composición química y la reactividad de los materiales 

generados (o consumidos) en dichos ecosistemas. 

Objetivos: 

1) El fraccionamiento durante la mineralización de la materia orgánica. La 

composición química (estequiometría C/N/P) y las propiedades ópticas 

(fluorescencia de la materia orgánica disuelta) de la materia orgánica producida, 

transportada o consumida en estas aguas varía tanto de costa a océano como 

desde las capas superficiales hasta las más profundas. 

2) La partición durante la mineralización de la materia orgánica. La 

contribución de la materia orgánica disuelta, particuladas y en suspensión a los 

procesos de mineralización varía desde la costa al océano y, también, desde 

superficie hasta fondo. 

3) El ciclo de los carbohidratos en un sistema de afloramiento costero. Los 

carbohidratos son el componente mayoritario del carbón orgánico biogénico 

producido y acumulado en las capas superiores del sistema de afloramiento del 

NO de la Península Ibérica. El material lábil y semilábil se puede diferenciar 

caracterizando los carbohidratos en mono- y polisacáridos, respectivamente. 

4) La fluorescencia de la materia orgánica fluorescente usada como trazador 

de procesos microbianos y fotoquímicos. La fracción fluorescente de la materia 

orgánica disuelta es biológica y fotoquímicamente activa, de tal forma que la 

variabilidad espacio-temporal de ciertos fluoróforos (materiales pseudo-
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húmicos y pseudo-proteicos) puede ser utilizada como trazador de procesos de 

producción-consumo, mineralización y fotodegradación. 
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Chapter 2, the research work presented in this chapter is also a 

contribution to the paper: 

M. Nieto-Cid, X. A. Álvarez-Salgado, S. Brea, F. F. Pérez. 2004. Cycling of 

dissolved and particulate carbohydrates in a coastal upwelling system 

(NW Iberian Peninsula). Mar Ecol Prog Ser 283:39-54 

 

Resumen: En este trabajo se evalúa la contribución de carbohidratos al 

carbono orgánico disuelto (DOC) y particulado (POC) en las aguas de 

plataforma del NW Ibérico entre mayo de 2001 y abril de 2002. Los 

carbohidratos particulados (p-CHO) representan el 26 ± 1% y 12 ± 1% de los 

cambios en el POC en el segmento central de la Ría de Vigo (50 m de 

profundidad) y en la plataforma continental (150 m de profundidad), 

respectivamente. La contribución de los carbohidratos disueltos (d-CHO) a los 

cambios en el DOC fue mayor que en el caso del material particulado: 29 ± 4% 

en la ría y 31 ± 4% en la plataforma. La correlación entre p-CHO y POC (r = 

+0.88, n = 298, p <0.001) y entre d-CHO y DOC (r = +0.82, n = 298, p 

<0.001) indican que las variaciones en los carbohidratos están ligados a los 

cambios en el carbono orgánico en la escala de tiempo de la frecuencia de 

muestreo (2 semanas). La máxima acumulación de carbohidratos sucedió 

durante la estación de afloramiento en la fase de ‘spin down’ de los episodios de 

afloramiento; se estimaron tasas de producción de d-CHO en la ría de ~1.5 

µmol C L-1 d-1, un orden de magnitud mayor que durante el invierno. Los 

monosacáridos representan entre el 30 y el 40% de los carbohidratos disueltos, 

sin embargo son responsables de menos del 20% de los cambios de d-CHO, 

indicando que la mayoría de los d-CHO formados recientemente son 

polisacáridos semilábiles. 
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Abstract: The contribution of carbohydrates to the dissolved (DOC) and suspended 

(POC) organic carbon pools in NW Iberian shelf waters has been assessed from May 

2001 to April 2002. Particulate carbohydrates (p-CHO) represented 26 ± 1% and 

12 ± 1% of the POC changes in the middle Ría de Vigo (50 m water) and the 

middle shelf (150 m water) respectively. The contribution of dissolved 

carbohydrates (d-CHO) to the DOC changes was larger: 29 ± 4% in the middle 

ría and 31 ± 4% in the middle shelf. The correlations between p-CHO and 

POC (r = +0.88, n = 298, p <0.001) and between d-CHO and DOC (r = 

+0.82, n = 298, p <0.001) indicate that carbohydrate changes are linked to bulk 

organic carbon changes at the time scale of the sampling frequency (2 weeks). 

Maximum carbohydrate accumulation occurred during the upwelling season at 

the ‘spin down’ phase of upwelling events; estimated rates of d-CHO 

production in the middle ría are ~1.5 µmol C L-1 d-1, an order of magnitude 

larger than during the winter period. Although monosaccharides represent 30-

40% of the bulk d-CHO, they are responsible for less than 20% of the d-CHO 

changes, indicating that most of the freshly produced d-CHO is semi-labile 

sugar polymers. 
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INTRODUCTION 

Although marine dissolved organic matter (DOM) is one of the largest active 

reservoirs of organic carbon in the biosphere (Hedges 1992, 2002) and it is 

important for understanding the global carbon cycle and the changes in the 

concentration of atmospheric carbon dioxide (Siegenthaler & Sarmiento 1993), 

only a small portion of this pool has been already identified. The major 

advances have been achieved with the combination of ultrafiltration methods 

(Amon & Benner 1996) and nuclear magnetic resonance techniques (Benner et 

al. 1992, Aluwihare et al. 1997, McCarthy et al. 1997, Clark et al. 1998, Hedges 

et al. 2002). Carbohydrates are one of the major products of marine 

phytoplankton photosynthesis and represent the main part of the known 

fraction of organic carbon in the water column (Benner 2002, Ogawa & 

Tanoue 2003). According to Pakulski & Benner (1994), dissolved carbohydrate 

accounted for 13-46% of the dissolved organic carbon (DOC) pool in seasonal 

thermocline waters, with significant differences between environments: the 

percentage is higher in the Pacific Ocean (~30%) and the Gulf of Mexico 

(~23%) than in the North Atlantic (~16%). In contrast, the percentage of 

carbohydrates in ultrafiltered DOM (UDOM) represents from 50% (surface 

waters) to 25% (deep waters) by 13C NMR (Benner et al. 1992), and 80 ± 4% by 
1H NMR (Aluwihare et al. 1997). 

Particulate organic matter (POM) is a mixture of plankton and detritus with 

different elemental (C, H, O, N, P) and biochemical (proteins, carbohydrates, 

lipids, phosphorus compounds, pigments) compositions; detritus is richer in 

lipids and phytoplankton in proteins and carbohydrates (Ríos et al. 1998). The 

variability of particulate organic carbon (POC) is affected by the quality (ratio 

between plankton and detritus, predominance of diatoms or other autotrophs, 

heterotrophs,…) and the composition of the different groups. The Redfield 

formula (C106H171O42N16P) represents the average composition of the organic 
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tissues of marine phytoplankton (Anderson 1995, Fraga 2001), with a 23.4% 

(w/w) of carbohydrates, although it range from 15 to 26% for plankton net tow 

samples from different marine environments (Hedges et al. 2002). 

Several methods have been used to determine dissolved carbohydrates until 

the MBTH colorimetric method was proposed by Burney & Sieburth (1977). 

This procedure is tedious and involves many steps. More recently, the 

colorimetric reagent TPTZ has been suggested (Myklestad et al. 1997). These 

two methods agree well, especially in filtered seawater samples (Witter & Luther 

III 2002). They provided concentrations much higher than those obtained by 

molecular separation methods such as HPLC with pulse amperometric 

detection (HPLC-PAD). The reasons for this divergence are not very clear yet. 

The numerous difficulties in carbohydrate analysis, such as the low 

concentrations of free monosaccharides (Pakulski & Benner 1994), their high 

water solubility, the lack of a light-absorbing chromophore and the presence of 

multiple charge states at seawater pH (neutral sugars, positively charged amino 

sugars and negatively charged uronic acid), are behind the multiplicity of 

methods and the discrepancies between them. 

A limited amount of studies about the dissolved carbohydrate pool has been 

published over the last decade. Most of them refer to single transects sampled 

once (Bhosle et al. 1998, Hung et al. 2001, Witter & Luther III 2002) or twice 

(Pettine et al. 1999, Hung et al. 2003a) in different environments. Only one 

annual cycle has been presented up to day by Børsheim et al. (1999), who 

sampled monthly two inshore stations during two years in the Trondheimsfjord 

(Norway). None of these studies is devoted to oceanic or coastal upwelling 

areas. 

Although ocean margins cover only 8% of the total ocean surface, according 

to different estimates they support 18-33% of the global net primary 

production and 27-50% of the global export production (Walsh 1991, Chavez 
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& Toggweiler 1995, Wollast 1998). Coastal upwelling areas are particularly 

productive because of the enhanced entry of nutrients from the adjacent ocean. 

Therefore, they are probable sites of intensified carbohydrate production. 

The western coast of the Iberian Peninsula is affected by intermittent periods 

of upwelling (1-2 weeks, Álvarez-Salgado et al. 1999), with a marked seasonal 

cycle (Wooster et al. 1976). From April to October (the upwelling season) 

northerly winds cause Eastern North Atlantic Central Water (ENACW) to 

upwell over the shelf, penetrating from the bottom of the ría and enhancing the 

positive residual circulation pattern (Rosón et al. 1997). Transition from 

northerly to southerly winds occurs during the autumn (October-November). 

From November to March (the downwelling season), southerly winds prevail 

and a downwelling front develops at the slope, precluding shelf edge exchange 

(Castro et al. 1997). During the winter, a strong poleward flow of subtropical 

ENACW occurs along the slope (Haynes & Barton 1990, Álvarez-Salgado et al. 

2003). 

Studies of the role played by DOM in coastal upwelling systems are relatively 

scarce, and most of them have been conducted in the western coast of the 

Iberian Peninsula. These studies have confirmed that the Rías Baixas are pre-

eminent sites for the synthesis of DOM (Álvarez-Salgado et al. 1999), which is 

exported to the adjacent shelf during upwelling events and 

accumulated/consumed in situ during relaxation/downwelling events (Álvarez-

Salgado et al. 2001a). The present study, focused on the contribution of 

carbohydrates to the dissolved and suspended organic carbon pools, constitutes 

a step ahead in our knowledge of the behaviour of DOM in this coastal 

upwelling system. We demonstrate the importance of carbohydrates for the 

carbon cycling at the different stages of the seasonal cycle and approach the 

lability of this carbon pool through the mono- to polysaccharides ratio. 
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MATERIALS AND METHODS 

Survey area. Figure 2.1 shows the study area, comprising the Ría de Vigo and 

the adjacent shelf, the two contrasting domains occupied during the present 

study. On one hand, the rías are characterised by a 2-layered residual circulation 

pattern, with an ongoing bottom current and an outgoing surface current 

during upwelling events and a reversal of the flow during downwelling 

conditions. Therefore, these large (>2.5 km3) V-shaped embayments respond to 

the influence of shelf winds despite they are protected by island barriers 

(Gilcoto et al. 2001). In addition, continental runoff modulates also the 

circulation of the rías, mainly at the innermost segment, which behaves as a 

partially mixed estuary driven by tidal currents (average tidal range, 3 m) and 

river runoff. For the case of the Ría de Vigo, the main tributary is the river 

Oitabén-Verdugo, with an average flow of 18 m3 s-1 during the study period (see 

inset of Fig. 2.1). 
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Figure 2.1 The Ría de Vigo and adjacent shelf (NW Iberian Peninsula). The three stations 
and the Eiras station, at the upper course of the Oitabén-Verdugo river, are shown 
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On the other hand, the circulation of shelf waters off the Rías Baixas is more 

complex; it is composed of a wind-driven along-shore current and an across-

shore exchange with the adjacent ocean and the Rías Baixas. During the 

upwelling season, shelf surface waters are imported from the rías and the 

bottom waters of the rías enter from the shelf. On the contrary, during the 

downwelling season, a convergence front between the shelf and the rías 

develops. The position of that front in the along-shore direction depends on 

the relative strength of coastal winds and continental runoff (Álvarez-Salgado et 

al. 2000). 

Sampling strategy. Two stations were sampled weekly aboard RV Mytilus 

from May 2001 to April 2002. The mid-shelf station (stn 03; 42º07.8’N, 

9º10.2’W, 150 m deep) was occupied from 08:00 to 10:00 h GMT. Station 00 

(42º13.8’N, 8º51.0’W) was located in the middle segment of the Ría de Vigo (40 

m depth in low water) and it was sampled from 14:00 to 15:00 h GMT. Full-

depth continuous conductivity-temperature-depth (CTD) profiles were 

recorded at each sampling site with a SBE 9/11 CTD device incorporated into 

a rosette sampler equipped with twelve 10-L Niskin bottles. Conductivity 

measurements were converted into practical salinity scale values (UNESCO 

1985). Seawater samples were collected from 5, 25, 40, 60, 75, 100 and 150 m at 

stn 03, and 5, 15 and 40 m at stn 00. In addition, two samples of ENACW were 

taken at an oceanic station (stn 05; 42º07.8’N, 9º30.0’W, 1200 m deep), at 150 

and 200 m. 

Aliquots for dissolved and particulate organic matter analyses were collected 

in 500-mL acid-cleaned glass flasks and 5-L acid-cleaned PVC containers, 

respectively. Dissolved organic matter samples were filtered through 

precombusted (450ºC, 4 h) 47-mm ø Whatman GF/F filters in an acid-cleaned 

glass filtration system, under low N2-flow pressure. Two aliquots were 

recovered, for organic carbon (DOC) and carbohydrates (d-CHO). Samples for 
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the analysis of DOC were collected in 10-mL precombusted (450ºC, 12 h) glass 

ampoules. After acidification with H3PO4 to pH < 2, the ampoules were heat-

sealed and stored in the dark at 4ºC until analysis. For d-CHO, the filtrate was 

collected in 50-mL polyethylene containers and frozen at -20ºC until analysis. 

Suspended organic matter was collected under low-vacuum on precombusted 

(450ºC, 4 h) 25-mm ø Whatman GF/F filters for organic carbon (POC, 0.5-1.5 

L of seawater) and carbohydrates (p-CHO, 250-500 mL of seawater). All filters 

were dried overnight and frozen (-20ºC) before analysis. Samples for DOC and 

POC were collected every survey (weekly periodicity), whereas d-CHO and     

p-CHO were taken every two surveys (fortnightly periodicity). 

In addition, one station in the upper course of the river Oitabén-Verdugo was 

sampled regularly during the seasonal cycle (Eiras reservoir, Fig. 2.1). Samples 

for DOC, POC, d-CHO and p-CHO were taken with a 1.7-L Niskin bottle, 

adapted for riverine samples, at the surface layer. They were processed as the 

seawater samples. 

Carbon analyses. DOC was measured with a commercial Shimadzu TOC-

5000 organic carbon analyzer, working under the principle of high-temperature 

catalytic oxidation. After decarbonation of the sample by vigorous stirring with 

high-purity synthetic air for 15 min, 200 µL were injected into the vertical 

furnace (a quartz tube) of the analyzer, filled with a 0.5% Pt-coated Al2O3 

catalyst at 680ºC. Quantitative production of CO2 occurs from the DOC in the 

sample; and this CO2 was measured in the Shimadzu Infrared Gas Analyzer. 

Three to 5 replicate injections were performed per sample and the system was 

standardized daily with potassium hydrogen phthalate in Milli-Q water. The 

concentration of DOC was determined by subtracting the average peak area 

from the instrument blank area and dividing by the slope of the standard curve. 

The system blank, obtained by frequent injection (every 5 samples) of UV-Milli-

Q water, was equivalent to 5-10 µmol C L-1.The precision of measurements was 
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1%, i.e. ±0.7 µmol C L-1.Their accuracy was tested daily with the DOC 

reference materials provided by D. Hansell (University of Miami). We obtained 

an average concentration of 45.7 ± 1.6 µmol C L-1 (n = 26) for the deep ocean 

reference (Sargasso Sea deep water, 2600 m) minus blank reference materials. 

The nominal value provided by the reference laboratory is 44.0 ± 1.5 µmol C  

L-1. 

Measurements of POC were carried out with a Perkin Elmer 2400 CHN 

analyzer. Filters were packed into 30 mm tin disks and injected into a vertical 

quartz furnace where combustion to CO2, N2 and H2O is performed at 900ºC. 

After separation of the gas products in a chromatographic column, a 

conductivity detector quantified the C, N and H content of the sample. Daily 

standards of acetanilide were added. The precision of the method was ±0.3 

µmol L-1 for the case of carbon. 

Carbohydrate analyses. The determination of p-CHO carbohydrates was 

carried out by the anthrone method (Ríos et al. 1998). It is based in the 

quantitative reaction of sugars with anthrone in a strongly acid medium at 90ºC, 

to give an intensely coloured compound. The absorption was measured at 625 

nm. To avoid manipulation of a strong acid (H2SO4 12M), the detection of the 

coloured compound was performed in a segmented flow analysis (SFA) system. 

It was necessary to use an all-glass manifold and a pump-tube of Viton® for 

the sample. The system was calibrated daily with D-glucose standards. The 

estimated accuracy of the method is ±0.1 µmol C L-1. 

Dissolved mono- and polysaccharides (MCHO and PCHO) were determined 

by the oxidation of the free reduced sugars with 2,4,6-tripyridyl-s-triazine 

(TPTZ) followed by spectrophotometric analysis (Myklestad et al. 1997, Hung 

et al. 2001). Briefly, the redox reactions are the following: 
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RCHO + 2Fe(CN)6
3– + 3OH–  →  RCO2 + 2Fe(CN)6

4– + 2H2O 

Fe3+ + Fe(CN)6
4– + 2TPTZ → Fe(CN)6

3– + Fe(TPTZ)2
2+  

                                                                    (violet-coloured complex) 

The aldehydes of the MCHO or the PCHO (after hydrolysis of glycosidic 

bonds) are oxidized at alkaline pH; consequently, Fe3+ is reduced to Fe2+. Then, 

TPTZ is condensed with the resultant Fe2+ to give a violet-coloured 

Fe(TPTZ)2
2+ complex, which is spectrophotometrically determined at 595 nm. 

Hydrolysis of PCHO was carried out at pH = 1, at 150ºC during 1 hour. 

Samples were acidified with HCl and, after hydrolysis, they were neutralized 

with NaOH. The reagents and products involved in the reactions are light 

sensitive; because of this, all the analytical procedure must be carrying out in 

the dark. Due to the large number of samples and the sensitivity of the method 

to ambient light, the detection of the coloured compound was run in an 

automated SFA system. MCHO concentrations were quantified using a daily 

calibration curve made from D-glucose in Milli-Q water with concentrations 

between +0 and +32 µmol C L-1, whereas the standardization of d-CHO was 

made with D-glucose and soluble starch in Milli-Q water, with the same 

concentrations. Differences between calibration curves in Milli-Q water and 

seawater were negligible, as previously indicated by Witter & Luther III (2002). 

Quantification of MCHO and d-CHO was made by subtracting the average 

peak height from the blank height, and dividing by the slope of the standard 

curve. d-CHO were corrected for dilution during the hydrolysis step. PCHO 

concentrations were calculated as the difference between d-CHO and MCHO. 

Three replicates were measured for each sample. The estimate accuracy was 

±0.6 µmol C L-1for MCHO and ±0.7 µmol C L-1 for d-CHO, and the detection 

limit was ~2 µmol C L-1. Therefore, the calculated accuracy for PCHO is ±0.9 

µmol C L-1 ([0.62 + 0.72]0.5). 
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Meteorological variables. Daily Ekman transport values (-QX, m2s-1) were 

calculated according to Wooster et al. (1976): 

f
VVC

SW

yair

⋅

⋅⋅⋅
=

ρ
ρ

XQ-  (2.1)

where airρ  is the density of air, 1.22 kg m-3 at 15ºC; C is an empirical drag 

coefficient (dimensionless), 1.3 × 10-3; f is the Coriolis parameter, 9.946 × 10-5s-1 

at 43º latitude; SWρ  is the density of seawater, ~1025 kg m-3; |V| is the wind 

speed; and Vy is the north component of wind speed. Wind data were taken 

hourly from the anemometer of the SeaWatch Buoy Silleiro Meteorological 

Observatory at 42º07.2’N, 9º24.0’W (http://www.puertos.es). Positive values 

indicate upwelling and downwelling occurs when negative values are obtained. 

Daily continental runoff (QR, m3s-1) was estimated as the sum of a function of 

precipitation in the drainage basin, 589 km2 (Ríos et al. 1992), and the flow 

from the river Oitabén-Verdugo, regulated by the Eiras reservoir. 

Regression analysis. The best-fit between any couple of variables (X, Y) 

was obtained minimizing the function: 
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where wX and wY are weights for X and Y respectively, with wX, wY ≥ 0 and wX + 

wY = 1. The weight factors are a function of the estimated experimental error of 

the measured variable (er) regarding the standard deviation (SD) of the whole 

set of measurements of such parameter. For a given couple of variables: 
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Any regression model can be expressed as a linear combination of two 

extreme categories: a) model I, which should be applied when wX = 0, wY = 1 

and b) model II when wX = wY = 0.5 (Sokal and Rohlf 1995). 
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RESULTS 

Dissolved and suspended CHO in relation to the hydrography of NW 

Spain 

Seven hydrographic periods can be discerned on basis of the seasonal 

evolution of key meteorological variables such as -QX and QR (Fig. 2.2a, Table 

2.1) and the observed water column response (Fig. 2.2b-e). The first period, 

during spring and summer, was characterised by moderate upwelling-favourable 

winds separated by shorts intervals of wind calm. This caused marked summer 

stratification, with warm waters at the surface (17-19ºC) and cold waters at the 

bottom (13ºC). Average -QX values indicate moderate upwelling (-QX = 257 

m3s-1 km-1) and reduced continental runoff (QR = 15 m3s-1). At the end of the 

summer, a strong upwelling event (-QX = 500 m3s-1km-1) produced a sudden 

cooling of the water column: temperature in the surface layer decreased up to 

15-16ºC due to the uplift of ENACW (F 2.2c). During October, continental 

runoff was high (QR = 47 m3s-1) and coastal winds experienced a dramatic 

change in direction (-QX = -347 m3s-1km-1) that promoted downwelling. This 

downwelling produced a reversal of the residual circulation of the ría (Fig. 2.2a) 

with an entry of warm oceanic surface water (Fig. 2.2c,e). From 20 to 22 

October strong runoff was observed (>300 m3s-1, Fig. 2.2a) that restored the 

positive residual circulation pattern. Transition from stratification to vertical 

homogenisation occurred by 20 November coinciding with enhanced Ekman 

transport values (-QX = 712 m3s-1km-1) and low continental runoff (QR = 10 

m3s-1). At the end of the autumn and the beginning of the winter a new wind 

reversal (-QX = -216 m3s-1km-1) promoted the intrusion of the Iberian Poleward 

Current (IPC) on the shelf, characterised by a salinity maximum (Fig 2d) and 

relatively warm temperatures >14ºC (Fig. 2.2e). Continental runoff (QR = 13 

m3s-1) was perceptible only at the innermost station, where surface salinity 

decreased below 34.0 (Fig. 2.3b). Maximum vertical homogenisation occurred 
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during the winter mixing period (by March), coinciding with positive values of  

-QX (231 m3s-1km-1) and limited runoff (QR = 17 m3s-1). Finally, the beginning of 

the spring transition from homogenisation to stratification was observed at the 

end of the study period, with enhanced positive values of -QX (381 m3s-1 km-1), 

reduced QR (10 m3s-1) and a slight increase of surface temperature (Fig. 2.2c,e). 
 

Table 2.1 Average offshore Ekman transport (-QX, m2s-1), continental runoff (QR, m3s-1), 
surface water flux at stn 00 (QS00, 103 m3s-1) and renewal rate at stn 00 (% d-1) for the seven 
hydrographic periods identified during the sampling period. Positive values of -QX indicates 
upwelling, negative values downwelling. Positive values of QS00 indicates a positive residual 
circulation pattern and negative values a negative residual circulation pattern. For QS00 and 
renewal rate the errors associated to the equation (2.4) are shown 
 

  Period Dates -QX QR QS00 
Renewal 

rate 
 1 summer strat. 15 May-21 Aug 257 15 0.8 ± 0.1 13 ± 2 
 2 upwelling 28 Aug-18 Sep 500 8 1.3 ± 0.1 21 ± 2 
 3 downwelling 25 Sep-30 Oct -347 47 0.0 ± 0.1 2 ± 2 
 4 transition 6 Nov-20 Nov 712 10 1.8 ± 0.2 29 ± 3 
 5 IPC 27 Nov-13 Feb -216 13 -0.3 ± 0.1 5 ± 1 
 6 winter mixing 20 Feb-26 Mar 231 17 0.8 ± 0.1 13 ± 2 
 7 spring 2 Apr-24 Apr 381 10 1.0 ± 0.1 17 ± 2 

 annual cycle 15 May-24 Apr 129 17 0.6 ± 0.1 9 ± 2 
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Figure 2.2 Time course of (a) Ekman transport, -QX (m2s-1), continental runoff, 
-QR (m3s-1) and surface water flux at stn 00, QS00 (103 m3s-1), (b) salinity at stn 00, 
(c) temperature (ºC) at stn 00, (d) salinity at stn 03 and (e) temperature (ºC) at stn 
03. The seven different periods are shown in panel (a) and the correspondences 
in Table 2.1 
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The position of the convergence front between IPC and continental waters 

along the Ría de Vigo depends on the relative importance of -QX and QR. 

Álvarez-Salgado et al. (2000) demonstrated that the residual circulation at stn 00 

could be explained with these two variables by the equation: 

X
3

R
3

00S Q10)2.0(3.2Q10)4(16Q −− ⋅±−⋅±=  (2.4)

where QS00 (103 m3s-1) is the surface water flux at stn 00 (Fig. 2.2a). Considering 

this flux and the volume of the ría from the inner reaches to stn 00 (0.53 km3), 

renewal rates were estimated for every period (Table 2.1). Under summer 

stratification and upwelling conditions, the residual circulation was positive 

(QS00 = 0.8 ± 0.1 and 1.3 ± 0.1 103 m3s-1, respectively) with large renewal rates 

(13 ± 2 and 21 ± 2% d-1). During the downwelling period, the flux was virtually 

stopped (QS00 = 0.0 ± 0.1 103 m3s-1), because of enhanced runoff balancing the 

downwelling pattern, with a renewal of only 2 ± 2% d-1. Larger renewal rates 

occurred during the transitional period (29 ± 3% d-1). The average renewal rate 

for the study year was 9 ± 2%  d-1, and the residual circulation at stn 00 kept 

positive at 0.6 ± 0.1 103 m3s-1. 

At stn 00, period average concentrations of particulate organic matter, POC 

and p-CHO (Fig. 2.3a-b), showed maxima in surface waters during summer 

stratification (48 and 11.0 µM C, respectively), and minima at 15 m during the 

transitional and poleward periods (10 and 0.4 µM C, respectively). In the mid-

shelf station (Fig. 2.3c-d) maxima were located at the surface, during upwelling 

events for POC (14 µM) and during summer stratification for p-CHO (1.8 µM 

C). Concentrations at the bottom were larger than at stn 00, suggesting the 

existence of a bottom nepheloid layer due to resuspension of organic rich 

sediments. The lowest concentrations were also found during the transitional 

and IPC periods. In general, there was a good agreement between POC and    

p-CHO distributions (r = +0.88, p < 0.001, n = 298). 
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Fig. 2.3 Time course of (a) POC (µM) at stn 00, (b) p-CHO (µM C) at stn 00, 
(c) POC (µM) at stn 03 and (d) p-CHO (µM C) at stn 03 during the study period 
 

Average POC and p-CHO (stn 00, Fig. 2.4a-b; stn 03, Fig. 2.5a-b) decreased 

monotonically with depth, although a significant rise was observed at the 

bottom layer (p < 0.001). Even concentrations at the innermost station were 

higher than at the outermost one, the contribution of carbohydrates to POC 

was similar in both of them (14 ± 6%). The average profile of the percentage of 

p-CHO showed a significant decrease (p < 0.001) with depth at stn 00 (Fig. 

2.4c). At stn 03 (Fig. 2.5c) it was remarkable an absolute maximum at 75-100 m 
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depth. The slope of the correlation between p-CHO and POC (regression 

model II) was 0.26 ± 0.01 for stn 00 and 0.12 ± 0.01 for stn 03 (Table 2.2). 

This suggests that 26 ± 1% of the POC produced at the innermost station was 

p-CHO, whereas at the mid-shelf station the percentage decrease up to 12 ± 

1%. The origin intercept, i.e. the fraction of p-CHO that did not covary with 

POC, represented the residual organic carbon that remained when p-CHO was 

nil. At stn 00 this residual POC was about 1.8 ± 0.2 µM C (11% of average 

POC at stn 00), but at stn 03 the origin intercept was not significant. 
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Fig. 2.4 Box and whisker plot of (a) POC (µM), (b) p-CHO (µM C), (c) %p-CHO 
in POC, (d) DOC (µM), (e) d-CHO (µM C) and (f) %d-CHO in DOC for the 
whole date set at stn 00. Fifty percent of the data are included within the limit of 
the boxes and the caps represent the 10th and 90th percentiles. Solid lines 
represent the average profiles. Shadow area symbolize the average photic layer 
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Fig. 2.5 Box and whisker plot of (a) POC (µM), (b) p-CHO (µM C), (c) %p-CHO 
in POC, (d) DOC (µM), (e) d-CHO (µM C) and (f) %d-CHO in DOC for the 
whole date set at stn 03. Fifty percent of the data are included within the limit of 
the boxes and the caps represent the 10th and 90th percentiles. Solid lines 
represent the average profiles. Shadow area symbolize the average photic layer 
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Surface accumulation of DOC occurred during downwelling and summer 

stratification periods (>90 µM C) and upwelling period (90 µM C) at stn 00, and 

during summer stratification, upwelling and spring periods (70-90 µM C) and 

downwelling period (70 µM C) at stn 03 (Fig. 2.6a,d). Relatively high average 

DOC values were found at 100 and 150 m in the outermost station during the 

IPC period. Average minima occurred in bottom waters and for the periods of 

transition and winter mixing. At the period of enhanced runoff in October, 

large concentrations were observed throughout the water column at stn 00. 

DOC correlated well with salinity and temperature (r = +0.77, p < 0.001, n = 

298), indicating that water masses mixing was a relevant process to explain 

DOC distributions. 

The time evolution of d-CHO was similar to DOC (r = +0.81, p < 0.001, n = 

298), with surface maxima when the water column was stratified, and during 

the downwelling period due to the high runoff (17 and 12 µM C at stn 00 and 

03, respectively), and lower values at deeper layers. This pattern was observed 

in PCHO too (Fig. 2.6b,e). By contrast, the distribution of MCHO (Fig. 2.6c,f) 

was more homogeneous and showed lower concentrations. d-CHO and PCHO 

correlated significantly with temperature and salinity (r = +0.69, p < 0.001, n = 

298 and  r = +0.67, p < 0.001, n = 298, respectively). 

The average DOC and d-CHO profiles (stn 00, Fig. 2.4d-e) displayed the 

expected maximum values at the surface and decreased significantly with depth 

(p < 0.001). The same pattern was observed at stn 03 (Fig. 2.5d-e), but in this 

case with lower concentrations and less variability in the upper layer. Typical 

DOC and d-CHO values found at stn 00 vary from 80 µM and 13µM C at the 

surface layer and 65 µM and 8 µM C at the bottom, respectively. On average   

d-CHO made up 13 ± 3% of DOC, showing higher values at the surface layer 

that decreased significantly (p < 0.001) with depth (Fig. 2.4f, stn 00 and Fig. 

2.5f, stn 03). 
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Fig. 2.6 Time course of (a) DOC (µM) at stn 00, (b) PCHO (µM C) at stn 00, (c) 
MCHO (µM C) at stn 00, (d) DOC (µM) at stn 03, (e) PCHO (µM C) at stn 03 
and (f) MCHO (µM C) at stn 03 during the study period 
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Table 2.2 Selected significant (p < 0.001) linear regressions among physical and 
biogeochemical variables: particulate carbohydrates (p-CHO), particulate organic carbon 
(POC), dissolved carbohydrates (d-CHO), dissolved organic carbon (DOC), total 
carbohydrates (t-CHO), total organic carbon (TOC), dissolved polysaccharides (PCHO) 
and temperature (T). Numbers in brackets are the standard error of the coefficients 

 

 Variables  Equation r n

 p-CHO vs. POC     
  stn 00 p-CHO = -1.8 (±0.2) + 0.26 (±0.01) POC +0.88 97
  stn 03 p-CHO = 0.08 (±0.03) + 0.12 (±0.01) POC +0.86 201
 d-CHO vs. T, DOC     
  stn 00 d-CHO = -16 (±4) + 0.4 (±0.1) T + 0.29 (±0.03) DOC +0.82 97
  stn 03 d-CHO = -16 (±4) + 0.3 (±0.1) T + 0.31 (±0.04) DOC +0.71 201
 TOC vs. T, POC     
  stn 00 TOC = 22 (±6) + 3.1 (±0.5) T + 1.4 (±0.1) POC +0.93 97
  stn 03 TOC = 21 (±3) + 2.8 (±0.2) T + 1.8 (±0.1) POC +0.86 201
 t-CHO vs. T, p-CHO     
  stn 00 t-CHO = -4 (±2) + 0.9 (±0.2) T + 1.6 (±0.1) p-CHO +0.90 97
  stn 03 t-CHO = -5 (±1) + 0.8 (±0.1) T + 4.7 (±0.5) p-CHO +0.75 201
 PCHO vs. d-CHO     
  stn 00 PCHO = -1.8 (±0.2) + 0.82 (±0.02) d-CHO +0.96 97
  stn 03 PCHO = -1.8 (±0.2) + 0.87 (±0.02) d-CHO +0.92 201
      

 
d-CHO variability can be explained as a linear combination of temperature 

and DOC (regression model I for T and combination of regression models I 

and II with wY = 0.8 for DOC; r = +0.82, p < 0.001 at stn 00 and  r = +0.79,    

p < 0.001 at stn 03; Table 2.2). Figure 2.7c shows the covariation between       

d-CHO and DOC anomalies, calculated as: a Y = Y – a0 – a1 T (where a0 and a1 

are the coefficients of the linear multiple regression of Y with temperature). 

These anomalies (a d-CHO from correlation of d-CHO vs. T in Fig. 2.7a, and   

a DOC from correlation of DOC vs. T in Fig. 2.7b) retained only the variability 

associated to the biogeochemical processes. Therefore, these multiple 

regressions explain the changes of dissolved carbohydrates as a function of 

water masses mixing (T) and biogeochemistry (DOC). The d-CHO/DOC 

slope, independent of water masses mixing, indicated that d-CHO represented 

29 ± 4% of the net production of DOC at stn 00; this value was not 

significantly different from the obtained at stn 03 (31 ± 4%, Table 2.2). 
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A carbohydrate budget for the NW Iberian upwelling 

A rough estimation of the surface carbon excess can be performed with a 

simple 2-endmember mixing model, one endmember being the freshwater 

input (F), and the other endmember the bottom water at the study site. For the 

case of DOC we can write: 









⋅

−
+⋅−=∆ F

B

SB
B

B

S
S DOC

S
SS

DOC
S
S

DOCDOC  (2.5) 

Fig. 2.7 X–Y plots of (a) d-CHO versus 
T, (b) DOC versus T and (c) anomaly of 
d-CHO versus anomaly of DOC. Solid 
lines represent the corresponding 
regression lines (model II; Sokal and 
Rohlf 1995). Concentrations are in µM C 
and T in ºC 
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where ∆DOC is the surface DOC excess, DOCS and SS are the DOC and 

salinity at the surface layer, DOCB and SB are the DOC and salinity at the 

bottom, and DOCF is the DOC in continental runoff. The same equation can 

be written for POC, p-CHO, d-CHO, PCHO and MCHO, and for the two 

study sites. River Oitabén-Verdugo is our freshwater endmember, considering 

the concentrations obtained at the Eiras reservoir (S = 0.00). 

Seasonal accumulation of POC (∆POC) was higher at the innermost station 

(6.5 and 4.2 µM, respectively). The same occurred with particulate 

carbohydrates (∆p-CHO) with 2.5 µM C at stn 00 and 0.2 µM C at stn 03, which 

resulted in ~40% of POC accumulation as carbohydrates at stn 00, but just 

~6% at the mid-shelf station. 

As it has been pointed out before, a DOM excess was observed in surface 

waters as compared with bottom waters at the two sites through the study 

period. The average excesses for stn 00 were 10.8 µM and 4.5 µM C of DOC 

and d-CHO, respectively. In the case of stn 03, ∆DOC and ∆d-CHO were 8.3 

µM and 2.7 µM C, respectively. The percentage of carbohydrates in this fraction 

was 42% for the innermost station, whereas at the mid-shelf station the value 

was lower (33%). The DOM accumulation depended on the hydrographic 

conditions; the excess was maximum during the upwelling period (18.8 µM and 

7.5 µM C for DOC and d-CHO, stn 00) and minimum during the winter 

mixing period (1.9 µM and 0.3 µM C for DOC and d-CHO, stn 00). At stn 03 

the excess was lower and less variable. The highest accumulations occurred 

during summer stratification and upwelling, and they were minima during the 

IPC period.  

Calculated renewal rates for stn 00 allowed estimation of the net production 

of the inner Ría de Vigo. In average 1.0 µmol C L-1 d-1 of DOC and 0.4 µmol C 

L-1 d-1 of d-CHO, were produced. During the maximum accumulation period 

(upwelling) 3.9 and 1.6 µmol C L-1 d-1 of DOC and d-CHO, were net produced. 
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In the period of winter mixing (lower accumulation) the estimated production 

was only 0.3 and 0.1 µmol C L-1 d-1. 

Correlation of TOC (total organic carbon) with T and POC (regression 

model I for T, combination between regression models I and II with wY = 0.4 

in stn 00 and wY = 0.2 in stn 03 for POC; Table 2.2) showed different results at 

the two study sites. Every mol of POC generated 0.4 ± 0.1 moles of DOC at 

stn 00 and 0.8 ± 0.1 moles at stn 03. A similar calculation for t-CHO (total 

carbohydrates), T and p-CHO (regression model I for T, regression model II 

for p-CHO in stn 03 and combination between regression models I and II with 

wY = 0.7 for p-CHO in stn 00; Table 2.2) indicated larger differences between 

both locations. One mol of p-CHO produced 0.6 ± 0.1 moles of d-CHO in stn 

00, whereas it made 3.7 ± 0.5 moles of d-CHO at stn 03. 

Mono- to polysaccharides ratio of d-CHO 

The average percentage of monosaccharides in d-CHO (Fig. 2.8a-b) increased 

slight but significantly with depth (p < 0.001) at the two study sites. Similar 

average values were obtained for the two stations (30-40% MCHO), whereas in 

river samples the percentage of MCHO was higher and more variable (~50%, 

Fig. 2.8c). Correlation of PCHO and d-CHO (regression model II, Table 2.2) 

provided a slope of 0.82 ± 0.02 at stn 00 and 0.87 ± 0.02 at stn 03, which 

indicated that less than 20% of the d-CHO variation was due to MCHO. 

The mono- to polysaccharides ratio in ∆d-CHO was very low in both stations: 

MCHO accounted for 14-18% of ∆d-CHO. The production rate at stn 00 was 

0.1 and 0.4 µmol C L-1d-1 of MCHO and PCHO, respectively. Higher average 

percentages of ∆MCHO were found in the periods of lower DOM 

accumulation (during winter mixing and spring). Higher production at the 

innermost station occurred during the upwelling period, 0.2 and 1.5 µmol C L-1 

d-1 of MCHO and PCHO, respectively. 
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Fig. 2.8 Box and whisker plot of (a) %MCHO in d-CHO at stn 00, (b) %MCHO 
in d-CHO at stn 03 and (c) %MCHO in d-CHO at Eiras station. Fifty percent of 
the data are included within the limit of the boxes and the caps represent the 10th 
and 90th percentiles. Solid lines represent the average profiles. Shadow area 
symbolize the average photic layer 
 

The freshwater endmember presented higher DOC and d-CHO 

concentrations than seawater samples: 91.1 and 47.9 µM C, respectively (1.1 

and 3.6 times the values of the surface layer at stn 00). It is noticeable the 

MCHO concentration, 23.5 µM C, 5.5 times higher than at stn 00. Particulate 

material was also more abundant at the Eiras reservoir than at stn 00: 49.0 µM 

for POC (2.1 times higher) and 13.6 µM C for p-CHO (3.2 times higher). 

DISCUSSION 

Hydrographic control of the carbohydrates accumulation 

Our results corroborate that seasonal DOC accumulation is closely connected 

with stratification, as it was proposed by Carlson et al. (1994) for temperate, 

subpolar and continental shelf regions that exhibit convective mixing and 

spring re-stratification. The conspicuous succession of wind stress/relaxation 

cycle that occur in the NW Iberian Peninsula is the reason behind the large 

productivity of this system and has a great importance on DOC cycling. 
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Nutrient entry to the photic layer takes place during the ‘spin up’ phase of 

upwelling events whereas phytoplankton growth and accumulation happens 

during the ‘spin down’ phase. DOM accumulation occurs after the bloom, 

accompanying phytoplankton decay. This hydrographic control of growth and 

accumulation of phytoplankton is a common phenomenon in coastal upwelling 

systems at temperate latitudes (Barber & Smith 1981, Zimmerman et al. 1987). 

DOC accumulation at the end of blooms, during the period of relaxation, 

seems to be a quite general pattern too (Kirchman et al. 1994, Norrman et al. 

1995, Chen et al. 1996, Doval et al. 1997), and in this study it was demonstrated 

that accumulation of carbohydrates follow the same pattern. Information about 

seasonal accumulation of carbohydrates is scarce, but Williams (1995) found 

evidences for the seasonal accumulation of dissolved carbon-rich materials, 

from mid to late summer. This work corroborates that these substances were 

carbohydrates, which makes up 29-31% of the DOC changes in the water 

column, and 33-42% of the DOC accumulation in seasonal thermocline waters. 

It was remarkable the presence at the mid shelf of slightly warm (>14ºC) and 

salty (>35.8) water all over the water column from December to February due 

to the presence of the IPC. This IPC transports to our latitudes aged and 

remineralised subtropical waters, with low DOC, POC, d-CHO and p-CHO 

concentrations. However, during the IPC period, slightly high values of organic 

matter were found in bottom waters of stn 03 (100 and 150 m), probably due to 

offshore export from the bottom ría under conditions of negative residual 

circulation. During winter, low and homogeneous concentrations of MOD and 

MOP were observed, because of reduced primary production (<0.2 g C m-2 d-1; 

Álvarez-Salgado et al. 2003). 

As indicated in previous studies in the Rías Baixas (Fraga & Vives 1961, Fraga 

1967, Doval et al. 1997) the high concentrations of POM in bottom waters can 

be due to the sedimentation of phytoplankton blooms, resuspension of organic-
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rich sediments or zooplankton accumulation. This bottom nepheloid layer has 

been recurrently observed in the Iberian upwelling (McCave & Hall 2002) and 

in other coastal regions (e.g. Sherwood et al. 1994). It was noticeable that        

p-CHO follow the same pattern that POC in the ría. However, at the middle 

shelf, the percentage of carbohydrate was lower at bottom than at 75-100 m. 

This pattern could be explained on basis of a fractionated mineralization of 

sinking POM, with N and P rich compound been preferentially mineralised at 

mid depths and carbohydrates at the bottom layers (Ríos et al. 1998). 

The role of carbohydrates in the carbon balance of a marine ecosystem 

The range of d-CHO concentrations at stn 00 was similar to those provided 

by Hung et al. (2003a) for the Gulf of Mexico (4-22 µM C) or by Witter & 

Luther III (2002) for the U. S. Middle Atlantic Bight (3-17 µM C). However, 

concentrations of d-CHO were lower at stn 03 and more similar to the oceanic 

values provided by Pakulski & Benner (1994). 

The contribution of p-CHO to the POC pool was ~15% for both stations, a 

value halfway between those presented by Hung et al. (2003a) in the Gulf of 

Mexico (18% for 2000 and 9% for 2001). On the other hand, d-CHO 

accounted for 13 ± 3% of DOC, very close to the mean values provided by 

Pakulski & Benner (1994) for the North Atlantic Ocean (15 ± 2%) and by 

Børsheim et al. (1999) for the Trondheimsfjord (16 ± 2%). It was widely 

confirmed that the percentage is higher at the surface layers (14-16% in this 

study). 

Correlations between p-CHO and POC give different results for both 

stations. At the outermost station only the 12 ± 1% of the POC produced was 

p-CHO and the origin intercept was nearly zero, i.e., there are not residual 

carbon material that remains when p-CHO is nil. Similar results were published 

by Hung et al. (2003a) for the Gulf of Mexico: 18 ± 1% and 8.7 ± 0.4% in 2000 

and 2001, respectively, with origin intercepts not significantly different from 
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zero. However, the situation at stn 00 was different: the contribution of p-CHO 

to POC formed was higher (26 ± 1%). In addition, there was a POC pool more 

recalcitrant than p-CHO that accounted for 1.8 ± 0.2 µM C. These results 

agreed with the calculated accumulations, higher in both cases (POC and        

p-CHO) at the innermost station, and richer in carbohydrates. This suggests 

that the interior of the ría is the most productive sector, which exports 

particulate matter to the adjacent shelf and the ocean. The lower percentage of 

p-CHO at the mid shelf station pointed to the existence of degradation and 

sinking processes during offshore transport, especially in carbohydrates pool. 

Carbohydrates in the fresh dissolved material are not significantly different 

between the ría and the shelf (29-31%). These values are larger than the results 

obtained by Hung et al. (2003a) in the Gulf of Mexico (21%), but they are 

similar to those proposed by Børsheim et al. (1999) in two coastal stations in 

the Trondheimsfjord (28-30%) and by Pettine et al. (1999) in the northern 

Adriatic Sea (30%). It has been demonstrated that d-CHO covaries with DOC 

at the time scale of the sampling frequency (2 weeks). 

Average ∆DOC in the middle ría was 11 µM, but during the upwelling period 

this value increases up to 19 µM, similar to that provided by Doval et al (1997) 

for the same station during the 1995 upwelling season (21 µM). Larger 

percentage of carbohydrates accumulated at the innermost station: 42% as 

compared with 33% at the shelf station. During the upwelling event, when 

offshore export is the most important physical process, the percentages were 

more similar: 38% and 36%, respectively. Estimations of the production at the 

innermost station give higher values during this upwelling event (3.9 and 1.6 

µmol C L-1d-1 for DOC and d-CHO, respectively), ten times larger than those 

calculated during winter mixing (0.3 and 0.1 µmol C L-1d-1, respectively). To our 

understanding no carbohydrate production data were published before. In the 
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case of DOC, our value is comparable with the obtained by Doval et al. (1997) 

for the same study area during the upwelling season (4.2 µmol C L-1d-1). 
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Fig. 2.9 Tentative partitioning of DOC at stn 00 in surface and bottom waters 
during seasonal cycle. % of d-CHO is indicated 
 

Figure 2.9 presents a tentative partitioning of the DOC pools at stn 00 in 

surface and bottom waters. ENACW provides a major part of the DOC. This 

water mass contains minimum proportions of d-CHO (only 9% of DOC). The 

main d-CHO contributions are the riverine input (53% of DOC) and, 

especially, the new production (43%). 

As it has been pointed out before, good correlations were found between 

TOC and POC, and t-CHO and p-CHO (Table 2.2). The slopes for both data 

sets give different results: one mol of POM generates more DOM at middle 

shelf, but differences are more notable for carbohydrates. Values are higher at 

outermost station because of dissolved materials are preferentially exported 

horizontally whereas particulate material preferentially sunk to the sediments. In 

addition, waters at the middle ría are mesotrophic whereas at the middle shelf 
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they are more oligotrophic, leading to a preferential accumulation of dissolved 

carbohydrates (Williams 1995). 

Lability of DOM 

The slight increase of the contribution of MCHO to d-CHO with depth and 

the average values of 30-40% observed during the study period has been 

described before in the literature (Pakulski and Benner 1994, Hung et al. 2001). 

It has also been reported in these works the nearly-uniform (~4µM C) vertical 

distribution of MCHO at many locations (3 ± 1 µM C in this study). Williams 

& Gray (1970) have hypothesised that MCHO and other low-molecular-weight 

organic substrates are rapidly assimilated to low concentrations by bacteria. 

This assumption is in accordance with the consideration of MCHO as an 

indicator of lability. 

Percentages of MCHO in ∆d-CHO were much lower (14-18%) than in the 

bulk d-CHO (30-40%), suggesting again the preferential accumulation of semi-

labile PCHO rather than labile MCHO. The percentage of accumulated MCHO 

increased during the periods of low accumulation, but it was not due to 

enhanced MCHO but depressed PCHO production. In all cases, the most 

productive period for both carbohydrate pools was the upwelling event. 

The time course of PCHO through out the study period was similar to         

d-CHO and they correlate significantly. The slope of the correlations 

(regression model II) indicated that about 82% at stn 00 and 87% at stn 03, of 

the d-CHO change was due to PCHO. 

Freshwater inputs have organic matter loads higher than the inner- and 

outermost stations, but the largest differences were found in carbohydrates. 

The p-CHO contribution to POC increases up to 32%, but more remarkable is 

the contribution of d-CHO to DOC, nearly 50% averaged during the study 

period. Studies carry out in estuaries indicate the major contribution of 

carbohydrates to the C pool of rivers (Senior & Chevolot 1991, Hung et al. 



Carbohydrates in a coastal upwelling system 

77 

2001, Witter & Luther III 2002). The degree of polymerisation of these sugars 

is different from the d-CHO pool in seawater: percentages of MCHO increases 

in riverine waters (30-90%), in accordance with others authors as Senior & 

Chevolot (1991),who presented values ranging from 15 to 90% in the Elorn 

Estuary (Brest, France). 
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Fig. 2.10 Tentative partitioning of d-CHO at stn 00 and 03, in surface and bottom 
waters, during seasonal cycle. % of PCHO and MCHO are shown 

stn 00 

stn 03



Chapter 2 

78 

Figure 2.10 presents the different dissolved carbohydrates pools calculated 

for the two different study sites, and the PCHO/MCHO contributions. The 

degree of polymerisation gives an idea of the lability of the material; semi-labile 

materials (81-88% of PCHO) compose d-CHO accumulations whereas riverine 

material is more labile (51% of PCHO). Similar proportions of MCHO were 

found in both sites, but with higher concentrations at the innermost station. 
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CONCLUSIONS 

Carbohydrates in the NW Iberian coastal upwelling system follow the same 

seasonal pattern than the organic carbon pool, being strongly influenced by 

physical and biological processes. Thereby, phytoplankton growth and POM 

accumulation (both POC and p-CHO) was observed during the upwelling 

period, whereas DOM (DOC and d-CHO) accumulates during the relaxation of 

the upwelling pulse, when phytoplankton biomass begins to decay. 

Negative residual circulation dominated during IPC period, with low values 

of DOM and POM except in the bottom layers at the mid shelf. 

The surface excess of DOC is richer in carbohydrates than the bulk DOC. 

The percentage increases from 12-14% in DOC to 33-42% in ∆DOC, 

indicating that d-CHO is a main component of the freshly produced material in 

comparison with aged ENACW, where only 9% of DOC are d-CHO. 

The surface ∆d-CHO presents a higher percentage of PCHO than the rest of 

the d-CHO pool: 80-90% of the carbohydrates excess are polysaccharides, 

suggesting that the material is essentially semi-labile. 
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Chapter 3, the research work presented in this chapter is also a 

contribution to the paper: 

M. Nieto-Cid, X. A. Álvarez-Salgado, J. Gago, F. F. Pérez. 2005. DOM 

fluorescence, a tracer for biogeochemical processes in a coastal 

upwelling system (NW Iberian Peninsula). Mar Ecol Prog Ser, in press 

 

Resumen: La fluorescencia de la materia orgánica disuelta (FDOM) ha sido 

determinada por primera vez durante un ciclo estacional completo en un 

sistema de afloramiento costero (Ría de Vigo, NO España). Se detectaron y 

cuantificaron las longitudes de onda de excitación/emisión específicas para las 

sustancias húmicas refractarias y para los aminoácidos aromáticos lábiles. La 

distribución de la fluorescencia de las sustancias húmicas marinas (FDOMM) 

correlaciona significativamente con las sales nutrientes (r = +0.62, p < 0.001) y 

el oxígeno disuelto (r < -0.71, p < 0.001), una vez eliminado el efecto de la 

mezcla de masas de agua. Esto sugiere que las sustancias húmicas son un 

subproducto en los procesos de mineralización de la materia orgánica en las 

aguas profundas de la plataforma continental. Se ha estimado que entorno a un 

10% del carbono orgánico degradado en la columna de agua es transformado 

en sustancias húmicas, las cuales son producidas en la ría con una tasa de ~0.1 

ppb QS d-1. La distribución de la fluorescencia de los aminoácidos aromáticos 

(FDOMT) correlaciona de forma significativa con la distribución de proteínas 

particuladas (r > +0.57, p < 0.001). FDOMT puede utilizarse como trazador de 

las zonas de acumulación neta de materia orgánica disuelta lábil (DOM): 1) la 

capa fótica (con una tasa de ~0.5 ppb Trp d-1), donde el material lábil se 

produce por exudación del fitoplancton y/o lisis celular; y 2) el lecho nefeloide 

(con una tasa de ~0.2 ppb Trp d-1), debido a un aumento in situ de la actividad 

microbiana y/o una liberación desde las aguas intersticiales del sedimento. 
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Abstract: Fluorescence of dissolved organic matter (FDOM) was determined 

for the first time during a complete seasonal cycle in a coastal upwelling system 

(Ría de Vigo, NW Spain). Specific excitation/emission wavelengths for the 

refractory humic substances and the labile aromatic amino acids were detected 

and quantified. The distribution of the fluorescence of marine humic 

substances (FDOMM) correlated significantly with nutrient salts (r = +0.62, p < 

0.001) and dissolved oxygen (r < -0.71, p < 0.001), after removal of the effect 

of water masses mixing. It suggests that humic substances are a by-product of 

organic matter mineralization processes in shelf bottom waters. It was 

estimated that about 10% of the organic carbon degraded in the water column 

was transformed into humic substances, which were produced in the ría at a 

rate of about 0.1 ppb QS d-1. The distribution of the fluorescence of dissolved 

aromatic amino acids (FDOMT) correlated significantly with the distribution of 

particulate proteins (r > +0.57, p < 0.001). FDOMT can be used to trace sites of 

net accumulation of labile DOM: 1) the photic layer (at a rate of about 0.5 ppb 

Trp d-1), where labile DOM is produced from phytoplankton exudation and/or 

lysis; and 2) the bottom nepheloid layer (at a rate of about 0.2 ppb Trp d-1), due 

to an in situ enhancement of the microbial activity and/or a release from 

sediment pore waters. 
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INTRODUCTION 

Seawater dissolved organic matter (DOM) is one of the largest and least 

understood reservoirs of reduced carbon of the earth’s surface (Hedges 1992, 

2002, Hansell 2002). Most efforts to characterise DOM have been focussed on 

the C/N/P elemental composition, while molecular constituents have not been 

studied in detail. Currently, less than 30% of the molecular composition of 

DOM is known (Yamashita & Tanoue 2003). Although information on the 

elemental composition of DOM is essential to understand the origin and fate of 

natural organic matter, knowledge of its molecular composition is crucial to 

provide insights about the dynamics of the DOM pool (Ogawa & Tanoue 

2003). The main problem facing the molecular characterisation of DOM stems 

from the low concentrations of the individual constituents in seawater, a 

difficulty that has been partly overcame with the improvement of ultrafiltration 

methods (Amon & Benner 1996). Ultrafiltration is a powerful tool in 

combination with nuclear magnetic resonance techniques (Benner et al. 1992, 

Aluwihare et al. 1997, McCarthy et al. 1997, Clark et al. 1998, Hedges et al. 

2002). Nevertheless, these methods require very large samples (102-103 litres), 

and the physical and chemical properties of the concentrate differed from the 

original sample. Simple, quick and sensitive methods are still necessary to 

combine DOM characterisation with the requirements of hydrographic 

sampling. 

Fluorescence spectroscopy has been used in recent decades to characterise 

DOM. Results from these studies have provided valuable information about 

the chemical nature (fluorescence functional groups) and distribution 

(fluorescence intensity) of DOM. In addition to simplicity, sensitivity and 

quickness, the small sample volume requirement is an additional attraction of 

this technique. It was applied first to the study of humic substances (Cabaniss 

& Shuman 1987, Hayase et al. 1988, Chen & Bada 1992). Coble et al. (1990) 
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were the pioneers in the use of excitation-emission matrices (EEM) to study 

DOM fluorescence. EEMs helped to allocate the two main fluorophores of 

natural DOM: 1) the humic-like fluorophores, studied since the 1960’s; and     

2) the protein-like fluorophores, which are due to aromatic amino acids 

(Mopper & Schultz 1993, Determann et al. 1996, 1998, Coble et al. 1998). 

Humic substances are a heterogeneous mixture of complex high-molecular-

weight biopolymers with structures still not fully understood. They constitute a 

significant fraction of DOM: between 30-50% of dissolved organic carbon 

(DOC) in natural waters (Thurman 1985). Obernosterer & Herndl (2000) 

observed that humic compounds comprised 15 ± 7% of DOC in the Adriatic 

Sea and 43 ± 7% of DOC in coastal waters of the North Sea. Although humic 

substances are considered a refractory DOM pool, they are microbially 

produced and photochemically degraded. Therefore, the fluorescence of humic 

compounds is a suitable parameter to study these biogeochemical processes. 

The fluorescence of aromatic amino acids (tyrosine, tryptophan and 

phenylalanine) is a useful indicator of the dynamics of dissolved free amino 

acids (DFAA) in general (Yamashita & Tanoue 2003). These simple molecules 

are among the most labile biogenic compounds. Therefore, protein-like 

fluorescence can be use to study the dynamics of labile DOM. 

DOM fluorescence has mainly been used in studies of estuarine mixing (Jaffé 

et al. 2004), photodegradation (Obernosterer & Herndl 2000, Del Vecchio & 

Blough 2002) or DFAA distributions (Yamashita & Tanoue 2003). 

Comparatively, few works comparing DOM fluorescence with DOC or 

nutrients distributions have been performed (Chen & Bada 1992, Hayase & 

Shinozuka 1995, Chen et al. 2002) and all were focused on the humic-like 

fluorescence. 

The importance of DOM for carbon and nutrient cycles is enhanced in 

coastal waters, where exudation by aquatic organisms and degradation of 
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marine and terrestrial plant matter produce large amounts of DOM (Nagata 

2000, Carlson 2002). Coastal waters support 18-33% of global net primary 

production and 27-50% of global export production (Walsh 1991, Chavez & 

Toggweiler 1995, Wollast 1998). DOM production is especially intense in 

coastal upwelling areas in response to nutrient fertilisation from the adjacent 

ocean (Hansell & Carlson 1998a, Doval et al. 1997, Álvarez-Salgado et al. 

2001a). Organic matter produced in upwelling areas can experience extreme 

oxidising and reducing conditions (Gagosian et al. 1978). 

The NW Iberian Peninsula is characterised by 1) an upwelling season, with 

successive upwelling pulses separated by short intervals of calm, which favour 

nutrient recycling and enhance primary production (Álvarez-Salgado et al. 

1999); and 2) a second season dominated by downwelling episodes, 

distinguished by low primary production rates. During an upwelling event, 

northerly winds cause the uplift of Eastern North Atlantic Central Water 

(ENACW) over the shelf, which enters the rías and enhances the characteristic 

2-layer circulation pattern (Rosón et al. 1997). Other conspicuous phenomena 

in this region are the incursion of the Iberian Poleward Current (IPC) along the 

slope during winter, carrying subtropical waters to these latitudes (Haynes & 

Barton 1990, Álvarez-Salgado et al. 2003). 

Previous studies of this coastal upwelling region focused on the elemental 

composition of DOM (Doval et al. 1997, Álvarez-Salgado et al. 1999, 2001b). A 

recent study in NW Iberian shelf waters, has devoted to the molecular 

characterisation of DOM. In a previous article, Nieto-Cid et al. (2004), Chapter 

2, studied the role of carbohydrates in the DOM cycle of this system. The aim 

of this work is to use DOM fluorescence to further characterise DOM during a 

seasonal cycle. The value of humic-like fluorophores as indicators of the 

humification associated with mineralization processes, and of the protein-like 

fluorophores as indicators of DOM lability, are the key points in this study. 
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MATERIALS AND METHODS 

Survey area. Two domains were sampled during this study: the Rías Baixas 

and the adjacent shelf (Fig. 3.1). A 2-layered residual circulation pattern 

characterises the rías, with an ingoing bottom current and an outgoing surface 

current during upwelling events, and a reversal of the flow during downwelling 

conditions. These large (>2.5 km3), V-shaped, embayments respond 

predominantly to shelf winds (Gilcoto et al. 2001, Souto et al. 2003), and, to a 

lesser extent, to continental runoff. For the case of the Ría de Vigo, the main 

tributary is the river Oitabén-Verdugo, with an average flow of 18 m3s-1 during 

the study period. 
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Figure 3.1 Map of the Ría de Vigo and the adjacent shelf (NW Iberian Peninsula). 
The positions of the three hydrographic stations and the SeaWatch buoy off Cape 
Silleiro are shown. The Eiras station, in the upper course of the river Oitabén-
Verdugo, is also indicated 
 

The circulation of shelf waters off the Rías Baixas is more complex; it is 

composed of a wind-driven long shore current and across-shore exchanges with 

the adjacent ocean and the rías. During the upwelling season, the rías and the 

shelf are coupled: shelf surface waters are imported from the rías and the 

bottom waters of the rías enter from the shelf. On the contrary, during the 

downwelling season, a convergence front develops between the shelf and the 

rías. The position of this front in the long shore direction depends on the 
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relative strength of coastal winds and continental runoff (Álvarez-Salgado et al. 

2000). 

Sampling strategy. Two stations were sampled weekly aboard RV Mytilus 

from May 2001 to April 2002: a mid-shelf station (stn 03; 42º07.8’N, 9º10.2’W; 

150 m deep) and a mid-ría station (stn 00; 42º13.8’N, 8º51.0’W; 40 m depth in 

low water). Full-depth continuous conductivity-temperature-depth (CTD) 

profiles were recorded at each sampling site with a SBE 9/11 CTD device 

incorporated into a rosette sampler equipped with twelve 10-L Niskin bottles. 

Conductivity measurements were converted into practical salinity scale values 

(UNESCO 1985). Seawater samples were collected from 5, 25, 40, 60, 75, 100 

and 150 m at stn 03, and 5, 15 and 40 m at stn 00. Samples for oxygen (O2), 

nutrient salts, dissolved organic carbon and nitrogen (DOC/DON) and 

particulate organic carbon and nitrogen (POC/PON) analyses were collected 

every survey (weekly periodicity), whereas samples for DOM fluorescence 

(FDOM) were taken every two surveys (fortnightly periodicity). 

In addition, one station in the upper course of the river Oitabén-Verdugo was 

sampled regularly during the seasonal cycle (Eiras reservoir, Fig. 3.1). Surface 

samples for DOC/DON, POC/PON, nutrients and DOM fluorescence were 

taken with a 1.7-L Niskin bottle. They were processed in the same way as the 

seawater samples. 

Chemical analysis. Aliquots for dissolved and particulate organic matter 

analyses were collected in 500 mL acid-cleaned glass flasks and 5 L acid-cleaned 

PVC containers, respectively. Suspended organic matter was collected under 

low vacuum on precombusted (450ºC, 4 h) 25-mm ø Whatman GF/F filters 

for POC/PON (0.5-1.5 L of seawater filtered). All filters were dried overnight 

and frozen (-20ºC) before analysis. 
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Measurements of POC and PON were carried out with a Perkin Elmer 2400 

CHN analyzer. Standards of acetanilide were run daily. The precision of the 

method was ±0.3 µM C and ±0.1 µM N. 

Dissolved oxygen was determined by Winkler potentiometric end-point 

titration using a Titrino 720 analyser (Metrohm) with a precision of ±0.5 µmol 

kg-1. The Apparent Oxygen Utilisation, AOU = O2sat - O2, was calculated using 

the algorithm proposed by Benson & Krause (UNESCO 1986) for oxygen 

saturation (O2sat). 

Samples for nutrient analyses were collected in 50 mL polyethylene bottles; 

they were kept cold (4 ºC) a few hours until analysis in the laboratory using 

standard segmented flow analysis (SFA) procedures. The precisions were ±0.02 

µM for nitrite, ±0.1 µM for nitrate, ±0.05 µM for ammonium, ±0.02 µM for 

phosphate and ±0.05 µM for silicate. 

DOM samples were filtered through precombusted (450ºC, 4 h) 47-mm ø 

Whatman GF/F filters in an acid-cleaned glass filtration system, under low N2-

flow pressure. Two aliquots were collected, for DOC/DON and DOM 

fluorescence.  

Samples for the analysis of DOC/DON were collected in 10 mL 

precombusted (450ºC, 12 h) glass ampoules. After acidification with H3PO4 to 

pH < 2, the ampoules were heat-sealed and stored in the dark at 4ºC until 

analysis. DOC and DON were measured simultaneously with a nitrogen-

specific Antek 7020 nitric oxide chemiluminescence detector, coupled in series 

with the carbon-specific Infrared Gas Analyser of a Shimadzu TOC-5000 

organic carbon analyser (Álvarez-Salgado & Miller 1998). The system was 

standardized daily with a mixture of potassium hydrogen phthalate and glycine. 

The concentration of DOC and total dissolved nitrogen (TDN) was 

determined by subtracting the average peak area from the instrument blank area 

and dividing by the slope of the standard curve. The precision of measurements 
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was ±0.7 µM C for carbon and ±0.2 µM N for nitrogen. Their respective 

accuracies were tested daily with the DOM reference materials provided by 

Prof. D. Hansell (Miami University). We obtained an average concentration of 

45.7 ± 1.6 µM C and 21.3 ± 0.7 µM N (n = 26) for the deep ocean reference 

(Sargasso Sea deep water, 2600 m) minus blank reference materials. The 

nominal DOC value provided by the reference laboratory is 44.0 ± 1.5 µM C; a 

consensus TDN value has not been set yet, but a mean value of 22.1 ± 0.8 µM 

N has been provided by Sharp et al. (2004) after the Lewes intercalibration 

exercise. DON was obtained by subtracting NT (total inorganic nitrogen = 

ammonium + nitrite + nitrate) from TDN. 

DOM fluorescence methodology. FDOM was measured with a Perkin 

Elmer LS 55 Luminescence spectrometer, equipped with a xenon discharge 

lamp, equivalent to 20 kW for 8 µs duration. The instrument has two 

monochromators that ranged between 200 and 800 nm for excitation 

wavelengths and between 200 and 900 nm for emission wavelengths. The 

detector was a red-sensitive R928 photomultiplier and a photodiode worked as 

reference detector. Slit widths were 10.0 nm for the excitation and emission 

wavelengths, and scan speed was set at 250 nm min-1. Measurements were 

performed at a constant room temperature of 20ºC in a 1-cm quartz 

fluorescence cell. Milli-Q water was used as a reference for fluorescence 

analysis. 

EEMs were performed to track the main fluorophores. These matrices were 

generated by combining 21 synchronous excitation-emission fluorescence 

spectra of the sample, obtained at a constant offset between the excitation and 

emission wavelengths of 10 nm. The spectra were collected starting from the 

highest excitation wavelength, to minimize the exposure of the sample to low-

wavelength radiation and thereby minimize photodegradation. Milli-Q water 

EEMs were performed every day in order to correct the Raman scatter band. 
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Figure 3.2 Excitation/emission matrices (EEMs) of (a) Oitabén-Verdugo river 
sample, (b) surface seawater sample at stn 00, (c) quinine sulphate (20 ppb) and 
tryptophan (30 ppb) in sulphuric acid 0.05 M, and (d) commercial fulvic acid (FA, 
Fredricks Research Products, Laurential Soil) 333 µM C in seawater. The Ex/Em 
wavelengths of the main peaks are indicated: peak A (general humic compounds), 
peak C (terrestrial-origin humic substances), peak M (marine-origin humic 
substances) and peak T (tryptophan-like fluorescence). Fluorescence intensities are 
reported as fluorescence units provided by the instrument 
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The following fluorescence peaks have been found in the EEMs of riverine 

and seawater samples (Fig. 3.2a-b): A, due to general humic substances (average 

λex/λem = 250/435 nm); C, due to terrestrial-origin humic substances (average 

λex/λem = 340/440 nm); M, due to marine-origin humic substances (average 

λex/λem = 320/410 nm); and T, due to aromatic amino acids, specifically 

tryptophan (average λex/λem = 280/350 nm). These peaks are consistent with 

those found by Coble et al. (1990), Mopper & Schultz (1993) and Coble (1996) 

for the λex/λem range of these EEMs. Coble (1996) and others (Mayer et al. 

1999, Yamashita & Tanoue 2003) proposed another protein-like fluorophore: 

B, due to tyrosine (λex/λem 275/310 nm). In the present study, peak B has not 

been evaluated because it is strongly affected by the Raman scattering band of 

water and measurements were not reliable. 

Previous works used only a quinine sulphate (QS) standard, valid for humic-

like substances. However, this compound does not fluoresce in the region of 

the aromatic amino acids. Therefore, we propose a mixed standard of QS and 

tryptophan (Trp) in sulphuric acid 0.05 M. As shown in Fig. 3.2c, the EEM of 

the mixed standard cover all the FDOM peaks. Trp fluorescence and QS 

fluorescence do not interfere, with each other. The mixed standard remains 

stable for at least three months stored in the dark at 4ºC. 

Due to the regularity of the Ex/Em wavelengths of the selected peaks for 

samples from different sites and times in the study area, we decided to carry out 

only discrete measurements at the selected wavelengths. Discrete DOM 

fluorescence analyses were executed within a few hours of sample collection. 

Four replicate measurements were performed for each Ex/Em wavelength. A 

four points standard curve was prepared daily (concentrations from +0 to +20 

ppb and from +0 to +30 ppb for QS and Trp, respectively). Fluorescence of 

sulphuric acid 0.05 M in Milli-Q water was used as a blank. The equivalent 

concentration of each peak was determined by subtracting the average peak 
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height from the blank height, and dividing by the slope of the standard curve. 

Finally, although peaks A, C and M represent different humic compounds, they 

showed similar distributions (r = +0.95 for peak A vs. peak M and r = +0.98 for 

peak C vs. peak M). Therefore, only the fluorescence of peaks M (FDOMM) and 

T (FDOMT) have been used in the present work. Fluorescence units were 

expressed in ppb equivalents of QS (ppb QS) for FDOMM and ppb equivalents 

of Trp (ppb Trp) for FDOMT. Note that ppb QS is identical to the quinine 

sulphate units (QSU) reported previously in other studies. The precisions were 

±0.1 ppb QS and ±0.6 ppb Trp, respectively. 

FA carbon equivalents. Assessing the contribution of humic substances to 

the DOC pool is not a straightforward issue, because of the highly variable 

composition of the two main fractions: the humic (HA) and fulvic (FA) acids. 

Our approach consisted of using a commercial FA (Fredricks Research 

Products, Laurential Soil, 38.3% C dry weight by elemental analysis) as a 

standard. A FA was chosen instead of a HA because FAs are the main 

component of marine humic substances, about 90% (Thurman 1985, Skoog 

1995). The EEMs of a natural sample (Fig. 3.2a) and the commercial FA (Fig. 

3.2d) compare well. The FA was dissolved in filtered (polyethersulphone 0.2 

µm filters) seawater and filtered again after one week of incubation in the dark, 

to allow complete dissolution. Then, the fluorescence and DOC content of the 

standard were determined. The average ratio between DOC and FDOMM, after 

several replicate measurements at different concentrations of the commercial 

FA, was 2.67 ± 0.06 µM C (ppb QS)-1. 

Estimation of particulate proteins and lipids. The carbon content of 

particulate proteins (CProt) and lipids (CLip) was estimated by subtraction of the C 

and N content of particulate carbohydrates (p-CHO), chlorophyll a (Chl-a) and 

organic phosphorus compounds (POP) from the POC and PON content of 

the samples, using the average chemical formula of these groups of molecules 
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provided by Fraga (2001). p-CHO was analysed by the anthrone method 

(Nieto-Cid et al. 2004, Chapter 2) with a precision of ±0.1 µM C. Chl-a was 

determined with a Turner Designs 10000R fluorometer after 90% acetone 

extraction (Yentsch & Menzel 1963); the estimated accuracy was ±0.05 µg L-1. 

POP was analysed by H2SO4/HClO4 digestion at 220ºC followed by the 

analysis of the resultant phosphate by SFA; the precision for the entire analysis 

was ±0.02 µM P (Álvarez-Salgado 1993). 

Estimation of corrected dissolved oxygen. The dissolved oxygen 

concentration of the samples was referred to the oxidation state of nitrate 

(O2C), i.e. to a hypothetical situation in which the nitrite and ammonium of the 

sample were oxidised to nitrate. Since 0.5 mole of oxygen are necessary to 

oxidize one mole of nitrite to nitrate and two moles of oxygen are required to 

oxidize one mole of ammonium to nitrate. 

+− ×−×−= 4222C NH2NO
2
1OO  (3.1)

This correction allows comparison of the dissolved oxygen consumption with 

the NT production independently of the inorganic nitrogen form involved in 

the process. 

Meteorological variables. Daily Ekman transport values (-QX, m2s-1) were 

calculated according to Wooster et al. (1976): 

f
VVC

SW

yair

⋅

⋅⋅⋅
=

ρ
ρ

XQ-  (3.2)

where airρ  is the density of air, 1.22 kg m-3 at 15ºC; C is an empirical drag 

coefficient (dimensionless), 1.3 × 10-3; f is the Coriolis parameter, 9.946 × 10-5s-1 

at 43º latitude; SWρ  is the density of seawater, ~1025 kg m-3; |V| is the wind 

speed; and Vy is the north component of wind speed. Wind data were taken 

hourly from the anemometer of the SeaWatch Buoy Silleiro Meteorological 

Observatory at 42º07.2’N, 9º24.0’W (http://www.puertos.es). Positive values  
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of -QX indicate upwelling and downwelling occurs when negative values are 

observed. 

Daily continental runoff (QR, m3s-1) was estimated as the sum of 1) the flow 

regulated by the Eiras reservoir; and 2) a function of the precipitation in the 

drainage basin not regulated by the Eiras reservoir (Ríos et al. 1992). 

RESULTS 

Hydrography 

Seven hydrographic periods were distinguished by Nieto-Cid et al. (2004), 

Chapter 2, from May 2001 to April 2002. The periods were defined on the basis 

of the seasonal evolution of -QX and QR (Fig. 3.3a) and the thermohaline 

structure of the water column (Fig. 3.3b-c). Briefly, the study year began during 

the summer stratification (period 1, 15 May-21 Aug), characterised by coastal 

upwelling events separated by short intervals of calm. At the end of summer, a 

strong upwelling event (period 2, 28 Aug-18 Sep) raised cold, organic matter-

poor and nutrient-rich ENACW to the surface layer. During periods 1 and 2, 

the residual circulation of the Ría de Vigo was positive and characterised by low 

continental runoff and large renewal rates. Autumn downwelling (period 3,     

25 Sep-30 Oct) was generated by predominant southerly winds, which 

coincided with high continental runoff. The transition from stratification to 

vertical homogenisation (period 4, 6 Nov-20 Nov) occurred under strong 

northerly winds. Then, the IPC carried subtropical surface and central waters 

along the shelf and promoted a reversal of the circulation pattern of the ría 

(period 5, 27 Nov-13 Feb). The subsequent winter mixing (period 6, 20 Feb-26 

Mar) was the time of maximum vertical homogenisation and, finally, the 

beginning of the spring (period 7, 2 Apr-24 Apr) was characterized by the 

coexistence of coastal upwelling and incipient stratification. 
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Figure 3.3 (a) Time course of Ekman transport, -QX (m2s-1), continental runoff, 
QR (m3s-1) and surface water flux at stn 00, QS00 (103 m3s-1). The different periods 
are shown, named from 1 to 7. QS00 was calculated with the equation of Álvarez-
Salgado et al. (2000): X

3
R

3
00S Q10)2.0(3.2Q10)4(16Q −− ⋅±−⋅±= . (b), (c) Time 

course of salinity at stn 00 and stn 03, respectively, during the study period 
 

DOM fluorescence distributions in relation to the hydrographic 

conditions 

This is the first study of the seasonal variability of DOM fluorescence 

distributions in a coastal upwelling system. Therefore, a description of the time 

evolution of the vertical profiles of FDOMM and FDOMT is required. 

Fluorescence distributions are then compared with temperature, salinity (Fig. 

3.3b-c), and organic (Fig. 3.4a-b, Fig. 3.5a-b) and inorganic (Figs 3.4c-d and 

3.5c-d) nitrogen distributions. The high correlations between DOC and DON 

a
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(r = +0.84, n = 434, p < 0.001) and between POC and PON (r = +0.98, n = 

477, p < 0.001) ensure that comparison of DOM fluorescence with organic 

carbon instead of organic nitrogen produces the same results. 
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Figure 3.4 Time course of (a) DON (µM N), (b) PON (µM N), (c) nitrate (µM) 
and (d) ammonium (µM) at stn 00 during the study period. The different periods 
are shown, named from 1 to 7 
 

The two environments sampled in this study responded differently to coastal 

upwelling. Therefore, it is expected that the two sites underwent different 

biogeochemical processes that can be traced with DOM fluorescence. 



DOM fluorescence in a coastal upwelling system 

101 

150

100

50

0

de
pt

h
(m

)

150

100

50

0

de
pt

h
(m

)

150

100

50

0

de
pt

h
(m

)
150

100

50

0

de
pt

h
(m

)
MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR

1 2 4 5 6 73

a

b

c

d

MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR

MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR

MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR  
Figure 3.5 Time course of (a) DON (µM N), (b) PON (µM N), (c) nitrate (µM) 
and (d) ammonium (µM) at stn 03 during the study period. The different periods 
are shown, named from 1 to 7 
 

Middle ría site (stn 00). Both FDOMM and FDOMT correlated significantly 

with temperature and salinity (r = 0.84, n = 90, p < 0.001 for peak M and r = 
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0.76, n = 90, p < 0.001 for peak T). Regarding the chemical parameters, 

FDOMM correlated significantly with DON (r = +0.60, n = 59, p < 0.001) and 

with ammonium (r = +0.62, n = 90, p < 0.001), and FDOMT with DON (r = 

+0.73, n = 59, p < 0.001), with PON (r = +0.57, n = 90, p < 0.001) and with 

nitrate (r = -0.50, n = 90, p < 0.001). During summer stratification (period 1) 

and upwelling (period 2), organic nitrogen profiles were characterised by a 

surface maximum and a bottom minimum (Fig. 3.4a-b), whereas inorganic 

nutrient profiles were opposite (Fig. 3.4c,d). These profiles are typical of the 

upwelling season off NW Spain. At this time, the organic nitrogen-poor and 

nitrate-rich ENACW rises to the surface, where production and accumulation 

of organic nitrogen occur in the periods of calm between successive upwelling 

events. FDOMM values were low in the entire water column except at the end 

of July (Fig. 3.6a), when a surface maximum was observed due to freshwater 

discharge (salinity <35.0; Fig. 3.3b). High surface concentrations of FDOMT 

coincided with low salinity and elevated DON and PON concentrations (Fig. 

3.6b). During upwelling episodes, FDOMT levels were low throughout the 

water column. Downwelling (period 3) coincided with high runoff (>300 m3s-1), 

which produced a remarkable accumulation of DON, PON and, especially, 

FDOM (Fig 3.6a-b). During periods 4 to 7, FDOMM and FDOMT displayed a 

similar pattern, characterised by low concentrations, except from 15 Jan to     

15 Feb, when high runoff occurred again (salinity <33.0; Fig. 3.3b). 
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Figure 3.6 Time course of (a) FDOMM (ppb QS) at stn 00, (b) FDOMT (ppb Trp) 
at stn 00, (c) FDOMM (ppb QS) at stn 03 and (d) FDOMT (ppb Trp) at stn 03 
during the study period. The different periods are shown, named from 1 to 7 
 

Middle shelf site (stn 03). Multiple regressions with temperature and salinity 

were worst than at the middle ría, but they were still significant (r = 0.64, n = 

182, p < 0.001 for FDOMM and r = 0.58, n = 182, p < 0.001 for FDOMT). 

FDOMM only correlated significantly with nitrate (r = +0.62, n = 182, p < 

0.001), whereas FDOMT correlated with PON (r = +0.73, n = 181, p < 0.001) 

and, to a lesser extent, with DON and nitrate (r = +0.35, n = 182, p < 0.001 

and r = -0.24, n = 182, p < 0.001, respectively). Higher concentrations of DON 

and PON (Fig. 3.5a-b) occurred in the surface layer during the periods of 
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stratification (1, 2, 3 and 7), whereas, during the IPC and winter mixing periods 

(5 and 6), lower values were recorded. Nitrate was depleted in the photic layer 

and accumulated at the bottom, especially during the upwelling season (Fig. 

3.5c). Just before the IPC (period 5), high nitrate levels were found throughout 

the water column, coinciding with a DON minimum. Ammonium 

concentrations were low (<0.5 µmol kg-1) and patchily distributed (Fig. 3.5d). 

The distribution of FDOMM (Fig. 3.6c) was similar to nitrate, with low 

concentrations in the surface layer, except during September, and high 

concentrations at the bottom. On the other hand, FDOMT (Fig. 3.6d) 

presented a surface distribution similar to that of PON, with surface maxima 

during the stratification periods. Minimum DON levels occurred at the bottom, 

whereas in the case of PON, FDOMT and FDOMM high values were recorded 

because of the resuspension of organic rich sediments in the bottom nepheloid 

layer (BNL; Fig. 3.5b, 3.6c-d). 

Box and whisker plots are a useful tool to compare average distributions of 

the chemical variables on the middle shelf. Figure 3.7 compares the FDOMT 

profile with the PON and CProt profiles, and the FDOMM profile with the NT 

and %CLip profiles. Thus, FDOMT followed the distribution of fresh organic 

matter represented by the carbon content of proteins. In the photic layer, 

FDOMT was high and very variable, whilst concentrations decreased 

downwards. A relative maximum was observed at the BNL. In contrast, 

FDOMM followed the distribution of the lipids contribution to the POC pool. 

Average FDOMM concentration increased with depth, especially at the BNL. 

The contribution of humic substances to the DOC pool was assessed using 

the conversion factor obtained with the commercial fulvic acid. On this basis, 

6-13% of surface DOC is humic substances, increasing gradually with depth up 

to 11-17% at the BNL. This value was lower than at stn 00 (13-22 %). 
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Figure 3.7 Box and whisker plot of (a) PON (µM N), (b) FDOMT (ppb Trp), (c) 
CProt (µM C), (d) NT (µM N), (e) FDOMM (ppb QS) and (f) %CLip for the whole 
data set at stn 03. Fifty percent of the data are included within the limit of the 
boxes and the caps represent the 10th and 90th percentiles. Solid lines represent the 
average profiles 
 

Tracing DOM production and mineralization 

A regression analysis involving two conservative parameters solves a three 

end members mixing problem. Thus, the variation of any non-conservative 

parameter described by the mixing of three water masses can be estimated by 

means of a multiple linear regression of this parameter with salinity and 

temperature. This is the case for subsurface waters (AOU>0) of the NW 
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Iberian upwelling, where the subtropical and subpolar branches of ENACW 

mix with coastal waters. An anomaly (a Y) can be defined for each chemical 

parameter (Y): 

TaSaaYYa 210 −−−=  (3.3) 

where a0, a1 and a2 are the coefficients of the linear multiple regression of Y 

with salinity and temperature; a Y retains only the variability associated with the 

biogeochemical processes that occur in waters with AOU > 0. 

Once the effect of water mass mixing was removed applying eq (3.3), both 

sites showed good correlations between a FDOMM and a O2C (Fig. 3.8a-b; r =   

-0.71,  n = 64, p < 0.001 for stn 00, and r = -0.76, n = 153, p < 0.001 for stn 

03) and similar slopes (0.024 ± 0.003 and 0.025 ± 0.002 ppb QS (µM O2)-1, 

respectively; model II, Sokal & Rohlf 1995). Using the conversion factor of 

FDOMM to DOC obtained with the commercial fulvic acid, every mol of 

dissolved oxygen consumed would generate 0.066 ± 0.009 moles of humic 

carbon. Assuming a ratio of 1.42 mol O2 (mol C)-1 for the remineralization of 

organic matter in oxic conditions (Anderson 1995, Fraga 2001), then 9 ± 1 % 

of the organic carbon potentially mineralised directly to CO2 was in fact 

transformed into humic substances, as a by-product of the oxidation of organic 

matter. 

On the other hand, a FDOMT correlated significantly with a CProt (Fig. 3.8c-d;   

r = +0.61, n = 79, p < 0.001 for stn 00, and r = +0.57, n = 163, p < 0.001 for 

stn 03), i.e. the most labile organic material. In this case, the two environments 

showed marked differences: whereas in the middle ría the slope was 1.2 ± 0.2 

ppb Trp (µM C)-1, in the middle shelf it reduced to 0.5 ± 0.1 ppb Trp (µM C)-1 

(model II, Sokal & Rohlf 1995). 
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Figure 3.8 X - Y plots of (a) a FDOMM vs. a O2C at stn 00, (b) a FDOMM vs. a O2C 
at stn 03, (c) a FDOMT vs. a CProt at stn 00 and (d) a FDOMT vs. a CProt at stn 03. 
Solid lines represent the corresponding regression lines (model II; Sokal & Rohlf, 
1995) 
 

Seasonal accumulation 

The 2-layered circulation of the Ría de Vigo (Fig. 3.9) allows us to estimate 

the net accumulation of organic matter at different sites using a simple mixing 

model. First, the net increase of FDOM in the surface layer of stns 00 or 03 can 

be calculated as the FDOM excess of the surface layer (∆FDOMS) compared 

with the expected FDOM from the linear mixing of the freshwater and 

ENACW end members: 
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where FDOMS and SS are the FDOM and salinity of the surface layer, FDOM0 

and S0 are the average FDOM and salinity of the ENACW end member, and 

FDOMF is the FDOM of the freshwater end member. Similar equations can be 

written for the two DOM fluorophores and the other chemical variables. 

The ENACW end member was sampled during the same period as stn 00 and 

stn 03 on the continental slope off the Ría de Vigo (42º07.8’N, 9º30.0’W, 1200 

m depth; stn 05 in Fig. 3.1). Although ENACW consists of two branches, a 

unique end member was considered in these rough calculations because the 

specific salinity of the ENACW upwelled each sampling date, resulting from 

the mixture of the subtropical and subpolar branches, was computed. 

The Oitabén-Verdugo river is the freshwater endmember. The concentrations 

of the chemical parameters measured at the Eiras reservoir (S = 0.00) were 

considered. Rivers are sources of the two types of fluorophores (Mayer et al. 

1999, Chen et al. 2002), but especially of humic substances. The river inputs 

were responsible for the surface FDOM maxima recorded under conditions of 

large continental runoff. This is due to the elevated inherent fluorescence of 

freshwater; typical values at the Eiras reservoir were 27 ppb Trp and 26 ppb 

QS, but differences with seawater are more apparent if FDOM/DOC ratios are 

compared. FDOMM/DOC and FDOMT/DOC ratios for seawater were 4.0-6.6 

ppb QS (µmol C)-1 and 10-14 ppb Trp (µmol C)-1, respectively. At the Eiras 

reservoir, the ratios reached values of 30 ± 9 ppb QS (µmol C)-1 and 30 ± 3 

ppb Trp (µmol C)-1. Other authors have also found an increase of the 

FDOM/DOC ratio with decreasing salinity (Callahan et al. 2004, Del Vecchio 

& Blough 2004). The seasonal cycle of the humic- and protein-like 

fluorophores in the freshwater end member were slightly different. FDOMT 

concentration was low during the spring and high during the autumn, when 
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continental runoff was large and high loads of labile materials of terrestrial plant 

origin occur. On the other hand, FDOMM was maximal in autumn and winter 

and decreased to minimal concentrations in spring and summer. The large 

contribution of terrestrial materials in autumn and the photochemical 

degradation of humic substances, widely reported in the literature (see Miller & 

Moran 1997 and Vähätalo & Wetzel 2004) and observed in the study area 

(Nieto-Cid et al. submitted, Chapter 4), are probably the reasons behind this 

seasonal evolution. 

Second, the net increase of fluorescent DOM in the bottom layer of stn 00 or 

stn 03 can be estimated as the FDOM excess of the bottom sample (∆FDOMB) 

compared with the expected FDOM from the linear mixing of the surface 

sample of stn 00 or 03 with the ENACW end member: 


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−= 0
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SSFDOM

SS
SSFDOMFDOM∆  (3.5)

where FDOMB and SB are the FDOM and salinity at the bottom of stn 00 or stn 

03. The same equation can be written for the two DOM fluorophores and the 

other chemical variables. 

Third, the net increase of fluorescent DOM in the ría (from San Simon Bay 

to stn 00) and the shelf (from San Simon Bay to stn 03), can be estimated as the 

accumulation of FDOM in the surface sample (δFDOM) compared with the 

expected FDOM from the linear mixing of the surface sample of stn 00 or 03 

with the bottom sample of the same station and the freshwater end member: 
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The accumulation in the outer shelf (from stn 00 to stn 03) can be estimated 

by subtraction of the calculation for the shelf minus the calculation for the ría. 
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Figure 3.9 Scheme of the exchange of water between the ría, the shelf and the 
adjacent ocean. ∆ represents surface and bottom net excesses of the chemical 
parameters and δ represents the net accumulations in the ría and the outer shelf. 
Plots include (a) DOC (µM C) and POC (µM C), (b) DON (µM N), PON (µM N) 
and NT (µM N), and (c) FDOMM (ppb QS) and FDOMT (ppb Trp) 
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Figure 3.9 shows the net DOC, POC, DON, PON, NT, and FDOMT 

excesses in the upper and bottom layers of both sites and the corresponding 

accumulations in the ría and the outer shelf. In general, surface and bottom 

values are positive for all the organic matter parameters. Only FDOMM 

experienced a deficit in the surface layer of stn 03. In contrast, the trends in 

nutrient salts were negative at the surface (net deficit) and positive at the 

bottom (net excess).  

The NT deficit was larger in the surface layer of the shelf, whereas the DOC, 

DON, POC, PON and FDOMT excesses were larger in the surface layer of the 

ría. For the bottom layer, larger excesses occurred in the ría for all variables 

except for DON and FDOMT (not significantly different in either site). 

Maximum surface excesses occurred in the ría during the downwelling period: 

∆DOC = +38 µM C, ∆POC = +46 µM C, ∆DON = +3.7 µM N, ∆PON = 

+6.9 µM N, ∆FDOMM = +5.6 ppb QS and ∆FDOMT = +14.1 ppb Trp. 

Organic matter accumulated in the ría (δFDOM > 0) was partially consumed 

on the shelf (δFDOM < 0). It is possible to calculate the net production or 

consumption of any chemical parameter in the ría using the calculated renewal 

rates for each period (Table 3.1). The highest production rates of organic 

carbon and nitrogen occurred during the upwelling period, and coincided with 

maximum nutrient consumption. However, maximum FDOMT production 

rates took place during summer stratification (+1.3 ppb Trp d-1), whereas 

FDOMM production rates did not show significant variations during the study 

year. In the bottom layer, nutrients were produced at faster rates during 

summer stratification and upwelling conditions (periods 1 and 2). 
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Table 3.1 Net production rates of DOC (µM C d-1), POC (µM C d-1), DON (µM 
N d-1), PON (µM N d-1), NT (µM N d-1), FDOMM (ppb eq QS d-1) and FDOMT 
(ppb eq Trp d-1) at the bottom (B) and surface (S) layer of stn 00 for the annual 
cycle (AC) and the main periods: summer stratification (1), upwelling (2), 
downwelling (3), IPC period (5), winter mixing (6), spring (7). Considering QS00 and 
the water volume of the ría from the inner part to stn 00 (0.53 km3), the annual 
average renewal rate was 9 ± 2 %d-1 (Nieto-Cid et al. 2004, Chapter 2) 
 

                      
    PERIOD   

    AC 1 2 3 5 6 7   
  S 1.1 2.2 4.2 0.3 0.4 0.5 2.0   
  

DOC 
B 0.3 0.3 0.3 0.1 0.2 0.7 0.3   

  S 0.7 1.7 4.5 0.5 -0.3 -0.4 0.5   
  

POC B 0.8 1.0 2.0 0.1 0.6 1.5 2.0   
  S 0.1 0.3 0.5 0.0 0.0 0.1 0.2   
  

DON B 0.0 0.0 0.0 0.0 0.0 0.1 0.1   
  S 0.1 0.2 0.7 0.1 0.0 0.0 0.1   
  

PON B 0.1 0.1 0.3 0.0 0.1 0.2 0.3   
  S -0.5 -1.5 -1.9 0.0 0.1 -0.1 -1.3   
  

NT B 0.2 0.6 0.7 0.0 0.0 -0.2 0.2   
  S 0.1 0.1 0.1 0.0 0.1 0.1 0.0   
  

FDOMM B 0.1 0.2 0.2 0.0 0.0 0.1 0.2   
  S 0.5 1.3 0.7 0.1 0.2 0.4 0.8   
  

FDOMT B 0.2 0.3 0.4 0.1 0.1 0.2 0.3   
                      

 
In the surface layer, nutrient consumption rates correlated significantly with 

DON (r = -0.94, n = 7, p < 0.001), PON (r = -0.79, n = 7, p < 0.05), and 

FDOMT (r = -0.77, n = 7, p < 0.05) production rates. Nevertheless, in the 

bottom layer, only FDOMM production rates correlated significantly with 

nutrient production rates (r = +0.85, n = 7, p < 0.01). The contribution of 

humic substances to the net accumulation of DOC was larger in the bottom 

than in the surface (~90-15%) layer. These percentages were estimated 

considering the conversion factor of FDOMM to DOC obtained with the 

commercial fulvic acid. 
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DISCUSSION 

DOM fluorescence as a tracer for microbial processes 

As in other marine environments (Hayase et al. 1987, 1988, Chen & Bada 

1992, Determann et al. 1996), FDOMM concentrations were low at the surface 

and increased with depth. This gradient is created by photodegradation in the 

surface layer and humification throughout the water column, especially at the 

BNL and in the sediments (Skoog et al. 1996, Burdige et al. 2004). In this sense, 

the good correlation between FDOMM and nutrient salts in shelf bottom waters 

suggests that humification was tightly coupled to mineralization, indicating that 

the formation of fluorescent marine humic substances goes together with the 

decomposition of settling particles in the water column (Hayase et al. 1987, 

1988, Hayase & Shinozuka 1995). Chen & Bada (1992) suggested that the 

bacteria responsible for the regeneration of nutrients are simultaneously 

producing refractory compounds from biologically labile components. 

A substantial difference between the two study sites was that FDOMM 

correlated better with reduced nitrogen (DON and ammonium) in the ría, and 

with oxidized nitrogen (nitrate) on the shelf. This suggests that humic 

substances are not produced during the mineralization of organic nitrogen but 

during the oxidation of organic carbon. Particularly, some authors point to the 

degradation of lipids, nitrogen-free biomolecules, as an origin for humic 

substances (Kieber et al. 1997). In our case, FDOMM and %CLip followed the 

same trend, showing lipids as one possible precursor of humic compounds. 

The contributions of humic substances to the DOC pool estimated in this 

work (6-22%) were similar to the numbers obtained by Obernosterer & Herndl 

(2000) in the Adriatic Sea (15 ± 7%), and lower than in the North Sea (43 ± 

7%), a marine ecosystem more affected by terrestrial contributions. The 

percentage of conversion of degradable organic carbon into humic substances 

was ~10%, either in the ría or on the shelf. This number is much higher than 
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the 1% obtained by Hayase & Shinozuka (1995) for mid-depth waters (300-

1000 m) of the Central Equatorial Pacific. However, these authors suggested 

that the ratio of fluorescent organic matter to total dissolved organic substances 

should be much higher than 1%. In addition, the oceanic site sampled by 

Hayase & Shinozuka (1995) is not comparable with a coastal upwelling system, 

where more intense humification processes are expected. Moreover, the effect 

of the thermohaline parameters was eliminated from the correlation between 

FDOMM and oxygen in this work, but not by Hayase & Shinozuka (1995). This 

may also be the reason behind the low slopes of the correlations of FDOMM 

with nitrate, phosphate, silicate and O2C on the Iberian margin (0.14 ± 0.01, 2.4 

± 0.2, 0.37 ± 0.03 and -0.026 ± 0.003 ppb QS (µM)-1, respectively; model II) 

compared with the Central Equatorial Pacific (Hayase & Shinozuka 1995) and 

the North Pacific (Hayase et al. 1988). 

Although FDOMT relates directly with the fluorescence of aromatic amino 

acids, Yamashita & Tanoue (2003) demonstrated that it could be a useful 

indicator of the dynamics of DFAA in general. The significant correlation with 

suspended proteins (r > +0.57, p < 0.001) also supports this statement. Since 

DFAA are liberated during phytoplankton exudation, cell autolysis and 

zooplankton grazing (Nagata 2000), FDOMT can be used in future studies to 

trace these processes, which occur preferentially in the surface layer. The 

accumulation of FDOMT observed in the BNL could be related to an 

enhancement of the in situ production and/or to the release of the DFAA 

accumulated in the pore waters of pelagic sediments (Coble 1996, Mayer et al. 

1999), which exceed the rate of consumption of these labile molecules. 

Production and consumption rates of fluorescent DOM 

Since marine humic substances are microbiologically generated in the lower 

layer and photodegraded in the upper layer (Chen & Bada 1992), the net excess 

of FDOMM should be positive near the bottom and negative at the surface. 
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However, FDOMM was produced in the surface layer of the ría at an average 

net rate of +0.2 ppb QS d-1, probably because humification processes in San 

Simón Bay exceed photodegradation. San Simón Bay, in the innermost part of 

the Ría de Vigo, is a shallow basin with an average depth of 4 m, where the ría 

receives most of its continental inputs. This bay is strongly affected by the tidal 

cycle: more than 40% of the basin sediments are exposed to the atmosphere 

during low tides (Gilcoto 2004). Biogenic materials entering San Simón Bay 

undergo strong biochemical processes, able to modify the chemical 

composition of the water flowing into the ría, especially due to the activity of 

the marine angiosperm Zostera (Niell 1977). The elevated pCO2 level (>600 

µatm) of the surface waters of San Simon Bay is a clear indication of the strong 

mineralization processes that occur there (Gago et al. 2003). 

The largest excess of fluorescent DOM in the surface layer occurred during 

the stratification periods in the ría and the shelf, whilst the largest excess in the 

bottom layer was recorded during the downwelling period, in response to the 

reversal of the positive residual circulation pattern. Fluorescent DOM 

accumulates in the BNL, in agreement with the statement of Mayer et al. (1999) 

and Burdige et al. (2004) that sediments provide a source of protein- and 

humic-like fluorescence. Seasonal changes on FDOMT, DOC, POC, DON and 

PON surface production were tied to the changes in nutrient consumption, 

pointing again to the close relationship between the production of FDOMT and 

fresh (labile) materials. However, net production of nutrients at the bottom 

correlated significantly only with FDOMM, suggesting a coupling between 

mineralization and humification processes at the BNL. Despite intense 

mineralization processes in bottom shelf waters (δNT >> 0), which would 

produce an accumulation of FDOMM, the balance for the whole water column 

indicates a large deficit of humic-like fluorescence (δFDOMM = -1.5 ppb QS) 
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and, consequently, the importance of photodegradation of humic substances in 

the surface layer on the shelf.  

Information on the production and accumulation of DOM in upwelling 

systems is scarce and practically restricted to previous studies in the NW 

Iberian upwelling system. Doval et al. (1997) estimated the accumulation of 

DOC and DON in the Ría de Vigo during the upwelling season of 1995. Their 

values (+21 µM C and +1.7 µM N, respectively) were similar to those obtained 

in this work for the upwelling period (+20 µM C and +2.2 µM N, respectively). 

Concomitantly, Álvarez-Salgado et al. (1999) calculated a DOC production 

during the upwelling season in the inner ría of +4.4 µM C d-1, which is not 

significantly different from the +4.2 µM C d-1 obtained in this work. They also 

found that surface waters of the outer ría produced +1.3 µM C d-1, whereas the 

shelf acted simply as a retention volume where DOM production and 

consumption were in equilibrium (net production = 0.0 µM C d-1). The total 

DOC excess from the inner ría to the shelf computed by Álvarez-Salgado et al. 

(1999) was 8 µM C, which coincides with the number obtained in this study. 

Comparison of the net accumulation of dissolved and particulate organic 

matter in the ría and the shelf (referred to the whole water column) produces a 

different view of the carbon and nitrogen cycles in NW Iberian shelf waters. 

Up to 40% of the net production of organic carbon and nitrogen of the inner 

ría was consumed on the shelf. The remaining 60% was exported to the 

adjacent ocean, probably in the recurrent upwelling filament off the Rías Baixas 

(Álvarez-Salgado et al. 2001b). Preferential consumption of the particulate 

fraction occurred: 70% of the POC was consumed compared with only 20% of 

the DOC. The reason behind this difference is the gravity sinking on the shelf 

of the POC exported from the rías, which experiences strong mineralization 

processes in the BNL. Intense nutrient mineralization in shelf bottom waters at 

the expense of the materials exported from the rías has been suggested by 
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Tenore et al. (1982), Álvarez-Salgado et al. (1997) and Prego et al. (1997). 

However, this is the first time that the proportion of the organic matter 

exported from the ría that is mineralised on the shelf has been quantified. On 

the other hand, DOC preferentially crosses the surface layer of the shelf to be 

exported to the adjacent ocean. Consequently, whereas the average DOC/POC 

ratio of the material accumulated in the ría was 1.6 (= 11.7/7.4; 60% DOC, 

40% POC), the ratio of the material exported to the adjacent ocean was 4.3    

(= (11.7-2.6)/(7.4-5.3); 80% DOC, 20% POC). The contribution of POC to the 

organic matter accumulated in the ría during the annual cycle was comparable 

with the 45% obtained by Gago et al. (2003) for the same system in 1997. 

However, for the case of the shelf, the 20% of POC export obtained in this 

study, contrasts with the 50% found by Álvarez-Salgado et al. (2001b) in the 

upwelling filament of the Rías Baixas, although their numbers refer exclusively 

to a short period in August 1998. 

The C/N molar ratio of the organic matter accumulated in the ría ranges 

from an average of 5.0 for the particulate material to 9.0 for the dissolved 

material. The average C/N ratio of the products of synthesis and early 

degradation of marine phytoplankton is 6.7 (Anderson 1995, Fraga 2001). 

Therefore, the accumulated particulate material is more labile (N-richer) than 

the dissolved material (N-poorer). This is also in agreement with the 

preferential consumption of particulate material on the shelf. Although only 

20% of the bulk DOC exported to the shelf was respired, this is not the case 

for the labile fraction of the DOM represented by FDOMT: up to 95% of the 

DFAA exported from the ría were consumed on the shelf. Since the net 

average deficit of DON in shelf waters (δDON) was only -0.1 µM N, most of it 

was probably due to the net consumption of these DFAA. Assuming an 

average C/N molar ratio of 3.5 for the DFAA (Fraga 2001), it seems that only 

13% of the DOC deficit on the shelf can be assigned to DFAA consumption. 
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The remaining 87% should be respired carbohydrates, based on the 

consideration that labile DOM is mainly composed of DFAA and 

carbohydrates (Kirchman et al. 1994, Rich et al. 1996). A decrease of FDOMM 

of -1.5 ppb QS is equivalent to the net photochemical degradation of 4.0 µM C 

of humic substances, which would be preferentially transformed into labile 

small organic molecules (Miller & Moran 1997). 
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CONCLUSIONS 

It has been demonstrated that DOM fluorescence can be used as a tracer for 

labile DOM (DFAA) production in the surface layer and microbial 

decomposition processes in the bottom layer. 

Fluorescence distributions suggested that humic acids and DFAA can be 

produced in either the surface or the bottom layer. FDOMT accumulated 1) in 

the BNL, after in situ production by intense microbial activity and/or after 

release from the pore waters of the pelagic sediment; and 2) in the photic layer, 

because of phytoplankton exudation or cell lysis. On the other hand, FDOMM 

was produced in subsurface waters by in situ mineralization, especially in the 

BNL and the sediments. The two study sites, a semi enclosed bay and an open 

shelf, presented the same percentage of conversion of degradable organic 

carbon into humic substances as a by-product of microbial oxidation processes, 

~10%. 

Despite photodegradation of humic substances in the surface layer, 

accumulation of the humic material produced in San Simon Bay occurred in the 

middle ría. On the contrary, photodegradation was the dominant process in the 

transit of surface waters of the ría to the shelf, where net consumption of 

humic substances was observed. 

Although the literature on the photochemical degradation of humic 

substances is plentiful, there are no data about rates of microbial production of 

these macromolecules. In this work, we have found that humic substances can 

contribute up to 90% of the DOC excess in the BNL, an amount that demands 

future process orientated studies. 
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Chapter 4, the research work presented in this chapter is also a 

contribution to the paper: 

M. Nieto-Cid, X. A. Álvarez-Salgado, F. F. Pérez. 2005. Microbial and 

photochemical reactivity of fluorescent dissolved organic matter in a 

coastal upwelling system. Limnol Oceanogr, accepted 

 

Resumen: Se han realizado incubaciones de 24 h en luz y oscuridad en el 

sistema de afloramiento costero de la Ría de Vigo bajo una amplia variedad de 

condiciones meteorológicas y oceanográficas, donde se han observado cambios 

significativos en el contenido de oxígeno disuelto y en la fluorescencia de 

sustancias húmicas y aminoácidos aromáticos disueltos. Las tasas de respiración 

mostraron una correlación positiva con la producción neta de sustancias 

húmicas en oscuridad (r = +0.73, n = 79, p < 0.001) mostrando una pendiente 

de 0.027 ± 0.003 ppb QS (µmol kg-1 O2)-1, lo que sugiere la síntesis diaria de 

sustancias húmicas como subproducto de la respiración bacteriana de la materia 

orgánica disuelta. Por el contrario, el consumo de sustancias húmicas en las 

incubaciones con luz menos en oscuridad mostró una correlación inversa con la 

producción neta de estas sustancias en oscuridad (r = -0.71, n = 46, p < 0.001), 

indicando una rápida fotodegradación de las sustancias húmicas producidas 

recientemente. Incubaciones paralelas demostraron que las tasas de 

fotodegradación diarias y los niveles de fluorescencia húmica residual presentan 

una distribución estacional caracterizada por un máximo otoñal. Por último, la 

significativa correlación lineal entre la producción primaria bruta (Pg) y la 

producción neta de aminoácidos aromáticos con luz (r = +0.54, n = 46, p < 

0.001) señala un rápido consumo de materiales disueltos pseudo-proteicos con 

una tasa media de -1.4 ± 0.2 ppb Trp d-1, que se acumula en la columna de agua 

solo cuando Pg supera el valor de 80 ± 20 µmol  kg-1d-1. 
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Abstract: Significant changes have been observed in the dissolved oxygen 

content and the fluorescence of humic substances and dissolved aromatic 

amino acids after 24 h light and dark incubations in the coastal upwelling 

system of the Ría de Vigo, under a wide variety of meteorological and 

oceanographic conditions. Respiration rates were positively correlated with the 

net production of humic substances in the dark (r = +0.73, n = 79, p < 0.001) 

at a net rate of 0.027 ± 0.003 ppb QS (µmol kg-1 O2)-1, suggesting a daily 

synthesis of marine humics as a by-product of the bacterial respiration of 

dissolved organic matter (DOM). On the contrary, humic substances 

consumption in the light minus dark incubations was inversely correlated with 

the net production in the dark (r = -0.71, n = 46, p < 0.001), indicating a rapid 

photodegradation of recently produced marine humic substances. Parallel 

incubation experiments demonstrated that daily photodegradation rates and 

residual humic fluorescence levels followed a seasonal pattern characterised by 

a marked autumn maximum. Finally, a significant linear correlation between the 

gross primary production (Pg) and the net production of aromatic amino acids 

in the light (r = +0.54, n = 46, p < 0.001) pointed to the quick consumption of 

dissolved protein-like materials at a net average rate of -1.4 ± 0.2 ppb Trp d-1, 

which accumulates in the water column only when Pg exceeds 80 ± 20 µmol  

kg-1d-1. 
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INTRODUCTION 

Marine dissolved organic matter (DOM) constitutes the main substrate for 

bacterioplankton growth and respiration (Azam & Cho 1987). DOM sources in 

estuarine and coastal waters include phytoplankton exudation, cell autolysis and 

grazing pressure (Nagata 2000), as well as autochthonous organic matter of 

terrestrial and oceanic origin (Wollast 1993, 1998). The diversity of sources 

produces a myriad of different compounds, with a microbial reactivity ranging 

from hours for the dissolved free amino acids (DFAA), monosaccharides and 

other labile molecules (Fuhrman 1987) to thousands of years for the most 

refractory humic compounds upwelled from the deep sea (Williams & Druffel 

1987). The resistance of humic substances to microbial degradation contrasts 

with their susceptibility to photochemical decomposition (Benner & Biddanda 

1998). 

Fluorescence reveals as a useful, simple and quick technique to characterize 

and quantify two different classes of DOM: the labile DFAA (Yamashita & 

Tanoue 2003) and the recalcitrant humic substances (Coble et al. 1990). These 

two classes of compounds can be used to trace diverse biogeochemical 

processes such as labile organic matter production (Nieto-Cid et al. in press, 

Chapter 3), respiration (Chen & Bada 1992, Nieto-Cid et al. in press, Chapter 3) 

and photobleaching (Skoog et al. 1996, Moran et al. 2000, Del Vecchio & 

Blough 2002). All these processes play a key role in the accumulation, recycling 

and export of DOM in marine ecosystems (Carlson 2002). 

The origin of dissolved labile organic matter can be autotrophic, via 

extracellular release (Myklestad 1995, Obernosterer & Herndl 1995) and cell 

lysis (Kirchman et al. 1993), or heterotrophic, via grazing losses (Storm et al. 

1997). Rapid turnover maintains these compounds at nanomolar concentrations 

in the open ocean, but they support a large portion of the heterotrophic 

bacterial growth and respiration (Skoog et al. 1999). We hypothesised that the 
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fluorescence of dissolved aromatic amino acids (FDOMT) can be used to 

discriminate whether the accumulation of labile DOM in the marine 

environment is preferentially due to anabolic (related to primary production) or 

catabolic (related to respiration) processes. 

The origin of marine humic substances is not completely resolved. An 

alternative to the classical poli-phenolic and melanoidin condensation models 

(Hedges 1978) and the photo-oxidation of lipids (Kieber et al. 1997), is the 

formation of humic substances as a by-product of microbial respiration 

(Brophy & Carlson 1989, Tranvik 1993, Kramer & Herndl 2004). A fraction of 

the respired organic carbon is transformed into biologically refractory organic 

matter instead of CO2 (Chen & Bada 1992, Heissenberger & Herndl 1994, 

Hayase & Shinozuka 1995, Ogawa et al. 2001). We hypothesized that the 

fluorescence of humic compounds (FDOMM) can be used to trace the daily 

production of humic substances during microbial respiration processes. 

Exposure to sunlight degrades high-molecular-weight humic substances into 

smaller photoproducts that are mainly removed from the DOM pool by two 

pathways: through direct volatilization of carbon gases (CO, CO2, SO2…) and 

through rapid bacterial utilization of labile photoproducts (Kieber et al. 1997). 

The relationship between photochemical and heterotrophic processes has been 

specifically investigated during the last decade in different environments 

(Lindell et al. 1995, Amon & Benner 1996, Moran & Zepp 1997, Moran et al. 

2000, Obernosterer & Benner 2004, Kramer & Herndl 2004). Since 

photodegradation of DOM involves mainly humic substances, FDOMM is a 

suitable parameter to study this process. A third hypothesis to be tested in this 

work is that the humic material produced during bacterial respiration in the 

bottom layer is quickly degraded in the surface layer by photochemical 

processes. 
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Coastal upwelling systems are ideal to verify these hypotheses, since microbial 

activity intensifies because of the enhanced entry of nutrients from the adjacent 

ocean (Walsh 1991). Pelagic and benthic processes are tightly coupled due to 

the reduced water column depth; the organic matter produced in the photic 

layer is rapidly processed by microheterotrophs in the aphotic layer and the 

sediments, and upwelling enhances the quick rise to the surface of the products 

and by-products of microbial degradation. 

This study was performed in the Northwest coast of the Iberian Peninsula, an 

area affected by a marked seasonal cycle of coastal winds (Nogueira et al. 1997). 

From April to October (the upwelling-favourable season), intermittent 

northerly winds of period 1-2 week cause Eastern North Atlantic Central Water 

(ENACW) to upwell over the shelf (Álvarez-Salgado et al. 1993). From 

November to March (the downwelling-favourable season), southerly winds 

prevail and a marked downwelling front develops between the Iberian Poleward 

Current (IPC) carrying warm and salty subtropical surface and central water to 

our latitudes and the coastal water (Álvarez-Salgado et al. 2000). The study site 

is the Ría de Vigo, one of the Rías Baixas, four large V-shaped coastal 

embayments in the NW Iberian shelf. These sites, which behave as an 

extension of the shelf, are characterised by average flushing times of about 1 wk 

(Rosón et al. 1999, Álvarez-Salgado et al. 2000). 

MATERIAL AND METHODS 

Sampling strategy. The middle segment of the coastal upwelling system of 

the Ría de Vigo (Fig. 4.1) was sampled about 1 hour before sunrise, twice a 

week, during winter (18, 21, 25 and 28 February), spring (11, 15, 18, 22 April), 

summer (15, 18, 22 and 26 July) and autumn (17, 19, 23, 26 September) 2002. 

Samples were taken with a rosette equipped with twelve 10-L PVC Niskin 

bottles with stainless-steel internal springs. Salinity and temperature were 

recorded with a SBE 9/11 conductivity-temperature-depth probe attached to 
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the rosette sampler. Conductivity measurements were converted into practical 

salinity scale values with the equation of UNESCO (1985). Water samples for 

the analyses of dissolved oxygen and dissolved organic matter were collected 

from five depths: the surface (50% Photosynthetic Available Radiation, PAR; 

average 2.1 ± 0.6 m), the depth of the 25% PAR (average 8 ± 2 m), the depth 

of the 1% PAR (average 16 ± 3 m), 27 ± 2 m and the bottom (average 41 ± 1 

m). 
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Figure 4.1 Chart showing the situation of the sampling stations (black points) in 
the river Oitabén-Verdugo and the Ría de Vigo (NW Spain). The 10, 20, 40, 75 and 
100 m isobaths are shown 
 

Dissolved oxygen (O2). Samples were collected into calibrated 110 mL glass 

flasks. After fixation, they were kept in the dark until analysis in the laboratory, 

24 h later. O2 was determined by Winkler potentiometric end-point titration 

using a Titrino 720 analyser (Metrohm) with a precision of ±0.5 µmol kg-1. 

Dissolved organic carbon (DOC). Samples for DOM were collected into 

500 mL acid-cleaned flasks and filtered through precombusted (450ºC, 4 h) 47 

mm ø Whatman GF/F filters in an acid-cleaned glass filtration system, under 

low N2 flow pressure. Aliquots for the analysis of DOC were collected into 10 
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mL precombusted (450ºC, 12 h) glass ampoules. After acidification with H3PO4 

to pH < 2, the ampoules were heat-sealed and stored in the dark at 4ºC until 

analysis. DOC was measured with a Shimadzu TOC-5000 organic carbon 

analyzer, as described in Nieto-Cid et al. (2004). The system was standardized 

daily with potassium hydrogen phthalate. The concentrations of DOC were 

determined by subtracting the average peak area from the instrument blank area 

and dividing by the slope of the standard curve. The precision of measurements 

was ±0.7 µM C. The accuracy of the DOC analysis was tested daily with the 

TOC reference materials provided by D. Hansell (University of Miami). We 

obtained an average concentration of 45.7 ± 1.6 µM C (n = 26) for the deep 

ocean reference (Sargasso Sea deep water, 2600 m) minus blank reference 

materials. The nominal value for TOC provided by the reference laboratory is 

44.0 ± 1.5 µM C. 

Fluorescence of dissolved organic matter (FDOM). The DOM filtrate 

was measured with a Perkin Elmer LS 55 Luminescence spectrometer. The 

instrument was equipped with a xenon discharge lamp, equivalent to 20 kW for 

8 µs duration, and a 1 cm quartz fluorescence cell. Milli-Q water was used as a 

reference for fluorescence analyses, and the intensity of the Raman peak was 

checked regularly. Discrete excitation/emission pair measurements were 

performed at peaks M (marine humic substances, average Ex/Em: 320 nm/410 

nm; FDOMM) and T (aromatic amino acids; average Ex/Em: 280 nm/350 nm; 

FDOMT), specifically tryptophan (Coble et al. 1990; Mopper & Schultz 1993). 

Four replicate measurements were performed for each Ex/Em wavelength. A 

four points standard curve was prepared daily with a mixed standard of quinine 

sulphate (QS) and tryptophan (Trp) in sulphuric acid 0.05 M (Nieto-Cid et al. in 

press, Chapter 3). The equivalent concentration of every peak was determined by 

subtracting the average peak height from the blank height, and dividing by the 

slope of the standard curve. Fluorescence units were expressed in ppb 
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equivalents of QS (ppb QS) for FDOMM and ppb equivalents of Trp (ppb Trp) 

for FDOMT. The precision were ±0.1 ppb QS and ±0.6 ppb Trp, respectively. 

Metabolic balance of the water column. Daily photosynthetic production 

(Pg) and respiration (R) rates of the plankton community were estimated by the 

oxygen light-dark bottle method (Strickland & Parsons 1972). Samples collected 

in 10-L Niskin bottles were transferred to black polyethylene carboys. Five 

levels were sampled: 50%, 25% and 1% of surface light, and two more depths 

below (27 ± 2 and 41 ± 1 m). The carboys were gently shaken before sampling 

to prevent sedimentation of the particulate material. Series of eleven 110 mL 

Winkler bottles composed of triplicate initial, and quadruplicate light and dark 

subsamples were filled for each depth. Each series of light and dark subsamples 

were incubated for 24 hours (starting within one hour of the sunrise) at the 

original light and temperature conditions in incubators placed in the terrace of 

the base laboratory. Dissolved oxygen was determined by Winkler 

potentiometric end-point titration. 

Theses incubators were also used to follow the changes in FDOMM and 

FDOMT under the same conditions. Series of nine 250 mL all-glass flasks 

compose of triplicate initial, dark and light subsamples were filled. In this case, 

samples were filtered before analysis through precombusted (450ºC, 4 h) 47 

mm ø Whatman GF/F filters in an acid-cleaned glass filtration system, under 

low N2 flow pressure. Fluorescence of initial, dark and light filtered samples 

was analyzed with the Perkin Elmer LS 55 spectrofluorometer. 

Photodegradation of humic substances. Incubation experiments to follow 

the natural sunlight photodegradation of humic substances in riverine and sea 

(surface and bottom) water were conducted. Riverine samples were collected 

once a week in the Soutomaior Bridge, in the upstream limit of fresh water-

seawater interface of the River Oitabén-Verdugo (Fig. 4.1). The salinity of 

riverine samples was <2. Surface and bottom waters of the middle ría were 
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incubated once a week too. Samples were filtered, first, through precombusted 

(450ºC, 4 h) 47 mm ø Whatman GF/F filters (nominal pore size, 1 µm), and, 

second, through 47 mm ø Gelman Laboratory Supor®-200 membrane filters 

(nominal pore size, 0.2 µm), in an acid-cleaned glass filtration system, under low 

N2 flow pressure. The filtrates were collected in 250 mL quartz incubators and 

placed in the terrace of the base laboratory, exposed to 100% natural sunlight. 

FDOMM was measured several times during the incubation (0, 1, 3, 7 and 15 

days). 

RESULTS 

The mean profile of microbial respiration rates (R) presented two significant 

maxima (p < 0.005); at the surface and bottom layers, with average values of 6.2 

and 1.8 µmol kg-1 d-1, respectively (Fig. 4.2a). The largest variability was 

observed in the photic layer, especially at the depth of the 25% PAR. In the 

case of the gross primary production (Pg), a surface maximum was observed 

(average 37 µmol kg-1 d-1; Fig. 4.2b). R and Pg ranged from 0 to 15 and from 0 

to 105 µmol kg-1 d-1, respectively. These wide ranges resulted from sampling a 

wide variety of meteorological (coastal wind and freshwater runoff regimes) and 

hydrographic (stratification and homogenization regimes) conditions in the Ría 

de Vigo. The water-column integrated R showed a marked seasonal trend: low 

values during winter and spring, and significantly higher (p < 0.001) during the 

summer and autumn (Fig. 4.2c). On the contrary, the water-column integrated 

Pg did not show any significant seasonal pattern (Fig. 4.2d). The intra-period 

variability (time scale of 1/2 wk) was of the same magnitude than the inter-

period variability (seasonal time scale). It is noticeable the low Pg during 

autumn. Average ± SD water column integrated Pg expressed in carbon units 

was 2.7 ± 2.1 g C m-2 d-1 if a O2/C molar ratio of 1.4 is assumed (Anderson 

1995, Fraga 2001). In average, about 40% of Pg was respired in the water 

column: 3/5 in the photic layer and 2/5 in the aphotic layer. The remaining 
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60%, the so called new or export production (Quiñones & Platt 1991), is 

available for export to the adjacent shelf, sinking to the sediments or be 

transferred to a higher trophic level. The ratio of new to total production, (Pg-

R)/Pg, ranged from 0.6 to 0.8 during winter, spring and summer (autotrophic 

phase), but it dramatically decreased to -0.2 during autumn (heterotrophic 

phase). This conspicuous seasonal pattern has been throughoutly described in 

previous works by Moncoiffé et al. (2000) and Álvarez-Salgado et al. (2001a). 
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Figure 4.2 Box and whisker plot of (a) respiration and (b) gross primary production 
rates in the middle Ría de Vigo. Fifty percent of the data are included within the limit 
of the boxes and the caps represent the 10th and 90th percentiles. Solid lines represent 
the average profiles. Plots (c) and (d) show the average and standard deviation of the 
seasonal evolution of the water-column integrated respiration and gross primary 
production rates, respectively. 
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Figure 4.3 Box and whisker plot of (a) DOC, (b) FDOMM/DOC and (c) 
FDOMT/DOC profiles for the middle Ría de Vigo. Fifty percent of the data are 
included within the limit of the boxes and the caps represent the 10th and 90th 
percentiles. Solid lines represent the average profiles. Plots (d), (e) and (f) show the 
average and standard deviation of seasonal evolution of DOC, FDOMM/DOC and 
FDOMT/DOC, respectively. ● > 1% PAR and ● < 1% PAR 
 

The mean DOC profile showed a significant decrease with depth (p < 0.001) 

from an average surface value of 77 µM C to a bottom value of 68 µM C (Fig. 

4.3a). Maximum variability occurred at the surface. This trend has been 

previously described by Doval et al. (1997) and Álvarez-Salgado et al. (1999). 

The FDOMM/DOC ratio showed a slightly, but significant, increase (p < 0.001) 

with depth, from 5.0 to 5.5 ppb QS (ppm C)-1 (Fig. 4.3b). The FDOMT/DOC 

ratio presented higher values in the upper layer, with a subsurface maximum 

(15.2 ppb Trp (ppm C)-1 at the 25% PAR depth), and a large variability in the 
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whole water column (Fig. 4.3c). DOC and FDOMM/DOC displayed marked 

seasonal cycle in the lower layer (<1% PAR); the observed values were 

significantly higher (p < 0.001 and p < 0.005, respectively) during the autumn, 

with average values of 74.0 µM C and 7.8 ppb QS (ppm C)-1, respectively (12% 

and 70% increase compared with the winter minimum; Fig. 4.3d, e). Seasonal 

variability of DOC and FDOMT/DOC in the upper layer (>1% PAR) showed 

a similar pattern, with a significant increase (p < 0.001 and p < 0.005, 

respectively) from winter to autumn (78.2 µM C and 18.2 ppb Trp (ppm C)-1; 

8% and 39% increase compared with the winter minimum, respectively; Fig. 

4.3d, f). In summary, Figure 4.3d-f indicates a seasonal accumulation of DOC 

with a marked enrichment in protein material in the upper layer and humic 

substances in the lower layer. 

Microbial reactivity 

The net production of humic substances measured in the dark incubations, 

FDOMM (dark), correlated significantly (r = +0.73, n = 79, p > 0.001) with 

respiration, R (Fig. 4.4a). The slope of this linear regression equation, 0.027 ± 

0.003 ppb QS (µmol kg-1)-1, indicates the rate of humic substances production 

to dissolved oxygen consumption by microbial respiration. It is noticeable the 

significant production of humic substances in an incubation time as short as 24 

hours. 

The fluorescence of aromatic amino acids measured in the dark and light 

incubations correlated worst with respiration and primary production rates. The 

only significant correlation (r = +0.54, n = 46, p < 0.001) was found between 

the net production obtained in the light incubations, FDOMT (light), and gross 

primary production, Pg (Fig. 4.4b). The slope of 0.018 ± 0.004 ppb Trp (µmol 

kg-1)-1 indicates the rate of aromatic amino acids to dissolved oxygen production 

by the phytoplankton community. The origin intercept, -1.4 ± 0.2 ppb Trp d-1, 
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pointed to FDOMT consumption quicker than production, except for Pg 

exceeding 80 ± 20 µmol kg-1 d-1. 
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It is opportune to test if these regression parameters from an incubation 

bottle (10-1 L) could be extrapolated to the volume of a ría (1012 L). In order to 

study the relationship between dissolved oxygen and humic fluorescence in the 

ría after removal of the water masses mixing effect, a regression analysis 

involving two conservative parameters was used. The variability of any non-

conservative parameter due to the mixing of the three water masses that meet 

in the ría (subtropical ENACW, subpolar ENACW and coastal water) can be 

estimated by means of a multiple linear regression of the non conservative 

Figure 4.4 X-Y plots of (a) net FDOMM

production in the dark incubations vs.
respiration, (b) net FDOMT production in 
the light incubations vs. gross production 
and (c) net FDOMM production in the light 
minus dark incubations vs. respiration. Solid 
lines represent the corresponding linear 
regression lines 
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parameter with salinity and temperature (Nieto-Cid et al. 2004, in press, Chapter 

2 and 3). Only samples with AOU > 0 can be used (<1% PAR, R > Pg) 

because S and T are conservative and O2 is not exchanged with the atmosphere 

in these samples. The multiple regression of FDOMM with S, T and dissolved 

oxygen for sample with AOU > 0 was: 

FDOMM (±0.6) = 78(±19) – 2.1(±0.5)S + 0.55(±0.08)T – 0.029(±0.003)O2C 

r = 0.91, n = 56, p < 0.001 

The dissolved oxygen of the samples was referred to the oxidation state of 

nitrate (O2C) to compare the oxygen consumption to the N-nutrient production 

independently of the nitrogen form involved in the process (Fraga 2001). Since 

0.5 mol of oxygen is necessary to oxidize one mol of nitrite to nitrate and two 

mol of oxygen are required to oxidize one mol of ammonium to nitrate: 

+− ×−×−= 4222C NH2NO
2
1OO  (4.1) 

The resultant slope, -0.029(±0.003) ppb QS (µmol kg-1 O2)-1, is not 

significantly different from the incubation experiments. The opposite sign is 

because respiration involves the utilization of oxygen. It proves the validity of 

the incubation approach at the ecosystem level. 

For the case of FDOMT, the correlation with primary production was 

observed in the upper layer (>1%PAR), where O2 exchanges with atmosphere, 

and S and T do not behave conservatively. Therefore, validation of the 

incubation approach at the ecosystem level is not possible for the fluorescence 

of aromatic amino acids. 

Photochemical reactivity 

The difference between the net production of humic substances in the light 

and dark incubations is the material consumed by photobleaching during 1 day. 

A significant linear relationship (r = -0.71, n = 46, p > 0.001) was observed 

between the bacterial production and the photochemical consumption of 

humic compounds (Fig. 4.4c) in such a way that the humic material produced in 
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the dark, either in the aphotic layer or during the night, is rapidly 

photodegraded in the light. 

Photobleaching experiments showed a loss of the humic-like fluorescence of 

the samples with the incubation time, which fitted to the exponential decay 

function: 

C = (C0 – Cf) exp(-kt) + Cf (4.2)

where C0 is the initial concentration of humic compounds, Cf is the humic 

compounds resistant to photobleaching and k is the exponential decay 

constant. 

The parameters of eq. 4.2 for the riverine samples in winter, spring, summer 

and autumn (Fig. 4.5a-d, respectively) were contrasting. It was found that the 

variability of C0 and Cf followed the same pattern: they increased from a winter-

spring minimum to an autumn maximum (Fig. 4.5e). The values of k suggested 

also a progressive increase of the decomposition rate from winter to autumn 

(Fig. 4.5f). Since incubations were made under natural light conditions, k 

depended not only on the incubation time but also on the contrasting incident 

light intensity, which increases from winter to autumn. Corrected k values to an 

average incident light are also show in Figure 4.5f; a constant decomposition 

rate of ~20% d-1, was observed from winter to summer, followed by a 3-fold 

increase in autumn, when 65% of humic substances were photodegraded per 

day. However, the percentage of photobleached material ((C0-Cf)/C0×100) was 

maximum in winter-spring (68%) and minimum in autumn (57%). 
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Figure 4.5 FDOMM course during the incubation time for winter (a), spring (b), 
summer (c) and autumn (d) riverine samples. The solid line represents the fit to an 
exponential decay function: C = (C0 – Cf) exp(-kt) + Cf. Seasonal variation of the 
estimated C0 and Cf (e) and k uncorrected and corrected for incident light intensity (f) 
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Bottom and surface seawater samples from the ría displayed the same 

exponential decay pattern (Fig. 4.6a-d), characterised by lower initial and final 

concentrations (Fig. 4.6e) but with similar incident-light-corrected 

decomposition rates than riverine samples (Fig. 4.6f). The values of C0, Cf and k 

were comparable from winter to summer, but autumn presented again the 

largest discrepancies: higher fluorescence and decomposition rates. It should 

also be noted that bottom and surface k values coincided in winter, but these 

values were spacing out with the increase of stratification in the water column. 

The decomposition rates became larger for the bottom (20 to 90% d-1) than for 

the surface water (20 to 55% d-1). Despite this, the percentage of 

photodegraded material during the incubations was similar at both depths. 

Values ranged from 44% in winter to 59% in summer for the bottom samples, 

whereas the percentages varied from 42% in summer to 50% in winter for the 

surface samples. 
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Figure 4.6 FDOMM course during the incubation time for winter (a), spring (b), 
summer (c) and autumn (d) seawater samples, surface (●) and bottom (●). The solid 
line represents the fit to the exponential decay function C = (C0 – Cf) exp(-kt) + Cf. 
Seasonal variation of the estimated C0 and Cf (e) and k corrected for incident light 
intensity (f) 
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DISCUSSION 

Microbial production of labile and recalcitrant DOM 

A significant positive correlation has been found between the fluorescence of 

marine humic substances and the concentration of inorganic nutrients in the 

water column of different open ocean (Hayase et al. 1987, 1988, Chen & Bada 

1992) and coastal marine systems (Chen & Bada 1992, Hayase & Shinozuka 

1995, Nieto Cid et al. 2005, Chapter 3). All these authors concluded that marine 

humic substances and nutrient salts should have the same origin: the 

mineralization of settling organic particles. In the case of Nieto-Cid et al. (in 

press), Chapter 3, they were the first to separate the physical (water masses 

mixing) and biogeochemical components of the fluorescence of humic 

substances and nutrient salts to test a significant positive correlation between 

biogeochemical components. Therefore, they were all implicitly assuming that 

marine humic substances should be a by-product of bacterial respiration 

processes (Brophy & Carlson 1989, Tranvik 1993, Kramer & Hernld 2004). 

Other models, such as the condensation of poly phenols (Hedges 1978) or the 

photo-oxidation of lipids (Kieber et al. 1997) would restrict to estuaries, where 

poly phenols of terrestrial origin can be abundant, and the surface ocean layer, 

where the UV radiation is able to oxidize triglycerides and fatty acids of 

planktonic origin. 

Net production rates of humic-like fluorophores in dark incubations of 

natural plankton populations have not been obtained until very recently by 

Yamashita & Tanoue (2004) and Kramer & Hernld (2004). In as survey of Ise 

Bay (Japan), former authors found that about 25% of the humic-like 

fluorescence intensity of surface waters was produced in situ. A degradation 

experiment using natural plankton from Ise Bay demonstrated the rapid 

production of humic substances in tandem with plankton degradation within 

the short time scale of a day in the dark. The production rate was as high as 



Chapter 4 

144 

2.97 ppb QS d-1 during the initial 12 hours, it reduced to 1.04 ppb QS d-1 during 

the initial 3 days, and then increased gradually at 0.07 ppb QS d-1. Following a 

similar approach, Kramer & Herndl (2004) concentrated and resuspended in 

artificial seawater bacterioplankton of the coastal North Sea. They observed a 

steadily increase of the fluorescence of humic substances at a rate of 0.15 ± 

0.03 ppb QS d-1 until day 9 of the incubation. Thereafter, fluorescence remained 

constant until the end of the experiment, on day 21. 

In this work, we incubated during 1 day unaltered natural marine samples 

collected at different depth in the euphotic and aphotic layers of a coastal 

upwelling system under a wide variety of meteorological and oceanographic 

conditions. This confirms the results of the degradation experiment conducted 

by Yamashita & Tanoue (2004) in the estuarine system of Ise Bay, and by 

Kramer & Herndl (2004) in the coastal North Sea, consistently suggesting that 

in situ production of marine humic-like fluorophore plays an important role in 

the dynamics of DOM in coastal environments. Daily production rates of 

humic substances in the coastal upwelling system of the Ría de Vigo, <0.5 ppb 

QS d-1, were much lower than in the experiment of Ise Bay and similar to those 

found in the coastal North Sea. Kramer & Herndl (2004) observed that whereas 

the FMODM/DOC ratio of the bacterial-derived DOM varied from 3 to 7 ppb 

QS (ppm C)-1, the marine bulk DOM from the North Sea, Adriatic Sea and 

North Atlantic was <1.5 ppb QS (ppm C)-1. Note that the FMODM/DOC ratio 

for the samples of the Ría de Vigo varied from 4 to 8 ppb QS (ppm C)-1 (Fig. 

4.3), further reinforcing the hypothesis of a bacterial origin of the humic-like 

fluorescence. 

An added value of our work is the possibility to compare, for the first time in 

the literature, the daily production of marine humic-like fluorophores with the 

daily consumption of dissolved oxygen in the dark. Therefore, the significant 

positive correlation between the net production of humic substances and the 
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net consumption of dissolved oxygen, constitute a field evidence of the fast 

production of humic substances as a by-product of microbial respiration 

processes in the marine environment in general, and a costal upwelling system 

in particular. The local or universal validity of the resultant ratio of marine 

humic fluorescence production to dissolved oxygen consumption, 0.027 ± 

0.003 ppb QS (µmol kg-1)-1, has to be tested in further studies in other marine 

environments. 

Yamashita & Tanoue (2004) also observed a continuous decrease in the 

fluorescence of dissolved amino acids in tandem with the production of marine 

humic substances during a 71 days dark incubation of the natural plankton of 

Ise Bay. In agreement with these authors, we obtained an average net 

consumption rate of protein-like fluorescence of 1.4 ± 0.2 ppb Trp d-1. This 

rate is the origin intercept of the significant positive correlation observed 

between the net production of protein-like fluorophores and the net 

production of dissolved oxygen in the light. This relationship indicates that the 

production of dissolved amino acids is probably linked to phytoplankton 

exudation at a rate of 18 ± 4 10-3 ppb Trp (µmol kg-1)-1 and it is rapidly 

consumed by bacteria, in such a way that accumulation of protein-like 

fluorescence after a 1 day incubation only occurs when primary production 

exceeds 80 ± 20 µmol O2 kg-1 d-1, i.e. about 0.7 ± 0.2 g C m3 d-1 if a O2/C molar 

ratio of 1.4 is assumed (Anderson 1995, Fraga 1991). 

Bioavailability of marine humic substances by photobleaching 

Photochemical processes have been identified as a potentially important 

mechanism for the degradation of terrestrial (e.g. Amon & Benner 1996, 

Opsahl & Benner 1998, Moran et al. 2000) and marine (e.g. Mopper & Zhou 

1990, Benner & Biddanda 1998, Obernosterer & Herndl 2000) humic 

substances. Photochemical degradation of DOM is usually followed by the 

exponential decrease of the concentration of DOC or the absorbance of DOM 
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at wavelengths ranging from 350 to 450 nm during the course of incubation 

experiments under laboratory or natural UV light conditions. Less attention has 

been paid to the fluorescence technique for evaluating photodegradation rates, 

despite they revealed especially useful in marine systems where DOC 

concentrations and chromophoric DOM levels are low compared with 

freshwater and estuarine systems. In addition, fluorescence allows following the 

decomposition of specific fluorophores rather than the bulk DOM (Pullin & 

Cabaniss 1997). Incubations experiments to derive DOM photodegradation 

rates following the decrease of humic-like fluorescence under natural light 

conditions during short time periods (1-2 wk) are scarce in the literature. In 

fact, to our knowledge, only Skoog et al. (1996) carried out this type of 

experiment at several depths in the Baltic Sea on a single day in May 1992. They 

found higher photodegradation rates (0.60 to 1.25 d-1) and similar percentages 

of photobleached material (50 to 56%) than in the Ría de Vigo for incubation 

times of 4 days. We observed maximum photodegradation rates during the 

autumn, at the time when bacterial mineralization became the dominant process 

either in terrestrial and marine systems (note that (Pg-R)/Pg = -0.2). Therefore, 

the contribution of freshly-produced terrestrial (Fig. 4.5e) and marine (Fig 4.3e 

and Fig. 4.6e) humic substances to DOC is maximum, although this material 

results to be more photosensitive or the quality, but not the intensity, of natural 

light enhances photodegradation (Del Vecchio & Blough 2002). Unfortunately, 

there are not studies following the evolution of photodegradation rates during a 

seasonal cycle to compare with our results. 

Increased availability to bacteria of DOM exposed to natural UV light has 

been observed in lakes (e.g. Lindell et al. 1995, De Lange et al. 2003) and 

coastal waters (e.g. Miller & Moran 1997, Gustavson et al. 2000, Obernosterer 

& Herndl 2000). However, Tranvik & Bertilsson (2001) indicated that 

photochemical transformation of DOM can either reduce or enhance bacterial 
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utilization; whereas humic substances are predominantly transformed into labile 

forms, algal-derived DOM is transformed into compounds of decreased 

bacterial substrate quality. The same argument was used by Benner & Biddanda 

(1998) to explain why the effects of sunlight exposure on bacterial utilization of 

DOM was negative for surface samples (15-115 m) and positive for deep 

samples (150-1000 m) of the Gulf of Mexico. According to these authors, 

surface DOM was enriched in phytoplankton material, whereas the 

concentration of marine humic substances increased with depth. Similar 

conclusions have been raised by Obernosterer et al. (1999). Accordingly, 

Obernosterer & Benner (2004) observed that whereas photodegradation 

enhanced the biodegradation of terrigenous humic substances, this effect was 

not detected for plankton material. 

In this work, we have obtained a significant negative correlation between the 

bacterial production and the photochemical decomposition of marine humic 

substances. It suggests rapid photodegradation of recently produced marine 

humic substances that, in turns, would enhance bacterial activity as a 

consequence of the transformation of marine humic substances into 

compounds of increased bacterial substrate quality. 

Finally, we have also obtained that the humic substances of the bottom layer 

were photodegraded faster than the humic substances of the surface layer 

during the summer and autumn stratification periods. The increase of 

photodegradation rates with depth was also observed by Skoog et al. (1996) in 

the Baltic Sea. In a coastal system such as the Ría de Vigo, upwelling promotes 

the quick rise of bottom waters to the surface layer (Álvarez-Salgado et al., 

2000) and continental inputs are quite scarce (Piedracoba et al. 2005). 

Therefore, the humic material of the surface layer is just the same material of 

the bottom layer after partial photodegradation. Although it has been 

previously shown that the deep sea DOM is more photoreactive than 
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photobleached surface material (Mopper & Zhou 1990, Mopper et al. 1991, 

Mopper & Kieber 2000), the time scale of the upwelling process needed to 

photodegrade the deep sea material is tenths to hundreds of years. On the 

contrary, the humic material produced during bacterial respiration in the 

bottom layer of the Ría de Vigo is advected to the surface layer in just 1 wk 

(Álvarez-Salgado et al. 2000), where intense photodegradation takes place. In 

this sense, Fig. 4.7, schematises the expected tightly coupling between 

photochemical and microbial degradation processes during an upwelling 

episode. Photochemical degradation of marine humics will produce gases such 

as CO2 and low-molecular-weight carbonyl compounds (Mopper et al. 1991, 

Moran & Zepp 1997, Mopper & Kieber 2000, Kieber 2000) able to stimulate 

the bacterial activity of the surface layer. Therefore, the humic substances 

produced by the bacterial activity in the bottom layer will enhance in about 1 

wk the bacterial activity of the surface layer after exposure to sunlight. 
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Figure 4.7. Scheme of the coupling between photochemical degradation and microbial 
production of humic DOM in the upper and lower layer of the coastal upwelling system of 
the Ría de Vigo 

 



Microbial and photochemical reactivity of FDOM 

149 

CONCLUSIONS 

The fluorescence of humic substances and dissolved aromatic amino acids 

(DFAA) and the dissolved oxygen were measured in parallel 24 h light and dark 

incubations, for the first time in a coastal upwelling system. In one day, the 

system showed net production of humic substances (0.0-0.4 ppb QS d-1), which 

were positively correlated with the respiration rates with a net ratio of 0.027 ± 

0.003 ppb QS (µmol kg-1 O2)-1, suggesting a daily synthesis of marine humics as 

a by-product of the bacterial respiration of DOM. Consequently, the 

fluorescence of marine humic substances revealed as a suitable indicator of 

nutrient mineralization processes. 

A significant linear correlation between the gross primary production and the 

net production of DFAA in the light, points to the quick consumption of 

dissolved protein-like materials at a net average rate of -1.4 ± 0.2 ppb Trp d-1, 

which accumulates in the water column only when Pg exceeds 80 ± 20 µmol 

kg-1d-1. Therefore, DOM fluorescence can be used as a tracer for labile DOM 

(DFAA) production/consumption. 

The consumption of humic substances in the light minus dark incubations 

was inversely correlated with the net production of humic substances in the 

dark, indicating a rapid photodegradation of recently produced marine humic 

substances as a by-product of microbial respiration. Incubation experiments 

demonstrated that daily photodegradation rates and residual humic 

fluorescence levels followed a seasonal pattern characterised by a marked 

autumn maximum, either in the river waters (65% photobleaching per day) or 

in the ría (55-90% photobleaching per day). Due to the upwelling of bottom 

waters, the humic material produced during bacterial respiration in the bottom 

layer is quickly degraded in the surface layer by photochemical processes.  
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Chapter 5, the research work presented in this chapter is also a 

contribution to the paper: 

X. A. Álvarez-Salgado, M. Nieto-Cid, J. Gago, S. Brea, C. G. Castro, M. D. 

Doval, F. F. Pérez. 2005. Stoichiometry of the mineralization of dissolved 

and particulate biogenic organic matter in the NW Iberian upwelling. J 

Geophys Res, accepted 

 

Resumen Se ha establecido por primera vez en un sistema de afloramiento 

costero la composición media de los productos de degradación temprana del 

fitoplancton marino, tanto disueltos como particulados, utilizando un análisis 

de mezcla a lo largo de superficies isopícnicas combinado con un modelo 

estequiométrico. Un 17-18% de la materia orgánica se mineraliza en forma de 

material en suspensión y un 16-35% lo hace como materia disuelta. La fracción 

restante (50-70%) es material orgánico mineralizado probablemente a partir de 

grandes partículas que sedimentan rápidamente. En promedio, el material 

mineralizado a partir de estas partículas tiene la composición media más similar 

a la fórmula de Redfield. La materia orgánica disuelta presenta más de un 40% 

de enriquecimiento en mineralización de carbohidratos en comparación con la 

fórmula de Redfield. Por último, el material en suspensión está caracterizado 

por un enriquecimiento en mineralización de lípidos de más del 80%. Por otro 

lado, con respecto a la mineralización de estructuras duras, el silicio biogénico 

se disuelve predominantemente en el interior de la plataforma costera, donde la 

oxidación del carbono orgánico es más intensa y se produce un mayor depósito 

de diatomeas. 
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Abstract: The average composition of the dissolved and particulate products 

of early degradation of marine phytoplankton has been established for the first 

time in a coastal upwelling system, using a mixing analysis along isopycnal 

surfaces combined with a stoichiometric model. About 17-18% of the 

mineralised organic matter is in the form of suspended particles and 16-35% as 

dissolved organic matter. The missing 50-70% are probably large, fast sinking, 

particles. On average, the mineralised material on large particles has the closest 

composition to the Redfield formula. Dissolved organic matter presents >40% 

enrichment in carbohydrates mineralization compared with the Redfield 

formula. Finally, suspended particles are characterised by >80% enrichment in 

lipids mineralization. Regarding the mineralization of hard structures, biogenic 

silica dissolves predominantly in the inner shelf, where organic carbon 

oxidation is more intense and diatom deposition occurs preferentially. 
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INTRODUCTION 

The composition of the products of early degradation of phytoplankton 

photosynthesis has been a matter of controversy over the last 50 years, after the 

seminal study of Redfield et al. (1963). Based on that work, Richards (1965) 

established an average composition of C106H264O110N16P. Subsequently, 

Anderson (1995) and Fraga et al. (1998) proposed revised formulas, 

C106H175O42N16P and C106H171O42N16P respectively, which basically corrected the 

overestimated H and O proportions of the original Richard’s (1965) formula. 

Some authors have asserted that the oxidation of biogenic organic matter in 

the ocean interior follows a constant with depth and basin stoichiometric model 

(e.g. Takahashi et al., 1985; Anderson & Sarmiento, 1994). Others considered 

that there is a fractionation during the mineralization of biogenic organic 

matter, in such a way that the most labile P- and N-rich materials are oxidized 

preferentially at shallower depths (e.g. Martin et al. 1987, Minster & Boulahdid 

1987, Shaffer et al. 1999, Brea et al. 2004) or in the most ventilated ocean basins 

(Li & Peng 2002). Modifications in the quality and quantity of the sinking 

materials exported from the upper ocean (Pahlow & Riebesell 2000) and 

changes in source water type properties (Gruber et al. 2000) have also been 

argued to explain these inter basin differences. 

Another matter of open discussion is the relative contribution of dissolved, 

suspended and sinking organic matter to oxygen consumption in the oceans. 

Some authors maintain that the oxidation of large, fast sinking, particles has to 

be the dominant process to keep the apparent constancy of the -O2/C/N/P 

ratios (Anderson & Sarmiento 1994). On the contrary, others propose 

fractionation during the mineralization of suspended organic matter (Copin-

Montégut & Copin-Montégut 1983, Garber 1984, Martin et al. 1987, Sambrotto 

et al. 1993, Schneider et al. 2003). The model of Suess & Müller (1980) 

incorporates strong elemental fractionation of particulate organic matter (POM) 
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through the water column by preferential removal of N- and P-containing 

organic compounds. Assuming that 30% of the downward flux of biogenic 

materials is in the dissolved form (Yamanka & Tajika 1997), it cannot be 

discarded the contribution of the dissolved organic matter (DOM), with higher 

C/N/P ratios than POM (e.g. Clark et al. 1998, Loh & Bauer 2000, Hopkinson 

et al. 1997, 2002). 

Biogenic matter production is enhanced in the coastal zone because of 

intensified nutrient fluxes from the ocean, the continents and the atmosphere 

(Walsh 1991). Average primary production per unit area in the coastal zone, 

250 g C m-2 y-1, is more than twice than in the open ocean, 90 g C m-2 y-1 

(Wollast 1998). As a result, the mineralization of biogenic materials is also 

enhanced. About 83% of the ocean benthic mineralization and 87% of the 

burial occurs in the sediments of the coastal zone (Middelburg et al. 1993). 

Pelagic and benthic mineralization processes are specially intensified in coastal 

upwelling areas, because of the magnified entry of nutrients. 

The aim of this work is to study the biochemical composition of the 

dissolved and particulate, soft and hard, biogenic materials mineralised in the 

water column of the NW Iberian upwelling system in two contrasting 

environments: the system of large, V-shaped embayments of Galicia (NW 

Spain), known as Rías Baixas (Fig. 5.1) and the adjacent open shelf. Although 

the rías are singular ecosystems, their large dimensions and their well-known 

hydrodynamic and biogeochemical behaviour make them similar to any coastal 

upwelling system at comparable latitudes: off Oregon (NW America) or off 

Chile (SW America). 
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Figure 5.1 Map of the study area, the Ría de Vigo and adjacent open shelf waters. 
The positions of the sampling stations in the middle ría (stn 00) and the middle 
shelf (stn 03), as well as the Silleiro Sea Watch buoy meteorological observatory, are 
indicated. The isobaths of -50, -100, -150, -200 and -1000 m are also depicted 
 

MATERIAL AND METHODS 

Study area. This study is focused on the NW Iberian upwelling system (42-

43ºN), at the boundary between the temperate and subpolar regimes of the 

Eastern North Atlantic (Fig. 5.1). Wind stress/relaxation cycles of period 1-2 

wk take place from March-April to September-October, the upwelling-

favourable season (Álvarez-Salgado et al. 1993). Downwelling prevails the rest 

of the year, favouring a reversal of the coastal circulation with the arrival of 

warm and salty subtropical surface and central waters to our latitudes in the 

form of the well defined slope Iberian Poleward Current (IPC; Álvarez Salgado 

et al. 2003). The winter mixing period occurs at the time of the transition from 

the downwelling- to the upwelling- favourable seasons. 
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Two contrasting environments were sampled: 1) the Ría de Vigo, a 2.5 km3 

large V-shaped embayment which is primarily controlled by coastal winds and 

secondarily by continental runoff (Gilcoto et al. 2001); and 2) the adjacent 

shelf, which exchanges water and materials with the rías and the open ocean 

and it is affected by strong alongshore currents. Both environments are 

connected during the upwelling season, when the surface waters of the ría are 

exported to the adjacent shelf and the bottom waters of the shelf enters the ría. 

On the contrary, during the downwelling season a convergence front develops 

between the subtropical IPC waters transported onshore by the Ekman 

transport and the waters of the ría transported offshore by the continental 

runoff (Álvarez-Salgado et al. 2000). 

Sampling strategy. Two stations were sampled weekly from May 2001 to 

April 2002: stn 00 was in the middle segment of the Ría de Vigo (45 m depth) 

and stn 03 was in the middle shelf (150 m depth). Samples were taken with a 

rosette sampler equipped with twelve 10 litre PVC Niskin bottles with stainless-

steel internal springs. Salinity and temperature were recorded with a SBE 9/11 

conductivity-temperature-depth probe attached to the rosette sampler. 

Conductivity measurements were converted into practical salinity scale values 

with the equation of UNESCO (1985). 

Samples for the analyses of dissolved oxygen, pH, total alkalinity, nutrient 

salts, dissolved and particulate organic carbon and nitrogen were collected from 

5, 15 and 40 m in stn 00 and 5, 25, 40, 60, 75, 100 and 150 m in stn 03 with a 

weekly periodicity. Samples for dissolved and particulate organic phosphorus 

and carbohydrates were taken at the same depths but with a fortnightly 

periodicity. 

Dissolved oxygen (O2). It was directly collected into calibrated 110 mL glass 

flasks and, after fixation, they were kept in the dark until analysis in the 

laboratory 24 h later. O2 was determined by Winkler potentiometric end-point 
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titration using a Titrino 720 analyser (Metrohm) with a precision of ±0.5 µmol 

kg-1. The apparent oxygen utilisation, AOU = O2sat - O2, was calculated using 

the algorithm proposed by Benson & Krause (UNESCO 1986) for oxygen 

saturation (O2sat). 

Nutrient salts. Water samples were collected in 50-mL polyethylene bottles; 

they were kept cold (4ºC) until analysis in the laboratory using standard 

segmented flow analysis (SFA) procedures. The precisions are ±0.02 µM for 

nitrite, ±0.1 µM for nitrate, ±0.05 µM for ammonium, ±0.02 µM for phosphate 

and ±0.05 µM for silicate. 

Total alkalinity (TA) and total inorganic carbon (CT). Samples for TA 

and pH (total hydrogen concentration scale, 25ºC) were collected into 500 mL 

glass flasks and analysed within a few hours in the base laboratory. Seawater pH 

was measured spectrophotometrically following Clayton & Byrne (1993). The 

precision is ±0.003 pH units. TA was determined by titration to pH 4.4 with 

HCl, according to the potentiometric method of Pérez & Fraga (1987) with a 

precision of ±2 µmol kg-1. The potential alkalinity (TAP) was calculated 

following Fraga & Álvarez-Salgado (2004): 

   ++×+−= −−−
324P NONO93.0NHTATA  

                        ( ) -2
4324 HPO23.0NONONH08.0 ×+++×+ −−+  

(5.1)

Total inorganic carbon (CT) was calculated from pH and TA with the 

carbonic and boric acid dissociation constants of Lueker et al. (2000). The 

estimated precision of this calculation is ±3 µmol kg-1. 

Dissolved organic carbon (DOC) and nitrogen (DON). Samples were 

taken into 500 mL acid-cleaned flasks and filtered through precombusted 

(450ºC, 4 h) 47 mm ø Whatman GF/F filters in an acid-cleaned glass filtration 

system, under low N2 flow pressure. Aliquots for the analysis of DOC/DON 

were collected into 10 mL precombusted (450ºC, 12 h) glass ampoules. After 

acidification with H3PO4 to pH < 2, the ampoules were heat-sealed and stored 
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in the dark at 4ºC until analysis. DOC and DON were measured simultaneously 

with a nitrogen-specific Antek 7020 nitric oxide chemiluminescence detector, 

coupled in series with the carbon-specific Infrared Gas Analyser of a Shimadzu 

TOC-5000 organic carbon analyser (Álvarez-Salgado & Miller 1998). The 

precision is ±0.7 µM C for carbon and ±0.2 µM N for nitrogen. Their 

respective accuracies were tested daily with the TOC/TDN reference materials 

provided by Prof. D. Hansell (Univ. of Miami). We obtained an average 

concentration of 45.7 ± 1.6 µM C and 21.3 ± 0.7 µM N (n = 26) for the deep 

ocean reference (Sargasso Sea deep water, 2600 m) minus blank reference 

materials. The nominal value for TOC provided by the reference laboratory is 

44.0 ± 1.5 µM C; a consensus TDN value has not been supplied yet, but a 

mean ± SD value of 22.1 ± 0.8 µM N for four High Temperature Catalytic 

Oxidation (HTCO) systems and 21.4 µM N for one persulphate oxidation 

method has been provided by Sharp et al. (2004) as a result of the Lewes 

intercalibration exercise. DON was obtained by subtracting NT (total inorganic 

nitrogen =ammonium + nitrite + nitrate) from TDN. 

Dissolved organic phosphorus (DOP). Samples were taken and filtered as 

indicated for DOC/DON. The filtrate was collected into 50 mL polyethylene 

containers and frozen at -20ºC until analysis. It was measured by the SFA 

system for phosphate, after oxidation with Na2S2O8/borax and UV radiation 

(Armstrong et al. 1966). Only the organic mono-phosphoric esters are analysed 

because poly-phosphates are resistant to this oxidation procedure. Daily 

calibrations with phosphate, phenyl phosphate and adenosine 5’-

monophosphate (AMP) in seawater were carried out. Standards of AMP were 

determined in order to calculate the mono-phosphoric esters recovery (~80%). 

The precision of the method is ±0.04 µM P. 

Dissolved mono- and polysaccharides (MCHO and PCHO). Sampling 

and storage procedures are identical than for DOP samples. MCHO and 
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PCHO were determined by the oxidation of the free reduced sugars with 2,4,6-

tripyridyl-s-triazine (TPTZ) followed by spectrophotometric detection at 595 

nm (Myklestad et al. 1997, Hung et al. 2001). The system was standardised daily 

with D-glucose. The precision is ±0.6 µM C for MCHO and ±0.7 µM C for d-

CHO, and the detection limit was ~2 µM C. See Nieto-Cid et al. (2004), 

Chapter 2, for further details. 

Particulate organic carbon and nitrogen (POC and PON). Suspended 

organic matter was collected under low vacuum on precombusted (450ºC, 4 h) 

25-mm ø Whatman GF/F filters (POC/PON, 0.5-1.5 L of seawater). All filters 

were dried overnight and frozen (-20ºC) before analysis. Measurements of POC 

and PON were carried out with a Perkin Elmer 2400 CHN analyser. An 

acetanilide standard was used daily. The precision of the method is ±0.3 µM C 

and ±0.1 µM N. 

Particulate organic phosphorus (POP). It was determined by 

H2SO4/HClO4 digestion at 220ºC of the particulate material collected from 

250-500 mL of seawater on Whatman GF/F filters. The phosphoric acid 

resultant from the digestion was analysed with the SFA method for phosphate. 

The precision is ±0.02 µM P. 

Particulate carbohydrates (p-CHO). About 250-500 mL of seawater were 

filtered and stored as indicated for POC, PON and POP. p-CHO was 

determined by the anthrone method (Ríos et al. 1998). It is based in the 

quantitative reaction of sugars with anthrone in a strongly acid medium at 90ºC, 

to give an intensely coloured compound. The absorption was measured at 625 

nm. The system was calibrated daily with D-glucose. The precision of the 

method is ±0.1 µM C  

Chlorophyll (Chl a). Between 100 and 200 mL of seawater were filtered 

through GF/F filters and frozen (-20ºC) before analysis. Chl a was determined 
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with a Turner Designs 10000R fluorometer after 90% acetone extraction 

(Yentsch & Menzel 1963). The precision is ±0.05 mg m-3. 

RESULTS AND DISCUSSION 

Hydrography of NW Iberian shelf waters 

Figure 5.2 identifies the seven hydrographic periods defined by Nieto-Cid et 

al. (2004), Chapter 2, during the sampling period, on basis of the meteorological 

conditions (offshore Ekman transport, -QX; continental runoff QR) and the 

water column response (salinity and temperature): 
 

 

 

 

 

 

 

Figure 5.2 Seasonal evolution of the offshore Ekman transport (-QX) calculated 
with wind data provided by the Silleiro Sea Watch buoy (http://www.puertos.es). 
The freshwater discharge to the Ría the Vigo (QR) is also shown 

Period 1 (15 May-21 Aug) : spring and summer upwelling events separated by 

short intervals of wind calm, which cause a marked thermal stratification with 

warm waters in the surface layer and cold and salty upwelled Eastern North 

Atlantic Central water (ENACW) in the bottom (Fig. 5.3a,b). Strong gradients 

of the chemical variables are observed, with high O2 and low NT, TAP, and SiO4 

levels in seasonal thermocline waters and low O2 and high NT , TAP and SiO4 in 

shelf bottom waters (Fig. 5.3c,d and 5.4a,b). Accumulations of DOC, d-CHO, 

POC and p-CHO in the surface layer were observed during the periods of wind 

calm (Fig. 5.5). Maximum primary production rates in the study area are 

commonly observed in association with this succession of wind stress-

relaxation events: Arístegui et al. (2005) have proposed an average value of 2.5 g 
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C m-2 d-1 during the upwelling season off NW Spain. It contrasted with the low 

organic matter content of upwelled ENACW (<60 µM DOC, <5 µM d-CHO, 

<2.5 µM POC and < 0.5 µM p-CHO), except at the bottom nepheloid layer, 

where POC values >5 µM-C were commonly observed. 
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Figure 5.3 Seasonal evolution of (a) temperature (ºC), (b) salinity (pss), (c) 
dissolved oxygen (µmol kg-1) and (d) total inorganic nitrogen (µmol kg-1 ) at stn 03 
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Period 2 (28 Aug-18 Sep): late summer strong upwelling event, which 

produced the sudden uplift of the cold, salty, oxygen and organic matter poor 

and nutrient- and TAP-rich ENACW to the surface layer, where temperatures 

<15ºC were recorded. 

Period 3 (25 Sep-30 Oct): autumn downwelling, forced by the predominant 

southerly winds and low continental runoff (Fig. 5.2), provoked the entry of 

warm (> 17ºC), oxygen- and organic matter-rich and nutrient- and TAP-poor 

oceanic surface water. 
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Figure 5.4 Seasonal evolution of (a) potential alkalinity (µeq kg-1) and (b) silicate 
(µmol kg-1) at stn 03 
 

Period 4 (6 Nov-20 Nov): transition from stratification to vertical 

homogenisation enhanced by strong northerly winds (Fig. 5.2). 

Period 5 (27 Nov-13 Feb): arrival of the IPC carrying warm and salty 

subtropical surface and central waters (Fig. 5.3a,b) to our latitudes, producing a 

strong impact in the water column: NT levels remained <1 µM throughout the 
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water column (Fig. 5.3d) and dissolved and particulate organic matter reached 

minimum levels (Fig. 5.5). 
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Figure 5.5 Seasonal evolution of (a) dissolved organic carbon (µM C), (b) 
dissolved carbohydrates (µM C), (c) suspended organic carbon (µM C) and (d) 
suspended carbohydrates (µM C) at stn 03 
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Period 6 (20 Feb-26 Mar): winter mixing, the period of maximum vertical 

homogenisation, when ventilation of the water column occurred (Fig. 5.3c) and 

organic matter levels remained very low (Fig. 5.5) because of the low primary 

production rates (<0.2 g C m-2 d-1; Álvarez-Salgado et al. 2003). 

Period 7 (2 Apr-24 Apr): incipient spring stratification under dominant 

upwelling- favourable winds (Fig. 5.2), which produced a surface accumulation 

of dissolved and particulate organic materials (Fig. 5.5) in the first spring bloom 

peak of the season. 

Figure 5.5 shows the seasonal evolution of the DOC, d-CHO, POC and      

p-CHO profiles at the mid shelf station. DON and DOP are significantly 

correlated with DOC: r = +0.78 for DOC vs. DON (n = 284, p < 0.001) and    

r = +0.41 for DOC vs. DOP (n = 160, p < 0.001). PON and POP also correlate 

significantly with POC: r = +0.95 for POC vs. PON (n = 325, p < 0.001) and    

r = +0.90 for POC vs. POP (n = 213, p < 0.001). In addition, d-CHO correlates 

with DOC (r = +0.70, n = 208, p < 0.001) and p-CHO with POC (r = +0.87,  

n = 215, p < 0.001). 

Despite the correlations referred above, average profiles of the DOC/DON, 

POC/PON, DOC/DOP and POC/POP molar ratios (Fig. 5.6a-d) exhibit a 

conspicuous vertical structure, characterised by a general increase with depth: 

the C/N/P ratios of the bottom samples are significantly different for the 

C/N/P ratios of the surface samples at p < 0.001 either for the dissolved or the 

particulate materials. This is consistent with previous results obtained from 

marginal seas and open ocean waters (Williams et al. 1980, Hopkinson et al. 

1997, Sanders & Jickells 2000, Hung et al. 2003b) and can be explained by the 

preferential oxidation of organic nitrogen and phosphorus compounds at 

shallower levels in the water column (Suess & Müller 1980, Shaffer et al. 1999). 

The elemental C/N/P ratios of DOM are greater than the Redfield ratios, 

ranging from average C/N values of 12.6 in the surface layer to 14.5 in the 
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bottom layer, and average C/P of 615 in the surface layer to 1090 in the bottom 

layer. It should be noticed again that the method for the determination of DOP 

is only able to analyse monophosphoric esters. By contrast, the elemental 

C/N/P ratios of POM are much closer to the Redfield values: from 6.8 and 

100 for C/N and C/P in the surface layer to 9.5 and 140 in the bottom layer. 

Stoichiometry of the mineralization in coastal and shelf waters of NW 

Spain 

Chemical data of waters below the upper mixed layer (AOU > 0) were 

analysed along isopycnal surfaces to obtain respiratory ratios. Subsurface waters 

of the NW Iberian upwelling consists of a mixing of the subtropical and 

subpolar branches of ENACW with ENACW modified in the surface layer by 

heat exchange with the atmosphere and continental runoff from the Rías Baixas 

(Álvarez-Salgado et al. 1997). Four isopycnal ranges (σ0) were defined: 26.7-

26.8, 26.8-26.9, 26.9-27.0 and 27.0-27.1. Samples with AOU > 0 and σ0 < 26.7 

were discarded, to minimise the ENACW samples affected by continental 

runoff/heat exchange with the atmosphere. For each isopycnal range, an 

anomaly (∆Y) can be defined for each nutrient (Y): 

TaSaaYY 210 ×−×−−=∆  (5.2)

where a0, a1 and a2 are the coefficients of the linear multiple regression of Y 

with salinity and temperature. ∆Y retains only the variability associated to the 

biogeochemical processes that occur within a given isopycnal range, i.e. the 

decomposition of organic matter and the dissolution of calcareous and siliceous 

structures. 
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Figure 5.6 Box-Whisker plot of (a) DOC/DON, (b) POC/PON, (c) DOC/DOP, 
(d) POC/POP, (e) d-CHO/DOC and (f) p-CHO/POC molar ratios. Fifty percent of 
the data are included within the limit of the boxes and the caps represent the 10th and 
90th percentiles. Solid lines represent the average profiles 
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Table 5.1 presents a selection of the results obtained analysing the linear 

correlation between pair of anomalies of the chemical variables measured 

during this study for the mid ría (stn 00) and mid shelf (stn 03) sites for the four 

isopycnal ranges collectively. The best fit between any pair of nutrient 

anomalies (∆X, ∆Y) was obtained minimizing the function: 

( ) ( )[ ]∑ ∆−∆×∆−∆
i

2
Y

ii
X

ii

wŶYwX̂X  (5.3)

where iX̂∆ and Ŷ∆ are the expected values of ∆X and ∆Y from the linear 

regression equation respectively, i.e. Ŷ∆ = m × ∆Xi and iX̂∆ = ∆Yi/m, with m 

being the slope of the correlation between ∆X and ∆Y; wX and wY are weights 

for variables X and Y respectively, with wX, wY ≥ 0 and wX + wY = 1. The 

weight factors were estimated as a function of the precision of the analytical 

determination of the variable (er) compared with the standard deviation of the 

set of measurements of that variable for water samples with AOU > 0 (SD). 

For a given couple of variables X and Y: 
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Minimising eq. (5.3) considering the weight factor of eq. (5.4) ensures that the 

slopes of the linear regression equations account for the relative precision 

(er/SD) of the pairs of nutrient anomalies that are correlated each time. The 

function to minimise is: 
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In addition, the resulting value of the slope (m) which makes eq (5.5) 

minimum is: 

+
∆

∆⋅∆
⋅

⋅−
⋅−

=
∑
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i

im 2
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X
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 (5.6) 
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Therefore, m is an intermediate case between: 1) the slope of a Type I 

regression (which should be applied when wX = 0, wY = 1), m = 

( ) ∑∑ ∆∆×∆
i

i
i

ii
2XYX  and 2) the slope of a Type II regression (which 

should be applied when wX = wY = 0.5), m = ∑∑ ∆∆
i

i
i

i
22 XY  (Sokal & Rolf 

1995). Table 5.1 summarizes also the values of wX for the corresponding X/Y 

pairs. 



Stoichiometry of the mineralization of biogenic materials 

173 

Table 5.1 Regression coefficient (r), slope and standard error of the slope of the correlation 

between selected pairs of nutrient anomalies for samples with σ0 > 26.8 at stations 00 and 03. 

The value of wX (see eq 5.4) is also included 

 

stn 00 stn 03 
 

∆Y/∆X 
r slope error r slope error 

wX 

 
∆O2/∆CT -0.96 1.22 ±0.05 -0.93 1.29 ±0.03 0.88

 
∆O2/∆NT -0.90 10.7 ±0.6 -0.92 8.1 ±0.2 0.65

 
∆O2/∆P -0.93 148 ±7 -0.93 130 ±4 0.73

 
∆N/∆SiO4 0.91 1.1 ±0.1 0.83 1.8 ±0.1 0.39

 
∆SiO4/∆CaCO3 0.63 2.4 ±0.4 0.45 1.6 ±0.2 0.95

 
∆CaCO3/∆Corg 0.64 0.05 ±0.02 0.53 0.07 ±0.01 0.22

 
∆DOC/∆DON 0.60 6.8 ±0.9 0.61 7.9 ±0.6 0.66

 
∆DOC/∆DOP 0.40 116 ±22 0.28 156 ±16 0.79

 
∆d-CHO/∆DOC 0.46 32% ±10% 0.41 27% ±6% 0.19

 
∆POC/∆PON 0.91 7.6 ±0.4 0.93 7.8 ±0.2 0.72

 
∆POC/∆POP 0.73 87 ±10 0.89 92 ±4 0.84

 
∆p-CHO/∆POC 0.60 9% ±2% 0.74 10% ±1% 0.25

 
∆DOC/∆CT -0.36 14% ±5% -0.16 36% ±17% 0.55

 
∆DON/∆NT -0.40 19% ±6% -0.23 30% ±10% 0.14

 
∆DOP/∆PO4 -0.20 7% ±7% -0.42 18% ±4% 0.11

 

Specially remarkable in Table 5.1 are the high correlations found between 

∆O2, ∆CT, ∆NT, ∆P and ∆SiO4, either in the ría or the shelf. The correlations 
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are also significant between the anomalies of the dissolved and the particulate 

organic materials. These nutrient anomalies can be converted into proportions 

of carbohydrates (Cho), lipids (Lip), proteins (Prt), photosynthetic pigments 

(Chl) and phosphorus compounds (Pho). Table 5.2 summarizes the average 

composition of these groups of biomolecules and the relative contribution of 

each group to the average composition of marine phytoplankton proposed by 

Fraga et al. (1998). 

Considering the chemical formulas in Table 5.2, the following set of five mass 

balance equations can be written for the suspended organic material: 

Chl46Pho45Lip53Cho17Prt139C ∆×+∆×+∆×+∆×+∆×=∆ (5.7) 

Chl52Pho76Lip89Cho28Prt217H ∆×+∆×+∆×+∆×+∆×=∆ (5.8) 

Chl5Pho31Lip6Cho14Prt45O ∆×+∆×+∆×+∆×+∆×=∆  (5.9) 

Chl4Pho12Prt39N ∆×+∆×+∆×=∆  (5.10) 

Pho5P ∆×=∆  (5.11) 

Since suspended C, N, P, Cho and Chl have been measured, the system can 

be solved to obtain the average chemical formula and the proportions of the 

different biomolecules. 

The same set of equations can be used for the case of the dissolved organic 

nutrients assuming that the dissolved organic matter that is oxidized in 

subsurface waters of the NW Iberian Peninsula is essentially composed of the 

most labile materials, i.e. the same biomolecules than the suspended organic 

material. These results were also obtained by Hopkinson et al. (2002) in the 

Middle Atlantic Bight and, in our case, it is supported by the reduced flushing 

time of shelf waters of the NW Iberian shelf, 1-2 wk (Rosón et al. 1999), and 

corroborated also by the low ∆C/∆N/∆P ratios of DOM (Table 5.1). Another 

necessary assumption is that ∆Chl = 0 for dissolved organic matter, which is 

very reasonable since the porphyrin groups of the chlorophylls are among the 

most resistant biomolecules in nature (McCarthy et al. 1997). 
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Table 5.2 Chemical composition of the main organic products of synthesis and 
early degradation of marine phytoplankton according to Fraga et al. (1998). 
Percentages (in weight) of each group correspond to the average composition of 
marine phytoplankton 
 

  chemical formula % (w/w) 

 phosphorus compounds C45H76O31N12P5 12.1 

 pigments C46H52O5N4Mg 2.0 

 proteins C138H217O45N39S 45.7 

 carbohydrates C6H10O5 22.7 

 lipids C53H89O6 17.5 

 average composition C106H171O41N16P 100.0 

 

For the case of the dissolved inorganic nutrients, the chemical composition of 

the oxidized material and the proportions of the different biomolecules are 

calculated from the O2, CT, NT and HPO4
2- anomalies. Equations describing the 

mineralization of proteins, carbohydrates, lipids and phosphorus compounds 

can be written: 

C138H217O45N39S + 220 O2 + 179 OH- → 

                   → 138 HCO3
- + 39 NO3

- + SO4
2- + 129 H2O 

(5.12)

C6H10O5 +  6 O2 + 6 OH- → 6 HCO3
- + 5 H2O (5.13)

C53H89O6 + 72.25 O2 + 53 OH- → 53 HCO3
- + 44.5 H2O (5.14)

C45H76O31N12P5 + 69.75 O2 + 67 OH- → 

             → 45 HCO3
- + 12 NO3

- + 5 HPO4
2- + 46.5 H2O 

(5.15)
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Consequently, the corresponding linear system of mass balance equations is: 

Pho75.69Lip25.72Cho6Prt220O2 ∆×+∆×+∆×+∆×=∆  (5.16) 

Pho54Lip53Cho6Prt138CT ∆×−∆×−∆×−∆×−=∆  (5.17) 

Pho21Prt39NT ∆×−∆×−=∆  (5.18) 

Pho5P ∆×−=∆  (5.19) 

Dissolved oxygen consumption in equations (5.12)-(5.15) is referred to the 

oxidation state of nitrate. However, ammonium and nitrite are relatively 

abundant in NW Iberian shelf waters. Since 0.5 mol of oxygen are necessary to 

oxidize one mol of nitrite to nitrate and two mol of oxygen are required to 

oxidize one mol of ammonium to nitrate, the following oxygen correction has 

to be applied (Ríos et al. 1989):  
+− ×−×−= 4222C NH2NO5.0OO  (5.20) 

In addition, inorganic carbon is produced during the degradation of organic 

matter and calcareous (CaCO3) structures. Since equations (5.12)-(5.15) refer 

only to the oxidation of organic carbon, the influence of the precipitation-

dissolution of CaCO3 must be corrected from CT variability (CTC): 

PTTC TA
2
1CC ×−=  (5.21) 

TAP also allow us to estimate the dissolution of calcareous structures 

(∆CaCO3)  

P3 TA
2
1CaCO ∆×−=∆  (5.22) 

Introducing the nutrient ratios of Table 5.1 in equations (5.7)-(5.11) and 

(5.16)-(5.19) it is possible to obtain the average biochemical composition of the 

organic and inorganic materials mineralised in bottom waters of the ría and the 

shelf of the NW Iberian upwelling system during a complete seasonal cycle. 

The RC ratio (=-∆O2/∆CT) cannot be directly used because it is affected by the 

dissolution of anthropogenic CO2. Therefore, we tested the whole range of 
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possible RC values. It varies from 1.00 (100% carbohydrates) to 1.59 (100% 

proteins). Following Anderson (1995), we arbitrarily established that only the 

RC values that produce a percentage >5% for carbohydrates and lipids would 

be valid. Results are shown in Table 5.3; it ranges from 1.28 to 1.45 in the ría 

and from 1.39 to 1.49 in the shelf. Note that the calculated RC values are 1.22 

and 1.29 for the ría and the shelf, respectively (Table 5.1), i.e. out of the 

permitted range. Table 5.3 also shows the biochemical composition of the 

materials mineralised as obtained from the inorganic nutrients, the DOM and 

the POM anomalies. 

Table 5.3 Average chemical composition of the products of early degradation of 
marine phytoplankton photosynthesis as obtained from inorganic nutrients, 
dissolved organic matter and suspended organic matter. RC in mol O2 (mol C)-1, 
phosphorus compounds, proteins, lipids and carbohydrates in % (w/w). 
 

  stn 00 stn 03 

RC 1.28 1.45 1.39 1.49 

Phosphorus compounds 10.0 13.8 12.7 15.1 
Proteins 33.4 46.1 50.4 59.9 
Lipids 5.1 35.0 5.1 20.0 N

u
tr

ie
n

ts
 

Carbohydrates 51.5 5.0 31.9 5.1 
RC 1.36 1.36 

Phosphorus compounds 10.4 8.2 
Proteins 44.6 41.1 
Lipids 8.8 18.2 D

O
M

 

Carbohydrates 36.3 32.4 
RC 1.43 1.42 

Phosphorus compounds 15.8 14.9 
Proteins 41.1 40.8 
Lipids 31.6 31.4 

P
O

M
 

Carbohydrates 11.5 12.9 
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The results presented in this table also allow us to write the following 

biochemical reactions for the decomposition of the biogenic material: 

Mid ría, from nutrients anomalies (using an average RC = 1.37) 

(C108H176O46N14P)(SiO2)13(CaCO3)5 + 146.5 O2 + 57 H2O → 

      → 113 HCO3- + 14 NO3- + HPO42- + 13 H4SiO4 + 5 Ca2++ 124 H+ 
(5.23) 

Mid ría, from DOM anomalies 

       C116H186O55N17P + 157.5 O2 + 33 H2O → 

                               → 116 HCO3- + 17 NO3- + HPO42- + 135 H+ 
(5.24) 

Mid ría, from POM anomalies 

   C87H141O27N11P + 123.75 O2 + 23.5 H2O → 

                                   → 87 HCO3- + 11 NO3- + HPO42- + 100 H+ 
(5.25) 

Mid shelf, from nutrients anomalies (using an average RC = 1.44) 

(C91H145O36N16P)(SiO2)9(CaCO3)6 + 129 O2 + 49 H2O → 

       → 97 HCO3- + 16 NO3- + HPO42- + 9 H4SiO4 + 6 Ca2++109 H+ 
(5.26) 

Mid shelf, from DOM anomalies 

      C156H251O65N20P + 212.5 O2 + 42 H2O → 

                              → 156 HCO3- + 20 NO3- + HPO42-+178 H+ 
(5.27)

Mid shelf, from POM anomalies 

    C92H149O29N12P + 131 O2 25 H2O → 

                             → 92 HCO3- + 12 NO3- + HPO42-+106 H+ 
(5.28)

Mineralization of organic biomolecules 

Sinking, suspended and dissolved organic matter have different gravity 

properties, they cycle differently in the ocean, and they have different elemental 

ratios (e.g. Loh & Bauer 2000, Hopkinson et al. 1997, 2002). Comparison of the 

standard deviation of the calculated ∆CTC, ∆DOC and ∆POC values at stns 00 

(25.6, 4.0 and 4.3 µM C, respectively) and 03 (10.0, 3.5 and 1.8 µM C, 

respectively), yielded that the average contribution of DOC and POC to the 
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mineralization of organic carbon was about 30% in the mid ría (1/2 DOC, 1/2 

POC) and 50% (2/3 DOC, 1/3 POC) in the mid shelf. Therefore, the 

biochemical reactions obtained from the nutrient anomalies (eq. 5.23 and 5.26) 

contain a fraction that was missing in the DOM and POM analyses (50-70 % of 

the total). This missing fraction is probably composed of the products of 

degradation of large, fast sinking, organic materials not collected in the POC 

analysis (representative for particles in the 1-200 µm size range). 

Remarkable differences were found between the average composition of the 

dissolved, suspended and missing sinking organic materials that are mineralised 

in the waters below the upper mixed layer of the NW Iberian upwelling system. 

Regarding the dissolved material, there are not remarkable differences between 

the mid ría and mid shelf sites and the most conspicuous characteristic of this 

material is that carbohydrates are preferentially consumed (32-36%; Table 5.3) 

as compared with a material of Redfield composition (22.7%; Table 5.2). As for 

the case of the dissolved material, the composition of the oxidized suspended 

organic matter did not differ between the ría and the shelf (p < 0.05), but in this 

case lipids are preferentially oxidized: 31% (Table 5.3) as compared with 17.5% 

for a material of Redfield composition (Table 5.2). Finally, assuming average RC 

values of 1.37 and 1.44 for the mid ría and mid shelf stations respectively, it 

results that the missing sinking material mineralised experiences a preferential 

consumption of carbohydrates in the mid ría (31% as compared with 22.7% in 

Table 5.2) and of proteins in the mid shelf (55% as compared with 45% in 

Table 5.2). 

Hopkinson et al. (2002) were able to differentiate between labile and 

recalcitrant materials in the mesotrophic Middle Atlantic Bight. The C/N/P 

ratios of the labile material were similar to the values obtained in the NW 

Iberian Peninsula and indicate that the stoichiometry of DOM mineralization is 

similar to that for particles (Garber 1984). The study of Hopkinson et al. (2002) 
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showed that DOP was more labile than DON and DON more than DOC. 

This result was also observed by Lucea et al. (2003) in a different environment: 

the oligotrophic NW Mediterranean. They both confirmed previous 

conclusions reached by Jackson & Williams (1985) and Hopkinson et al. (1997) 

about preferential mineralization of phosphorus. Abell et al. (2000) merit an 

special mention since they were able to differentiate the organic matter 

mineralization in upper thermocline waters of the subtropical (oligotrophic) and 

temperate (mesotrophic) North Pacific Ocean: DOC+POC mineralization 

exhibited a C/N molar ratio of 30 ± 10 in the subtropical and 8 ± 1 in the 

temperate North Pacific. Hung et al. (2003b) obtained a C/N molar ratio of 

DOM mineralization of 8.4 and an N/P molar ratio of 19 in the East China 

Sea, suggesting that they are due to the recently produced fractions. Therefore, 

there is a body of evidence in the literature supporting the fact that the labile 

dissolved organic material consumed in mesotrophic environments, especially 

in coastal areas, has a composition similar to the suspended and sinking organic 

particles. 

Since most experimental work on remineralization of nutrients from 

particulate and dissolved organic matter has dealt with laboratory 

decomposition studies, this work is likely the first estimation in the field of the 

molecular composition of the mineralised dissolved organic matter in a coastal 

environment. This type of analysis is more accurate than the estimation of 

mineralization ratios based on the vertical profiles of the bulk C/N/P ratios of 

DOM and POM as those of Figure 5.6, because DOM and POM 

concentrations can contain refractory components and preformed 

contributions. 

Mineralization of siliceous and calcareous structures 

The ratio between soft and hard biogenic material decomposition rates varies 

with depth in the oceans. Since the upper ocean is CaCO3 over saturated 
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(Takahashi et al. 1981, Broecker & Peng 1982), carbon regeneration at that level 

is predominantly due to the oxidation of organic carbon (Honjo et al. 1982, 

Honjo & Manganini 1993). However, a recent review of the global carbonate 

budget showed evidences that 60-80% of the biogenic CaCO3 dissolves in the 

upper 1000 m, above the lysocline, as a result of biological mediation (Milliman 

et al. 1999). In deeper layers, the dissolution of hard structures predominates 

because of the increased pressure, decreased temperature and longer residence 

times (Broecker & Peng 1982). These authors, using the Geochemical Ocean 

Section Study (GEOSECS) dataset, estimated a ∆Ca/∆Corg ratio of ~0.1 for 

the permanent thermocline and ~0.5 for deep waters. Takahashi et al. (1985) 

obtained a ∆Ca/∆Corg ratio of 0.05 for the upper and 0.08 for the lower 

permanent thermocline of the North Atlantic. Finally, Ríos et al. (1995) found a 

∆Ca/∆Corg ratio of 0.08 for the upper 2300 m and 0.52 for deeper waters of 

the Eastern North Atlantic Ocean.  

A ∆Ca/∆Corg ratio of 0.05 ± 0.02 was estimated for shelf subsurface waters 

of the NW Iberian upwelling system (Table 5.1). This value is within the range 

mentioned for the upper thermocline waters. A similar ∆Ca/∆Corg value of 

0.07 ± 0.01 was calculated for the subsurface waters of the Ría de Vigo. The 

water column below the mixed layer is always supersaturated with respect to 

calcite and aragonite (312 ± 42% and 200 ± 28%, respectively). Therefore, 

CaCO3 dissolution should occur preferentially at or near the top of sediments 

(Archer et al. 1989). The high organic matter content of the sediment, either in 

the rías (Vilas et al. 2005) or the inner shelf (Lopez-Jamar et al. 1992), creates an 

environment where the dissolution of CaCO3 is favoured by strong 

acidification. In fact, the sediments inside the rías are characterised by low 

proportions of CaCO3 where the organic matter content is high (Vilas et al. 

2005). 
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Regarding biogenic silica, it is also exported to the deep ocean as sinking 

particles, where dissolution occurs. As for the case of CaCO3, most of the silica 

dissolution takes place below the main thermocline. The high covariation 

between alkalinity and silicate profiles in open ocean deep waters (Brewer et al. 

1995, Broecker & Peng 1982, Ríos et al. 1995) is probably due to the 

biologically mediated dissolution of these hard structures in the 

microenvironments created by marine snow, zooplankton guts, etc. According 

to Milliman et al. (1999) and Tréguer et al. (1995), the open ocean CaCO3 and 

opal decomposition rates in the water column are 47·1012 mol y-1 and 91·1012 

mol y-1 respectively. Therefore, a mean ∆Si/∆Ca molar decomposition ratio of 

~2 can be proposed. For the North Atlantic, an average ∆Si/∆Ca ratio for the 

whole water column of 1.4 was calculated by Pérez et al. (2002). According to 

Berger & Herguera (1992), a ∆Si/∆Ca ratio of 1.4 is expected for an area with a 

mean organic carbon flux of 10 mmol m-2 d-1, which is in close agreement with 

their productivity value for the Eastern North Atlantic Ocean (Martin et al. 

1993). Lower ∆Si/∆Ca ratios, around 1.05, were measured in sediment traps 

deployed at the North Atlantic Bloom Experiment (NABE) site below 3100 m 

(Newton et al. 1994).  

In this study, the ∆Si/∆Ca ratio was variable, with a value of 2.4 ± 0.4 in the 

Ría de Vigo and 1.6 ± 0.2 in the shelf (Table 5.1). The latter value is in close 

agreement with that found at the NABE site. As observed in the open ocean 

(Berger & Herguera 1992), the ∆Si/∆Ca ratio increases as the organic matter 

flux increases; this is, it increases from the shelf to the ría. Along the middle 

shelf of the NW Iberian Peninsula, Alvarez-Salgado et al. (1997) found a large 

silicate accumulation in bottom waters due to rapid opal dissolution. Opal 

dissolution was high compared with organic matter decomposition: the 

∆N/∆Si molar ratio in the ría (1.1 ± 0.1) is about half than in the shelf, (1.8 ± 

0.1; Table 5.1). In this sense, maximum percentages of opal and diatom valve 
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numbers in sediments were recorded in the main channel of the Ría de Vigo 

(Prego et al. 1995), suggesting a strong downward flux of diatom frustules 

there.  

Contribution of DOM to nutrient mineralization in the NW Iberian 

upwelling 

A huge effort has been made over the last decade by marine biogeochemists 

to understand the role played by DOM in carbon, nitrogen and phosphorus 

cycles in the oceans. Most of this knowledge has been reviewed in a recent 

book edited by Hansell & Carlson (2002).  

One of the key questions to answer is the true contribution of DOM to the 

apparent oxygen utilization of subsurface ocean waters. According to the results 

of the biogeochemical general circulation model of Yamanka & Tajika (1997), 

~70% of the biogenic organic matter exported from the surface (<100m) to the 

central (100-500 m) waters of the World Ocean are sinking particles. The 

remaining ~30% is in the dissolved form. DOM below 1000 m is extremely 

refractory, confirming that recycling times of this pool range from years to 

thousands of years (Hansell & Carlson 1998b) and that oxygen consumption is 

almost exclusively due to large sinking particles (Jahnke 1996). 

The analysis of the standard deviation of calculated ∆CTC, ∆DOC and ∆POC 

values on the previous section estimated that from 16% to 35% of the organic 

carbon regenerated in bottom waters of the ría and the shelf, respectively, was 

in the dissolved form. The increase in the offshore direction is consistent with 

the larger particle fluxes recorded within the rías (Varela et al. 2004) than over 

the shelf (Olli et al. 2001). It is also remarkable the low correlation between 

DOC and CTC anomalies (lower than -0.36), which confirms the general 

statement that the variability observed in the AOU of the oceans is mainly 

linked to the flux of large sinking organic particles (Anderson & Sarmiento 

1994). DON/NT and DOP/PO4 anomalies reproduced the same pattern 
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observed for DOC/CTC: the contribution of dissolved organic matter to the 

mineralization of organic nitrogen and phosphorus increased from the ría to 

the shelf, ranging from 15% to 40%, and the correlation coefficients were also 

very low, ranging from -0.20 to -0.42. In the continental shelf of Georges Bank, 

a region of nearly constant upwelling of nutrient rich deep water that can be 

compared with the NW Iberian shelf, Hopkinson et al. (1997) obtained that 

19% and 15% of the mineralized N and P that accumulates in deeper water is 

due to dissolved organic matter mineralization. In open ocean waters of the 

North Pacific, DON contributed from 10% to 25% to the mineralised nitrate in 

deep waters according to different estimates (Jakson & Williams 1985, Maita & 

Yanada 1990, Koike & Tupas 1993). As indicated in the previous section, Abell 

et al. (2000) differentiated the organic matter mineralization in upper 

thermocline waters of the subtropical (oligotrophic) and temperate 

(mesotrophic) North Pacific Ocean: total organic carbon contributed 70% to 

organic mater mineralization in the subtropical North Pacific and only 20% in 

the temperate North Pacific. 
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CONCLUSIONS 

Four main conclusions can be extracted from this work about the 

mineralization of biogenic materials in a coastal upwelling system: 

More than 50% of the oxygen consumption in shelf subsurface waters is due 

to the mineralization of large, fast sinking organic matter, 17-18% to suspended 

organic matter and 16-35 % to dissolved organic matter. 

The products of early degradation of the sinking, suspended and dissolved 

organic matter can be expressed as a linear combination of the main groups of 

biomolecules: lipids, carbohydrates, proteins and phosphorus compounds. 

Proteins are preferentially oxidized in the sinking organic matter, 

carbohydrates in the dissolved organic matter and lipids in the suspended 

organic matter, as compared with the average Redfield formula. 

SiO2 is preferentially dissolved in the middle ría. 
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Chapter 6, the research work presented in this chapter is also a 

contribution to the paper: 

C. G. Castro, M. Nieto-Cid, X. A. Álvarez-Salgado et al. 2005. Local 

remineralization patterns in the mesopelagic zone of the Eastern North 

Atlantic off the NW Iberian Peninsula. Deep-Sea Res I, submitted 

 

Resumen: Entre mayo 2001 y abril 2002, se ha muestreado, con una 

frecuencia semanal, una estación en la zona de transición costera en el límite de 

la plataforma en el NO Ibérico, centrándose en el análisis a corta escala de las 

condiciones oceanográficas en el dominio del Agua Central del Atlántico 

Nororiental (ENACW) en el margen ibérico. En este masa de agua se han 

distinguido tres capas, definidas por isopícnas: capa superior (σ < 26.95), capa 

media (26.95 > σ < 27.10) y capa inferior (σ > 27.10). Se observó una 

correlación significativa entre las anomalías de nitrógeno (DON) y carbono 

orgánico disuelto (DOC) para las tres capas. Sin embargo, la relación anomalía 

de DON vs. anomalía de nitrógeno inorgánico sólo es significativa en la capa de 

ENACW menos profunda, donde el DON es mineralizado preferentemente 

sobre el DOC, explicando el ∼17% de la mineralización de la materia orgánica. 

El comportamiento observado en los niveles más profundos puede ser 

ocasionado por la solubilización de las partículas en sedimentación, ya que en 

estas profundidades este proceso puede ser favorecido frente a la 

mineralización. Se ha observado un fraccionamiento de la mineralización de la 

materia orgánica entre las capas superior e inferior de la ENACW, lo que 

sugiere una remineralización preferencial de compuestos de N y P. Por otro 

lado, las anomalías de la fluorescencia húmica y del nitrato correlacionan en 

todo el rango de ENACW, indicando la producción de sustancias húmicas 

como subproducto de la degradación microbiana de la materia orgánica. 
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Abstract: One station situated at the coastal transition zone in the NW 

Iberian shelf-break was sampled on weekly frequency between May 2001 and 

April 2002, in order to study, on this short time scale, the oceanographic 

conditions of the Eastern North Atlantic Central Water (ENACW) domain off 

the NW Iberian Peninsula. Three different layers were defined by density: 

upper (σ < 26.95), middle (26.95 > σ < 27.10) and lower (σ > 27.10). There 

existed a significant correlation between dissolved organic nitrogen (∆DON) 

and carbon (∆DOC) anomalies for whole water column, however, ∆DON vs. 

inorganic nitrogen anomaly only was significant at the shallower ENACW layer, 

where DON is preferentially mineralised over DOC, accounting for ∼17% of 

organic matter mineralization. The behaviour observed in the two deeper levels 

would respond to the solubilization of fast sinking particles, as with depth, the 

rate of this process is much larger than that of mineralization. Fractionation of 

organic matter mineralization was observed between the upper and lower layers 

of ENACW, pointing to a preferential remineralization of nitrogen and 

phosphorus rich organic matter in the mesopelagic layer occupied by ENACW. 

On the other hand, humic fluorescence and nitrate anomalies correlate 

significant and directly through the whole ENACW depth range, pointing to 

the production of dissolved humic substances as a by-product of the microbial 

degradation processes of biogenic organic matter. The average rate of this 

process is 0.18 ± 0.01 ppb QS (µM N)-1 in the upper ENACW layer, decreasing 

down to 0.11 ± 0.05 ppb QS (µM N)-1 in the lower ENACW layer. 
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INTRODUCTION 

The mesopelagic or twilight zone, located between the base of the euphotic 

zone and 1000 m, plays an important role in the ocean mineralization-

respiration processes. Arising importance of the mesopelagic layer is its 

contribution to the metabolic state of the ocean, defined as the balance between 

in situ primary production and total respiration (Smith & Hollibaugh 1993), and 

its repercussion in the global carbon cycle (Arístegui et al 2002, 2003, Del 

Giorgio & Duarte 2002, Karl et al 2003, Hansell et al. 2004). Del Giorgio & 

Duarte (2002) estimated a total respiration in the mesopelagic layer of ∼ 24.5 Gt 

C yr-1, which represents about 37% of the total respiration of the open ocean 

(see their table 1). However, these authors also state that there is an extremely 

large uncertainty (minimum 35%) in the above estimate as respiration 

measurements below the euphotic zone are rarely done due to the lack of 

sufficiently sensitive techniques to measure mineralization rates in the 

mesopelagic layer. Concerning about this lack and the importance of 

remineralization processes in the mesopelagic layer, emerging programs as 

IMBER (Integrated Marine Biogeochemistry and Ecosystem Research) and 

OCTET (Ocean Carbon Transport, Exchanges and Transformations) are going 

to dedicate part of the future efforts to develop new methodologies. 

The mesopelagic layer has been considered as the largest “heterotrophic 

digester” of the oceans (Benner 2000). The nature and extension of the 

transformation and remineralization of organic matter through the mesopelagic 

layer affects the quantity and stoichiometry of materials delivered to the deep 

sea and seafloor. On the other hand, the mesopelagic layer is also critical for the 

input of nutrients into the euphotic zone and its subsequent control on the 

primary production of the system. 

In this sense, especially sensible zones to the mesopelagic biogeochemical 

processes are the regions of formation of modal waters, where thermocline 
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subsurface waters are transferred into the euphotic zone on a year basis. 

Nutrients and dissolved organic matter (DOM) concentrations of the newly-

formed modal waters depend on the concentrations of the subsurface 

thermocline waters just before the winter mixing and, consequently, on the 

mineralization processes that have occurred in the mesopelagic layer. This is the 

case for the Eastern North Atlantic Central (ENACW) waters, the main 

subsurface modal waters in the ventilated thermocline of the Eastern North 

Atlantic. 

In this line, this work try to have a first view of the temporal variability of the 

mineralization patterns in the core of ENACW, which is the main source of 

nutrients to the NW Iberian upwelling system. 

Based on the thermohaline properties, Fiúza (1984) discerned two vintages of 

ENACW: central waters with temperatures <13°C (ENACW of subpolar 

origin; ENACWSP) and ENACW with temperatures >13°C (ENACW of 

subtropical origin; ENACWST). ENACWSP is formed north of ∼43°N with 

winter mixed layer depths between 400-600 m and high nutrient concentrations 

(nitrate concentrations between 3 and 10 µmol kg-1 at the time of formation; 

Castro 1997, Pérez et al. 2005). Once formed ENACWSP subducts and it is 

conveyed southward as part of the anticyclonic circulation of the subtropical 

gyre (McCartney & Talley 1982). The subtropical vintage of ENACW is formed 

south of 40°N in shallower winter mixed layers (∼200 meters deep) and lower 

nutrient levels (nitrate concentrations between 0.5 and 2 µmol kg-1). ENACWST 

is transported northward by the Portugal Coastal Under Current (PCUC) 

during the upwelling season and by the Portugal Coastal Counter Current 

(PCCC) during the rest of the year (Álvarez-Salgado et al. 1993, Castro et al. 

1997).  

Previous studies have been focused on the mineralization processes of 

ENACW over the shelf (Álvarez-Salgado et al. 1993, 1997, accepted). From these 
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studies, we know that ENACW is gaining mineralised nutrient as the upwelling 

season progresses and that nutrient enrichment is more intensified on the 

Galician west coast, off the Rías Baixas (Fig. 6.1), than on the northern coast. 

This intensification on the west coast is caused by a longer residence time of 

the upwelled water and a higher input of particulate organic matter outwelled 

from the Rías Baixas (Álvarez-Salgado et al. 1997). In fact, this stronger nutrient 

enrichment due to remineralization on the west shelf is able to buffer the 

difference on nutrient concentrations between ENACWSP, which usually 

upwells on the north coast, and ENACWST, upwelling on the west coast, in 

such a way that the potential primary production controlled by upwelled 

nutrient levels is similar for the two regions. On the oceanic domain, Pérez et 

al. (1993, 2001) studied the remineralization patterns of the water masses in this 

eastern boundary, with data collected on a series of hydrographic cruises carried 

out between 1982 and 1993. These authors were mainly focused on studying 

the spatial remineralization patterns and their relationship with the mixing and 

displacement of water masses in the region. 

The aim of this manuscript is to have a first view of the temporal variability 

of the mineralization patterns in the mesopelagic layer of the Eastern North 

Atlantic, based on the chemical data collected with a weekly frequency in a 

station off the NW Iberian Peninsula between May 2001 and April 2002. 

MATERIAL AND METHODS 

A transect from the coast to 85 km off the NW Iberian coast (Fig. 6.1) was 

sampled on weekly frequency between May 2001 and April 2002, in the 

framework of the DYBAGA project. The aim of this project was to study on 

this short time scale the oceanographic conditions off the NW Iberian 

Peninsula. The basis for this manuscript is the hydrographic data collected at 

the most offshore station (stn 05), which corresponds to the oceanic reference 
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for analysing the processes and hydrographic conditions over the shelf and 

inside the Ría de Vigo. 
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Figure 6.1 Map of the study area, shelf breakwaters of the NW Iberian upwelling 
system. The position of the sampling station is indicated. The isobaths of 50, 100, 
150, 200 and 1000 m are depicted 
 

A total of 47 surveys were carried out on board of RV Mytilus but 

unfortunately due to bad weather conditions we were not able to achieve the 

sampling of stn 05 in two occasions (November 7th, 2001 and April 2nd, 2002). 

Conductivity, temperature and pressure (CTD) were measured with a SBE 9/11 

CTD probe incorporated into a rosette sampler with 10-L PVC Niskin bottles. 

Salinity was calculated from conductivity measurements using the equation of 

UNESCO (1985). Samples for the analysis of dissolved oxygen, total alkalinity, 
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pH, nutrient salts, dissolved organic carbon and nitrogen and fluorescence of 

dissolved humic substances were collected at 15 different depths in the water 

column from the surface to the upper core of Mediterranean Water with a more 

intense sampling at ENACW depths. 

Dissolved oxygen was determined by Winkler potentiometric titration. The 

estimated analytical error was ±1 µmol kg-1. Total alkalinity was determined by 

potentiometric titration with HCl to a final pH of 4.4 (Pérez & Fraga 1987). 

The analytical error was ±2 µmolkg-1. The measurements of pH were analysed 

spectrophotometrically following Clayton & Byrne (1993). Total inorganic 

carbon (CT) was estimated from pH and total alkalinity using the carbonic 

system equations with the carbonic and boric acid dissociation constants of 

Lueker et al. (2000). Nutrient samples were determined by segmented flow 

analysis with Alpkem Autoanalyzers following Hansen & Grasshoff (1983) with 

some improvements (Mouriño & Fraga 1985). The analytical errors were ±0.02 

µM for nitrite, ±0.05 µM for nitrate, ammonium and silicate and ±0.01 µM for 

phosphate. Dissolved organic carbon (DOC) and nitrogen (DON) were 

measured simultaneously with a nitrogen-specific Antek 7020 nitric oxide 

chemiluminescence detector, coupled in series with the carbon-specific Infrared 

Gas Analyser of a Shimadzu TOC-5000 organic carbon analyzer (Álvarez-

Salgado & Miller 1998). The analytical errors were ±1 µM for DOC and ±0.2 

µM for DON. 

The fluorescence of dissolved humic substances (FDOMM) was measured 

with a Perkin Elmer LS 55 Luminescence spectrometer working with a xenon 

discharge lamp, equivalent to 20 kW for 8 µs duration, and a 1-cm quartz 

fluorescence cell. Milli-Q water was used as a reference for fluorescence 

analysis, and the intensity of the Raman peak was checked several times every 

working day. Discrete FDOM analyses were executed within few hours after 

sample collection at Ex/Em wavelength 320/410 nm. Four replicated were 
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performed. A four point standard curve was prepared daily with quinine 

sulphate (QS) in sulphuric acid 0.05M. The equivalent concentration of every 

peak was determined by subtracting the average peak height from the blank 

height, and dividing by the slope of the standard curve. Fluorescence units were 

expressed in ppb equivalents of QS (ppb QS) with an analytical error of ±0.1 

ppb QS. For more details, see Nieto-Cid et al. (in press), Chapter 3. 

The Brunt-Väisälä frequency (N2; Millard et al. 1990) is commonly used for 

evaluating the stability of the water column, N2 = (g/ρ)·(∂ρ/∂z), where g is 

gravity, ρ is density and z is depth. The average N2 integrated over the water 

column can be calculated as: 

N2 = g/Z·ln(ρb/ρs)  (6.1) 

where Z is the water depth, ρs is surface density and ρb is bottom density. 

STOICHIOMETRIC MODEL 

Separation of physical and biogeochemical components of the 

distribution of chemical parameters 

As we mentioned before, ENACW off the NW Iberian Peninsula occupies 

the water column from a salinity maximum at 50-100 meters depth, 

characteristic of the saltier and warmer portions of ENACWST, to a salinity 

minimum at 450-500 m depth, characteristic of the fresher and colder portions 

of ENACWSP. Thus, ENACW can be defined by two straight θ/S lines, i.e. 

three end members (Fig. 6.2; Castro et al. 1998). 

A three end member mixing problem can be solved by means of a linear 

regression analysis involving two conservative variables, salinity and potential 

temperature. An anomaly (∆Y) can be defined for each chemical parameter (Y): 

TaSaaYY 210 ×−×−−=∆  (6.2) 

where a0, a1 and a2 are the coefficients of the linear multiple regression of Y 

with salinity and temperature. ∆Y retains only the variability associated to the 
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biogeochemical processes i.e. the decomposition of organic matter and the 

dissolution of calcareous and siliceous structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.2 (a) Temperature vs. salinity diagram for all the water samples collected 
during the DYBAGA project at stn 05 since May 2001 until May 2002. Black solid 
line is the reference line defined by Fiúza (1984) for ENACW. (b) Interannual 
variability of salinity on the isopycnal level 27.1 kg m-3 by Pérez et al. (2000) 
updated with salinity values at stn 05 during the study period 
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Regression analysis of nutrient anomalies 

The best fit between any couple of nutrient anomalies (∆X, ∆Y) was obtained 

minimizing the function: 

( ) ( )[ ]∑ ∆−∆×∆−∆
i

2
Y

ii
X

ii

wŶYwX̂X  (6.3) 

where iX̂∆ and Ŷ∆ are the expected values of ∆X and ∆Y from the linear 

regression equation respectively, i.e. Ŷ∆ = m × ∆Xi and iX̂∆ = ∆Yi/m, with m 

being the slope of the correlation between ∆X and ∆Y; wX and wY are weights 

for variables X and Y respectively, with wX, wY ≥ 0 and wX + wY = 1. The 

weight factors were estimated as a function of the precision of the analytical 

determination of the variable (er) compared with the standard deviation of the 

set of measurements of that variable for water samples with AOU > 0 (SD). 

For a given couple of variables X and Y: 
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erw /  (6.4) 

Minimising eq. (6.3) considering the weight factor of eq. (6.4) ensures that the 

slopes of the linear regression equations account for the relative precision 

(er/SD) of the pairs of nutrient anomalies that are correlated each time. 

Combining and rearranging eqs. (6.3) and (6.4), it results that the function to 

minimise is: 
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(6.5) 
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In addition, the value of the slope (m) that makes eq (6.5) minimum is: 

+
∆
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Therefore, m is an intermediate case between: 1) the slope of a Type I 

regression (which should be applied when wX = 0, wY = 1), m = 

( ) ∑∑ ∆∆×∆
i

i
i

ii
2XYX  and 2) the slope of a Type II regression (which 

should be applied when wX = wY = 0.5), m = ∑∑ ∆∆
i

i
i

i
22 XY  (Sokal & Rolf 

1995). Table 6.1 summarizes the values of er/SD for all the study variables at 

the different isopycnal layers. 

Conversion of nutrient anomalies into the chemical composition of 

biogenic materials 

Fraga (2001) reviewed in detail the average composition of phytoplankton 

carbohydrates (Cho), lipids (Lip), proteins (Prt), pigments (Chl) and 

phosphorus compounds (Pho). Table 6.2 summarizes the average composition 

of these groups of biomolecules. This table also contains the relative 

contribution of each group to the average composition of marine 

phytoplankton. 
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Table 6.1 Ratio of the analytical error of the chemical variables (er) and the standard 
deviation of their anomalies (SD) for ENACW samples in the NW Iberian shelf break. 
Dimensionless 

 

  
SD
er

 

 Variable 
Upper 

(σ0 < 26.95) 

Middle 

(26.95 < σ0 < 27.10)

Lower 

(σ0 > 27.10)

 ∆O2C 0.04 0.08 0.11 

 ∆CTC 0.21 0.38 0.21 

 ∆NT 0.06 0.11 0.18 

 ∆P 0.21 0.37 0.52 

 ∆Si 0.08 0.16 0.18 

 ∆Ca 4.10 3.86 3.79 

 ∆DOC 0.34 0.33 0.35 

 ∆DON 0.33 0.28 0.29 

 ∆FDOMM 0.83 1.43 2.25 
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Table 6.2 Chemical composition of the main organic products of synthesis and 
early degradation of marine phytoplankton according to Fraga et al. (1998). 
Percentages (in weight) of each group correspond to the average composition of 
marine phytoplankton 
 

  chemical formula % (w/w) 

 phosphorus compounds C45H76O31N12P5 12.1 

 pigments C46H52O5N4Mg 2.0 

 proteins C138H217O45N39S 45.7 

 carbohydrates C6H10O5 22.7 

 lipids C53H89O6 17.5 

 average composition C106H171O41N16P 100.0 

 

Considering the chemical formulas in Table 6.2, the chemical composition of 

the oxidized material and the proportions of the different biomolecules can be 

calculated from the O2, CT, NO3 and HPO4
2- anomalies. NO2

- and NH4
+ levels 

in ENACW are <0.1 and <0.2 µmol kg-1, respectively. Equations describing the 

mineralization of proteins, carbohydrates, lipids and phosphorus compounds 

can be written: 

C138H217O45N39S + 220 O2 + 179 OH- → 

                   → 138 HCO3
- + 39 NO3

- + SO4
2- + 129 H2O 

(6.7)

C6H10O5 +  6 O2 + 6 OH- → 6 HCO3
- + 5 H2O (6.8)

C53H89O6 + 72.25 O2 + 53 OH- → 53 HCO3
- + 44.5 H2O (6.9)

C45H76O31N12P5 + 69.75 O2 + 67 OH- → 

             → 45 HCO3
- + 12 NO3

- + 5 HPO4
2- + 46.5 H2O 

(6.10)
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Consequently, the corresponding linear system of mass balance equations is: 

Pho75.69Lip25.72Cho6Prt220O2 ∆×+∆×+∆×+∆×=∆  (6.11) 

Pho54Lip53Cho6Prt138CT ∆×−∆×−∆×−∆×−=∆  (6.12) 

Pho21Prt39NT ∆×−∆×−=∆  (6.13) 

Pho5P ∆×−=∆  (6.14) 

Inorganic carbon is consumed during the degradation of organic matter and 

calcareous (CaCO3) structures. Since equations (6.7)-(6.10) refer only to the 

oxidation of organic carbon, the influence of the precipitation/dissolution of 

CaCO3 must be corrected from CT variability (CTC): 

PTTC TA
2
1CC ×−=  (6.15) 

Where TAP is the potential alkalinity, calculated following Fraga & Álvarez-

Salgado (2005): 

   ++×+−= −−−
324P NONO93.0NHTATA  

                        ( ) -2
4324 HPO23.0NONONH08.0 ×+++×+ −−+  

(6.16) 

RESULTS AND DISCUSSION 

Temporal variability 

Based on the wind regime (offshore Ekman transport, -QX; continental 

runoff QR) and on the structure of the water column (N2), we have identified 

seven different periods between May 2001 and the end of April 2002 (Fig. 6.3). 

The period between May 15th and August 21st, was characterized by short pulses 

of northerly winds. In spite of its recurrence, these northerly winds were not 

strong enough to disrupt the thermal stratification of the upper 100 m of the 

water column (period 1 in Fig. 6.3), with the exception of the intense and 

prolonged northerly winds episode between August 21st and September 22nd 

which provoked the decrease of the water column stratification (about 1·105 s-2 

in N2; period 2 in Fig. 6.3). 
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Figure 6.3 Time course of (a) Ekman transport (-QX; m2s-1) calculated with 
wind data provided by the SeaWatch Buoy Meteorological Observatory 
(http://www.puertos.es) and continental runoff (QR; m3s-1), (b) frequency of 
Brunt-Väisälä (N2; s-2), (c) density and (d) salinity. The seven different periods 
are shown in panel (a). The open circles on plot (d) correspond to the upper 
and lower limit of ENACW 
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From September 22nd, there was a wind reversal and relatively high southerly 

winds begun to prevail, but water column stratification was still high until 

October 30th, probably due to an intense continental runoff from the Rías 

Baixas, which was able to establish a salinity gradient and maintain a relatively 

strong stratified water column in the upper meters. After that, there was a sharp 

decrease of water column stratification in November. Since November 29th, the 

prevailing southerly winds favoured the presence of even saltier waters with 

maximum salinity values as high as 35.9. The period from the beginning of 

February until mid-March, corresponds to the winter mixing, with salinity 

values slightly fresher than during the previous periods. Winter mixed layer 

depths varied between 100 and 200 m, with maximum deepening at the 

beginning of February. 

During the study period, ENACW occupied water column depths between 

100 and 400 m (delimited by white circles on the time evolution of salinity; Fig. 

6.3d), being even shallower during the autumn and winter seasons. We have 

observed the presence of the two branches of ENACW of subpolar and 

subtropical origins at station 5 during the entire year, as we can see in the 

temperature-salinity (TS) diagram for all the water samples collected at this 

location (Fig. 6.2). Here, ENACW is clearly recognised by the cluster of points 

with a linear TS relationship varying between a salinity minimum of 35.58 

(∼11.34°C) and a maximum of 36.02 (∼14.85°C). These thermohaline 

characteristics are very similar to those previously described by Fiúza (1984) for 

this water mass and represented by a straight line on the TS diagram. Pérez et 

al. (2000) studied the inter annual variability of salinity on the isopycnal 27.1 kg 

m-3, as representative of ENACW, and its relationship with the North Atlantic 

Oscillation (NAO). They found a close coupling between salinity at 27.1 kg m-3 

isopycnal and NAO with low salinity associated to low NAO index reflecting 

weak westerly winds and increasing precipitation over southern Europe. We 
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have updated their time series and added the monthly salinity averages at 27.1 

kg m-3 isopycnal for station 5 during the study period. Our data follow the trend 

of the previous five years, corresponding to low salinities, though they were not 

as low as during the previous minimum phase among 1980-87 (35.591 ± 0.014). 

In the same way, our results also support the seasonal cycle of 

stratification/homogenisation in the PCCC waters established by Álvarez-

Salgado et al. (2003) based only on seven cruises off the Galician Coast. The 

temporal evolution of the salinity maximum of the upper limit of ENACW 

tracks the evolution of the core of the PCCC. During the upwelling season 

(May 15th until September 22nd), a well-defined subsurface salinity maximum, 

corresponding to the ENACW upper limit, was maintained beneath the 

seasonal thermocline. This salinity maximum clearly defines the core of the 

poleward current conveying ENACWST. This core was characterized by salinity 

values of 35.65-35.75, nitrate levels between 4-8 µM, DON between 4-5 µM 

and fluorescence ∼2.5 ppb QS (Fig. 6.3 and 6.4). After the transitional period to 

low stratification (October 30th until November 29th, 2001), the upper limit of 

ENACW surfaced and it reached much higher salinity values. Thus, we 

observed the presence of ENACWST as saltier as 35.94 conveyed northward by 

the PCCC. These volumes of ENACWST were also characterized by low nitrate 

concentrations (< 3 µM) and relatively high concentrations of DOM (DON > 

4.5 µM and DOC > 62 µM; distribution not shown) and fluorescence of ~2.0 

ppb QS. During the subsequent winter mixing, the salinity maximum of 

ENACW upper limit decreased (∼0.06) though remained high (∆S = 35.88-

35.82). The recently formed ENACWST was enriched in inorganic nutrients and 

FDOMM and presented relatively low DON and DOC concentrations (Fig. 6.3 

and 6.4). Regarding the salinity minimum of the lower limit of ENACW, it was 

about the isopycnal level of 27.17 kg m-3 at approximately 350-400 m, except 
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during the winter mixing period, when ENACW lower limit deepened to ∼500 

m. 
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Figure 6.4 Time course of (a) oxygen (µM), (b) nitrate (µM), (c) dissolved organic 
nitrogen (µM) and (d) fluorescence of dissolved humic substances (ppb QS) for the 
study period 
 

a

b

c

d



Local mineralization patterns in ENACW 

209 

 

-500

-400

-300

-200

-100

0

de
pt

h 
(m

)
 

a

 

-500

-400

-300

-200

-100

0
de

pt
h 

(m
)

 
b 

 

 
c 

 

 

d
-500

-400

-300

-200

-100

0

de
pt

h 
(m

)

MAY     JUN        JUL        AUG        SEP        OCT        NOV        DEC        JAN        FEB       MAR      APR
2001                                                                                                                                                                    2002

1 2 3 4 5 6 7  

 

Figure 6.5 Time course of the anomalies for (a) oxygen (µM), (b) nitrate (µM), (c) 
dissolved organic nitrogen (µM) and (d) fluorescence of dissolved humic 
substances (ppb QS) for the study period 
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Seasonal pattern of mineralization 

The high frequency sampling carried out, allows us to study the temporal 

trend of nutrient enrichment due to remineralization processes in the ENACW 

domain during an entire year. The temporal evolution of oxygen, nitrate, DON 

and FDOMM followed a similar trend and strongly correlated with temperature 

(r > 0.70; p < 0.001 for the four cases) due to mixing of different modes of 

ENACW. The residual variability not explained by the thermohaline properties 

corresponds to the aging that ENACW experienced due to biogeochemical or 

ventilation processes, as we discuss below. Fig. 6.5 represents the oxygen, 

nitrate, DON and FDOMM anomalies of ENACW waters for the study period. 

Positive nutrient anomaly (negative oxygen anomaly) is associated with higher 

than average nutrient concentration for this water parcel associated with 

enrichment due to mineralization of organic matter. Negative nutrient anomaly 

corresponds with lower than the average nutrient concentration for the study 

region and they can be associated with ventilation processes. 

The temporal distributions of oxygen and nitrate anomalies are very similar   

(r = -0.90; p <0.001) and suggest a seasonal pattern modulated by 

remineralization-ventilation processes in the domain of ENACW. As the 

upwelling season progressed, we observed an aging of the subsurface waters. 

Thus, oxygen anomalies decreased (nitrate anomalies increased) between May 

15th and September 18th, reflecting the decomposition of organic matter formed 

during the productive spring and summer seasons. However, the most negative 

oxygen anomalies (highest nitrate enrichment) were recorded during the 

autumn (September 25th and November 27th), associated with ENACWST 

conveyed northward in the PCUC/PCCC. The situation dramatically changed 

during the winter, when maximum ventilation occurred and the recently formed 

ENACW was characterized by high oxygen and low nitrate levels compared 

with the average. The lowest oxygen anomalies were observed at the sea surface 
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in contrast with the vertical structure of the anomalies during the previous 

periods, when the extreme anomalies were located at the base of the nutricline. 

This tendency was still observed during the subsequent spring bloom. 

The temporal distribution of DON anomalies does not follow such a clear 

seasonal pattern. The only striking feature was the high positive DON 

anomalies observed at the beginning of the winter mixing period and the 

positive values for the subsequent spring period. For the previous periods, this 

distribution of DON anomalies seems to respond to short-time events of 

DON enrichment in the entire water column, i.e. there is a homogenised 

distribution of DON anomaly for the entire water column. 

Finally, the temporal distribution of FDOMM anomalies presents the same 

trend as oxygen and nitrate. Until September, with the progress of the 

upwelling season, fluorescence anomalies increased. Maximum anomalies were 

also reached in winter, following the 26.95 isopycnal (at the base of the 

pycnocline) where metabolic processes were high. The lowest anomalies were 

observed at the sea surface at the end of winter and at the beginning of spring, 

in relation with high oxygen and low nitrate anomalies. 

Fractionation of mineralization in the ENACW domain 

One issue to test is if there is a fractionation of organic matter mineralization 

in the water column. Fractionation has important consequences for the global 

carbon cycle. The amount and depth at which dissolved inorganic carbon is 

released from mineralization determines the strength of the biological pump for 

drawdown of the atmospheric CO2 (Shaffer et al. 1999). 

With this aim, we have ‘vertically’ divided the domain of ENACW in three 

isopycnal ranges and study the remineralization ratios obtained from the 

correlations of the anomalies of the chemical variables for each density interval. 

The upper level extends from the shallow salinity maximum to the 26.95 

isopycnal, density horizon of maximum nutrient and oxygen anomaly, and 
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corresponds to ENACWST. The lower level extends from the 27.10 isopycnal to 

the deep salinity minimum and corresponds to ENACWSP. Waters at 

intermediate density values constitutes the middle layer. 

In Table 6.3, we present the results. The low ∆O2/∆P and ∆O2/∆NO3 ratios 

relative to the classical Redfield ratios, suggests the preferential remineralization 

of protein rich organic matter, as we discuss below based on the biochemical 

composition. For the same region, Álvarez-Salgado et al. (2003) obtained 

∆O2/∆CTC/∆N/∆P remineralization ratios of 113±3/108±12/16.7±0.6/1 for 

ENACW between densities of 26.6 and 27.2, based on a series of seven cruises 

carried out between 1983 and 1998. Similar to our results, these molar ratios 

point to a preferential remineralization of protein rich organic matter. 

Table 6.3 Regression coefficient (r), slope and standard error of the slope of the 
correlation between selected pairs of nutrient anomalies for samples of the upper, middle 
and lower levels of ENACW off NW Spain. ns = no significant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The biochemical composition of the mineralised organic matter can be 

obtained from these O2/C/N/P molar ratios by solving the determined system 

of linear equations (6.11)-(6.14) and it is summarised in Table 6.4. It should be 

noted that the ∆O2/∆CTC ratio cannot be directly used because it is affected by 

the differential dissolution of anthropogenic CO2 throughout the seasonal 

r slope error r slope error r slope error

∆O2/∆CTC -0.957 -1.22 0.04 -0.877 -1.34 0.06 -0.750 -1.4 0.2
∆O2/∆NT -0.958 -7 0.2 -0.78 -6.7 0.4 -0.597 -8.9 1.2
∆O2/∆P -0.933 -125 5 -0.805 -139 8 -0.650 -154 18

∆DOC/∆DON 0.250 6 3 0.465 5 1 0.468 5 2
∆DON/∆ NT -0.430 -0.17 0.04 -0.228 ns ns 0.114 ns ns
∆Ca/∆Corg 0.708 0.07 0.01 0.226 0.07 0.02 0.353 0.14 0.04
∆Si/∆Ca 0.697 1.2 0.1 0.166 1.1 0.5 0.213 1.1 0.5
∆N/∆Si 0.868 2.8 0.1 0.707 3.1 0.2 0.429 2.2 0.5

∆FDOMM/∆NO3 0.885 0.18 0.01 0.616 0.13 0.02 0.385 0.11 0.05

Lower

(σ0 > 27.10)

Upper

(σ0 < 26.95)

Middle

(26.95 < σ0 < 27.10)
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cycle. Therefore, we tested the range of ∆O2/∆CTC values that produce at least 

5% mineralization of lipids and carbohydrates (Anderson 1995). It ranges from 

1.47 to 1.51 in the upper, 1.50 to 1.52 in the middle and 1.35 to 1.47 in the 

lower layer. The latter is the only layer where the expected and observed 

∆O2/∆CTC values (1.4 ± 0.2) coincided, because it is less affected by the 

penetration of anthropogenic carbon. 

Table 6.4 Average chemical composition (phosphorus compounds, proteins, lipids and 
carbohydrates) of the products of early degradation of marine phytoplankton 
photosynthesis as obtained from inorganic nutrients, in % (w/w) 
 
 
 
 
 
 
 
 
 
 
 
 

 

In the upper and middle layers the average biochemical composition is richer 

in N (Prt) and P (Pho) compounds (>80%) and poor in carbon (Cho and Lip) 

compounds (<20%) than Redfield’s mean (58 and 40% respectively; see Table 

6.4). On the other hand, biochemical composition of the lower layer is 

comparable to Redfield’s values, the contribution of Prt + Pho decreases to 

63%, whereas the percentage of Lip + Cho increases to 37%. In this sense, our 

results corroborate the study of Li & Peng (2002), who found a systematic 

decrease in protein content of remineralised organic matter from the North 

Atlantic to the North Pacific, following the conveyor belt circulation (see their 

table 3). Also Brea et al. (2004), analysing the nutrient remineralization ratios in 

the Eastern South Atlantic, found that proteins were mineralized preferably 

Upper Middle Lower

(σ0 < 26.95) (26.95 < σ0 < 27.10) (σ0 > 27.10)

Pho 14.7 ± 0.7 13.4 ± 0.4 12 ± 2 12

Prt 67 ± 3 72 ± 2 51 ± 8 47.1

Cho 11 ± 8 8 ± 5 22± 25 24.4

Lip 8 ± 4 7 ± 2 15 ± 14 16.5

Formula C84H133O32N18P C92H146O34N21P C109H175O44N17P C106H171O44N16P

Redfield
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over other compounds in the domain of South Atlantic Central Waters, while 

for deeper water masses there was a decrease in the protein proportion. 

The comparison of the mineralization and biochemical composition for the 

three layers show a preferential remineralization of protein and phosphorus 

compounds in the upper and middle layers and of carbohydrates and lipids in 

the lower layer, and it constitute a vertical fractionation in the domain of 

ENACW. Thus, we can suggest that in our region, the two branches of 

ENACW present different ratios of organic matter mineralization. Previous 

works (Castro et al. 1998, Thomas et al. 2002) also looking at stoichiometric 

ratios from chemical data, did indicate the same vertical fractionation in the 

Eastern North Atlantic between water column depths above and below the 

main thermocline. These authors found a higher released of nutrients over 

inorganic carbon in the upper layer. Likewise, Minster & Boulahdid (1987), 

revisiting the method of Takahashi et al. (1985), estimated the Redfield ratios 

along several isopycnals in the North Atlantic and found no fractionation of 

organic matter remineralization for the two shallower levels (27.0 and 27.2); 

however they found a decrease in the ∆O2/∆P for deeper levels (27.4 and 27.8). 

There are not many manuscripts dealing with shallow mineralization 

processes and basically all of them are focused on the oligotrophic subtropical 

gyres of the North Pacific and North Atlantic oceans (Jenkins & Goldman 

1985, Sarmiento et al. 1990, Emerson & Hayward 1995, Abell et al. 2000). For 

the North Pacific Subtropical Gyre, Emerson & Hayward (1995) described the 

presence of subsurface waters with negative preformed nitrate, which suspect is 

due to the oxidation of DOM rich in carbon. Subsequently, Abell et al. (2000) 

corroborated this hypothesis based on DOM data, and found a different 

mineralization regime for central waters that outcrop inside the gyre and those 

outcropping just north of it. Along isopycnals that outcrop inside the gyre the 

C:N mineralization ratio is 30 ± 10, due to the oxidation of an excess of labile 
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DOC produced by nitrogen fixing organisms while for deeper isopycnals the 

C:N ratio is 8 ± 1. By comparison with this situation, we should hypothesize a 

different mineralization pattern for ENACWST and ENACWSP taking into 

account their different oceanographic regime, the same as the above result. 

Likewise, we do not observe an increasing ratio of ∆DOC:∆DON as should 

be expected considering a preferential mineralization of nitrogen over carbon, 

as reported for other regions (Hopkinson et al. 1997, 2005, Loh & Bauer 2000, 

Hung et al. 2003b). In fact, the C:N molar ratio of the dissolved organic matter 

fraction is low for the three layers (Table 6.3) and similar to the classical 

Redfield ratio of 6.6, suggesting the mineralization of relatively labile dissolved 

organic matter. 

Mineralization of siliceous and calcareous structures 

During the whole period, the calcite saturation profile varies from 3.5 times in 

subsurface waters to 2.5 at 500 meter. Since the upper ocean is CaCO3 over 

saturated (Takahashi et al. 1981, Broecker & Peng 1982), carbon regeneration at 

that level is predominantly due to the oxidation of organic carbon (Honjo et al. 

1982, Honjo & Manganini 1993). Millimam et al. (1999) showed in a review of 

the global carbonate budget that 60-80% of the biogenic CaCO3 dissolves in 

the upper 1000 m, above the lysocline, as a result of biological mediation in 

special microambient as snow aggregates and invertebrate guts. The ratio 

between soft and hard biogenic material decomposition rates varies with depth 

in the oceans (Broecker & Peng 1982). These authors, using the Geochemical 

Ocean Section Study (GEOSECS) dataset, estimated a ∆Ca/∆Corg molar ratio 

of ~0.1 for the permanent thermocline and ~0.5 for deep waters. Several 

authors obtained a ∆Ca/∆Corg molar ratio of 0.05 for the upper and 0.08 for 

the lower permanent thermocline of the North Atlantic (Takahashi et al. 1985, 

Ríos et al. 1995). Recently, for the Eastern North Atlantic Ocean, Pérez et al. 

(2002) fit the vertical profile of the ∆Ca/∆Corg ratio to a polynomial depth 
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function that varies from 0.05 in the upper layer to 0.55 in deep waters. The 

vertical variation of ∆Ca/∆Corg ratio from 0.07 ± 0.01 in the upper level to 

0.14 ± 0.04 in the lower level (Table 6.3) fits very well with this vertical pattern. 

The low value in the upper layer is in agreement with those found in the middle 

and the innermost part of the NW Iberian shelf by Álvarez-Salgado et al. 

(accepted), Chapter 5. 

Biogenic silica also dissolved in the deep ocean as sinking particles falling 

from the photic layer. Most of the silica dissolution takes place below the main 

thermocline. The high covariation between alkalinity and silicate profiles in 

open ocean deep waters (Brewer et al. 1995, Broecker & Peng 1982, Ríos et al. 

1995) is probably due to the biologically mediated dissolution of these hard 

structures in the microenvironments created by marine snow, zooplankton guts, 

etc. A mean ∆Si/∆Ca molar decomposition ratio of ~2 can be proposed 

according to the open ocean CaCO3 and opal decomposition rates in the water 

column (Milliman et al. 1999, Tréguer et al. 1995). For the North Atlantic, 

Pérez et al. (2002) calculated an average ∆Si/∆Ca ratio for the whole water 

column of 1.4. According to Berger & Herguera (1992), a ∆Si/∆Ca ratio of 1.4 

is expected for an area with a mean organic carbon flux of 10 mmol m-2d-1, 

which is in close agreement with the productivity of the Eastern North Atlantic 

Ocean (Martin et al. 1993). Lower ∆Si/∆Ca ratios, around 1.05, were measured 

in sediment traps deployed at the North Atlantic Bloom Experiment (NABE) 

site below 3100 m (Newton et al. 1994). In this study, the ∆Si/∆Ca molar ratio 

presented a constant with depth ratio of 1.1 (Table 6.3), which fits well with the 

oceanic values and with those find by Álvarez-Salgado et al. (accepted), Chapter 

5, in the adjacent NW Iberian shelf. The ∆Si/∆Ca values of 2.4 ± 0.4 in the Ría 

de Vigo and 1.6 ± 0.2 in the shelf go in agreement with the ∆Si/∆Ca value of 

1.1 at the shelf break, following the expected seaward decreases of organic 

matter flux. 
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 Opal dissolution was high compared with organic matter decomposition: the 

∆N/∆Si molar ratios show a vertical variability from 2.8 ± 0.1 in the upper 

level to 2.2 ± 0.5 in the lower level (Table 6.3). This vertical gradient suggests a 

relative increase of opal dissolution with depth in the ENACW, which is in 

agreement with an increase of the dissolution of biogenic silica in deeper water. 

On the other hand, these values fit with the seaward increase of ∆N/∆Si from 

the inner NW Iberian shelf. Álvarez-Salgado et al. (accepted), Chapter 5, give 

∆N/∆Si molar ratios of 1.1 ± 0.1 in the Ría of Vigo and 1.8 ± 0.1 in the middle 

shelf. Assuming a theoretic ∆N/∆Si ratio of ~1 for diatoms (Brzezinski 1985), 

it results that diatoms represents from 90% in the Ría de Vigo to 35% in the 

upper layer at shelf break of the mineralised biogenic matter. The percentage 

increases to 45% in the lower layer. 

Contribution of DOM to mineralization in the domain of central waters 

Another important question is to know how much is the contribution of 

DOM to remineralization of organic matter in the domain of ENACW. We 

have estimated this contribution based on the slope of ∆DON vs. ∆NT (Table 

6.3) and ∆DOC vs. ∆CCT. A significant correlation was obtained between 

∆DON vs. ∆NT only at the shallower isopycnal level (σ < 26.95 kg m-3) and no 

correlation for the other levels. For ∆DOC vs. ∆CCT we did not find any 

correlation for any of the three levels. On the other hand, a significant 

correlation (Table 6.3) was observed between ∆DOC vs. ∆DON for the three 

levels, being even higher for the two deepest levels. From these results, it is 

suggested that DON accounted for ∼17% of organic matter remineralization at 

the shallower ENACW level (σ <26.95 kg m-3). At this level, there is a 

preferential remineralization of nitrogen vs. carbon, as the lack of correlation 

between ∆DOC vs. ∆CCT points. However, neither DON nor DOC contributes 

significantly to organic matter remineralization for the densest levels of 

ENACW, nevertheless there are still significant correlations between ∆DOC vs. 
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∆DON with low slopes (6 ± 3, 5 ± 1, 5 ± 2 for upper, middle and lower layers, 

respectively), pointing to relatively young (high reactive; “labile” or 

“semilabile”) DOM material (Hopkinson et al. 2005). Based on the temporal 

distribution of DON anomalies (Fig. 6.4c), we suggest that the export of 

relatively reactive DOM is due to the leaking of DOM from sinking organic 

matter. That is, the observed plumes of DOM anomalies can be explained 

under the scenario described by Azam & Long (2001) where bacteria attracted 

to the sinking organic particles solubilize these particles, converting sinking 

organic matter into DOM in such a way that the rate of solubilization is much 

higher than mineralization. 

The contribution of DON to mineralization processes (∼17%) for shallower 

ENACW (σ < 26.95) is lower than values obtained on the ría and shelf during 

the same study period (19-30%; Álvarez-Salgado et al. accepted, Chapter 5). On 

the continental shelf of George Bank, where also upwelling of nutrient-rich 

deep waters occurs, Hopkinson et al. (1997) estimated that ∼19% of 

remineralised N in the entire water column is derived from the export and 

decomposition of DOM. Only Abell et al. (2000) analysed the contribution of 

total organic carbon (TOC) and nitrogen (TON) to organic matter oxidation at 

different isopycnal levels for a southern transect in the eastern subtropical 

North Pacific. They observed a situation completely different to that previously 

describe for the NW Iberian upwelling system. These authors found that for 

isopycnals outcropping in the subtropical gyre, TOC and TON contribute to 

70% and 20% respectively. In contrast, along isopycnals that outcrop to the 

north of the gyre, both TOC and TON contribute to 30% to organic matter 

remineralization. They explained this preferential remineralization of TOC 

relative to TON based on the excess of labile TOC produced during nitrogen 

fixation in the Subtropical region. In addition, Arístegui et al. (2002) estimated 
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that the DOC flux supports ~10% of the respiration in the dark ocean on the 

basis of the relation between DOC and apparent oxygen utilization. 

The potential of the fluorescence of dissolved organic matter to trace 

mineralization processes in the central waters domain 

The contribution of humic substances to the DOC pool was assessed using 

the conversion factor of 2.67 ± 0.06 µM C (ppb QS)-1 obtained with a 

commercial fulvic acid (Nieto-Cid et al. in press, Chapter 3). On this basis, 9 ± 

2% of DOC in ENACW upper layer was humic substances, increasing to 12 ± 

1% and 14 ± 1% in middle and lower layers, respectively. These numbers are in 

the range of those provided by Obernosterer & Herndl (2000) in the Adriatic 

Sea (15 ± 7%), but considerably lower than those proposed for the same 

authors in the North Sea (43 ± 7%), due to the higher terrestrial contributions 

in the later ecosystem. 

Mineralization processes involve an increase in the concentration of nutrients, 

oxygen and carbonate, linked to a decrease in organic matter. It was confirmed 

that these changes go accompanied by an increase in FDOMM (Chen & Bada 

1992, Hayase & Shinozuka 1995, Wedborg et al. 1998, Nieto-Cid et al. in press, 

submitted, Chapter 3-4). Comparison of FDOMM and NO3 anomalies (Table 6.3) 

indicates that dissolved humic substances are produced during the microbial 

degradation of biogenic organic matter at an average rate of 0.18 ± 0.01, 0.13 ± 

0.02 and 0.11 ± 0.05 ppb QS (µM N)-1 at the upper, middle and lower ENACW 

layers. ∆FDOMM/∆O2 ratios ranged from -0.026 in the <26.95 to -0.012 ppb 

QS (µM O2)-1 in the >27.1 layer. These values are in the range of those found in 

the NW Iberian shelf 0.14 ± 0.01 ppb QS (µM N)-1 and -0.026 ± 0.003 ppb QS 

(µM O2)-1, (Nieto-Cid et al. in press, Chapter 3) and the Ría de Vigo, -0.029 ± 

0.003 ppb QS (µM O2)-1, (Nieto-Cid et al. submitted, Chapter 4). Likewise, these 

values are similar to those reported by Hayase et al. (1987) in Tokyo Bay (0.09 

ppb QS (µM N)-1). It is interesting to note that the ∆FDOMM/∆O2 rate 
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calculated for the ENACW upper layer is the same that the rate of production 

of humic substances by bacterial respiration (0.027 ± 0.003 ppb QS (µM O2)-1) 

obtained by Nieto-Cid et al. (submitted), Chapter 4, after 24 h hours dark 

incubations. 
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CONCLUSIONS 

The high spatio-temporal resolution of the data collected during the 

DYBAGA project allows us to resolve the variability of local aging of ENACW 

on a yearly basis. The analysis of the anomalies of nutrients, fluorescence, 

oxygen and inorganic carbon indicates that there is a seasonal aging with an 

increasing (decreasing) on nutrients, fluorescence and inorganic carbon 

(oxygen) during the summer upwelling, reaching maximum (minimum) values 

during autumn, associated with the mineralization of biogenic material exported 

from the euphotic zone after the productive upwelling period. Afterwards, the 

situation changes dramatically, and we have obtained minimum (maximum) 

anomalies on nutrients, fluorescence and inorganic carbon (oxygen) due to 

winter mixing. Even the distribution of DON anomalies, which responded to 

short time scale events during the previous months, presented a clear signal for 

this period. Thus, it can be considered that there is a biogeochemical reset of 

the system during the winter mixing.  

For our time series data, DOM concentration anomalies were homogenously 

vertical distributed in the domain of ENACW. Taking into account that we do 

not observe any correlation between DOM anomalies and inorganic variable 

anomalies, except for ∆DON vs. ∆NT for ENACW < 26.95 kg m-3, and that 

there is a significant correlation between ∆DON vs. ∆DOC for the three layers, 

we suggest that this pattern responds to the solubilization of fast sinking 

particles where the rate of solubilization is much larger than mineralization. For 

the shallower ENACW layer (σ < 26.95 kg m-3), DON is preferentially 

mineralised over DOC, accounting for ∼17% of organic matter mineralization 

at this level. 

Based on the stoichiometry ratios derived from the nutrient, oxygen and 

inorganic carbon concentrations, fractionation of organic matter mineralization 

was observed between the upper and lower layers of ENACW. In the 
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mesopelagic layer occupied by ENACW, there is a preferential remineralization 

of nitrogen and phosphorus rich organic matter. 

FDOMM and NO3 anomalies correlate significant and directly through the 

whole ENACW depth range. This good correlation points to the production of 

dissolved humic substances as a by-product of the microbial degradation 

processes of biogenic organic matter. The average rate of this process is 0.18 ± 

0.01 ppb QS (µM N)-1 in the upper ENACW layer (<26.95), decreasing down 

to 0.11 ± 0.05 ppb QS (µM N)-1 in the lower ENACW layer (>27.1). 
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SUMMARY AND GENERAL CONCLUSIONS 

Current knowledge on the role played by dissolved organic matter (DOM) in 

coastal upwelling systems is still scarce, and mainly restricted to the NW 

Iberian margin. An intensive hydrographic sampling was conducted in the area 

from May 2001 to April 2002. Three stations were occupied once a week, 

representative for the three contrasting environments existing in the NW 

Iberian upwelling system: 1) the highly productive, large (>2.5 km2), and V 

shaped coastal embayments known as “Rías Baixas”; 2) the adjacent open shelf 

waters; and 3) the coastal transition zone at the NW Iberian shelf-break. 

C, N and P in dissolved, particulate organic and inorganic forms were 

determined at selected depths in the three study sites. In addition, dissolved 

mono- and polysaccharide concentrations and the fluorescence of protein-like 

and humic substances were also intensively measured to characterise labile 

(monosaccharides, dissolved free amino acids), semi-labile (polysaccharides) 

and refractory (humic substances) DOM pools. 

The NW Iberian margin is occupied by the subtropical and subpolar 

branches of Eastern North Atlantic Central Water (ENACW), modified at the 

surface layer by continental runoff and heat exchange with the atmosphere. 

Combination of an inverse water masses analysis, able to separate the physical 

from the biogeochemical components of the measured variables in the 

ENACW domain, with a stoichiometric model allowed us to study the spatial 

and temporal patterns of nutrient mineralization, i.e. the contribution of the 

different organic matter pools (dissolved, suspended and sinking) to the 

microbial respiration and the biochemical composition of the mineralised 

organic matter. 

In addition, a process-oriented short-time-scale (1/2 wk frequency) study was 

conducted in the coastal embayment of the Ría de Vigo during winter, spring, 
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summer and autumn 2002 in order to quantify the rates of microbial and 

photochemical reactivity of DOM. 

1. The DOM pool contributes significantly to oxygen consumption in the 

ENACW domain of the NW Iberian margin 

Three layers were defined in the ENACW domain at the NW Iberian shelf-

break: the upper 150 m (σ < 26.95), the middle 150-300 m (26.95 < σ < 27.10) 

and the lower 300-500 m (σ > 27.10). The contribution of DOM to nutrient 

mineralization is only significant in the upper 150 m, accounting for 17 ± 4% 

of the nitrogen mineralization. Downwards, the solubilization of fast sinking 

particles is getting more importance, generating solubilization rates higher than 

mineralization in the lower layers. The contribution of DOM to oxygen 

consumption in ENACW increases significantly on the shelf, from 20 to 30%. 

In these waters, about 20% of the regenerated inorganic nutrients are due to 

the mineralization of suspended organic matter and more than 50% to the 

mineralization of large, fast sinking particles. The C/N molar ratio of the 

mineralised DOM in the ENACW domain of the shelf-break (6 ± 2) is similar 

to the values observed at the shelf (7.3 ± 0.7) and rías (6.3 ± 0.8). It is 

noticeable that these ratios are not significantly different from the ratio of the 

products of synthesis and early degradation of marine phytoplankton. 

2. Fractionation during organic matter mineralization in the NW Iberian 

margin 

 The biochemical composition of the products of early degradation of 

dissolved, suspended and sinking organic matter has been approached by 

introducing the biogeochemical component of an inverse water masses analysis 

into a stoichiometric model. As a result, C, N and P anomalies due to 

mineralization were converted into proteins, lipids, phosphorus compounds 

and carbohydrate anomalies. In the ENACW domain, fractionation during the 

mineralization of biogenic materials occurs, with N and P compounds being 



General Conclusions 

227 

preferentially consumed, as compared with the Redfield formula, in the upper 

layer, and C compounds (carbohydrates and lipids) in the lower layer. Over the 

shelf, proteins are preferentially oxidized in the sinking organic matter pool, 

carbohydrates in the dissolved organic matter pool and lipids in the suspended 

organic matter pool, as compared again with the Redfield formula. 

3. Carbohydrates, a main carbon pool in the NW Iberian margin 

Carbohydrate changes are linked to bulk organic carbon changes within the 

time scale of the sampling frequency (2 wk; r > +0.82, n = 298, p < 0.001). The 

contribution of dissolved carbohydrates to the dissolved organic carbon 

(DOC) changes is about 30% in the shelf and the ría. The surface DOC excess 

is richer in carbohydrates than the bulk DOC, this percentage increasing from 

12-14% in the bulk DOC to 30-40% in the DOC excess, indicating that 

dissolved carbohydrates are a main component of the freshly produced 

material in comparison with aged ENACW, where only 9% of DOC are 

dissolved carbohydrates. The carbohydrate excess at the surface layer presentes 

a higher percentage of polysaccharides than the bulk carbohydrates pool: 80-

90% of the carbohydrates excess are polysaccharides, suggesting that the 

material accumulated in the surface layer is essentially semi-labile. The average 

flushing time of the Ría de Vigo, 11 days, is compatible with the accumulation 

of semi-labile material in the surface layer. 

4. Dynamics of dissolved aromatic amino acids 

The fluorescence of dissolved free amino acids (DFAA) and dissolved 

oxygen were measured in parallel 24 h light and dark incubations, for the first 

time in a coastal upwelling system. A significant linear correlation between the 

gross primary production (Pg) and the net production of DFAA in the light, 

points to the quick consumption of dissolved protein-like materials at a net 

average rate of -1.4 ± 0.2 ppb Trp d-1, which accumulates in the water column 

only when Pg exceeds 80 ± 20 µmol kg-1d-1. Therefore, DOM fluorescence can 
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be used as a tracer for labile DOM (DFAA) production/consumption. 

Fluorescence distributions indicate that DFAA can be produced either in the 

surface, as demonstrated by the incubation experiments, or at the bottom layer. 

Protein-like fluorescence accumulated 1) in the photic layer, because of 

phytoplankton exudation or cell lysis; and 2) in the bottom nepheloid layer 

(BNL), after in situ production by intense microbial activity and/or after release 

from the pore waters of the pelagic sediment. The contribution of DFAA 

fluorescence to the DOC pool (FDOMT/DOC) in the upper layers of the ría 

follows a seasonal pattern, increasing significantly from a winter minimum to 

an autumn maximum. 

5. Production of humic substances as a by-product of microbial oxidation 

processes 

Significant changes have been observed in the dissolved oxygen content and 

the fluorescence of humic substances after 24 h dark incubations in the coastal 

upwelling system of the Ría de Vigo. In one day, the system showed net 

production of humic substances (0.0-0.4 ppb QS d-1), which were positively 

correlated with the respiration rates with a net ratio of 0.027 ± 0.003 ppb QS 

(µmol kg-1 O2)-1, suggesting a daily synthesis of marine humics as a by-product 

of the bacterial respiration of DOM. Consequently, the fluorescence of marine 

humic substances revealed as a suitable indicator of nutrient mineralization 

processes. The three distinct environments sampled during this study 

presented similar ∆FDOMM/∆O2 ratios as the incubation experiments: -0.024 

± 0.003, -0.025 ± 0.002 and -0.019 ± 0.007 ppb QS (µmol kg-1 O2)–1 from the 

Ría de Vigo, the open shelf and the shelf-break. About 10% of the degraded 

organic carbon is converted into humic substances as a by-product of 

microbial oxidation processes in the three study sites. Thus, DOM 

fluorescence can be used as a tracer for microbial decomposition processes. 

Fluorescence distributions suggest that humic acids are produced in subsurface 
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waters by in situ mineralization, especially in the BNL and the sediments. In this 

work, we found that humic substances contribute up to 90% of the DOC 

excess in the BNL, an amount that demands future process orientated studies. 

The contribution of humic fluorescence to the DOC pool (FDOMM/DOC) in 

the lower layer of the ría followed the same seasonal pattern than the 

FDOMT/DOC ratio in the upper layer: increasing significantly from a winter 

minimum to an autumn maximum. 

6. Seasonality of the photodegradation of humic substances 

The consumption of humic substances in the light minus dark incubations 

was inversely correlated with the net production of humic substances in the 

dark, indicating a rapid photodegradation of recently produced marine humic 

substances as a by-product of microbial respiration. Incubation experiments 

demonstrated that daily photodegradation rates and residual humic 

fluorescence levels followed a seasonal pattern characterised by a marked 

autumn maximum, either in the river waters (65% photobleaching per day) or 

in the ría (90 and 55% photobleaching per day in bottom and surface waters, 

respectively). It is noticeable that the bottom seawater, enriched in marine 

humic substances, is photodegraded faster than the surface seawater and the 

riverine water. Fluorescence distributions suggest that humic acids are 

photodegraded in the upper layer by the sunlight. Due to the upwelling of 

bottom waters, the humic material produced during bacterial respiration in the 

bottom layer is quickly degraded in the surface layer by photochemical 

processes. Despite these processes, in the middle ría was accumulated the 

humic material produced in the inner ría (San Simón Bay, site where strong 

mineralization processes promote higher humification processes that exceed 

photodegradation). On the contrary, photodegradation is the dominant process 

in the transit of the ría surface waters towards the shelf, where net 

consumption of humic substances is observed. 
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CONCLUSIONES (en castellano) 

El conocimiento actual del papel que juega la materia orgánica disuelta en los 

sistemas de afloramiento costero es aún exiguo, y restringido mayoritariamente 

al margen NO Ibérico. Un muestreo hidrográfico intensivo fue realizado en 

esta zona desde mayo 2001 hasta abril 2002. Se muestrearon semanalmente tres 

estaciones, representativas de los tres diferentes ambientes que existen en el 

sistema de afloramiento del NO Ibérico: 1) los amplios (>2.5 km2) entrantes 

costeros en forma de V, altamente productivos, y conocidos como “Rías 

Baixas”; 2) la plataforma costera adyacente; y 3) la zona costera de transición 

del borde de la plataforma del NO Ibérico. 

C, N y P, en sus formas disueltas y particuladas, orgánicas e inorgánicas, 

fueron determinadas en profundidades fijas en los tres lugares de estudio. Al 

mismo tiempo se han medido concentraciones de mono- y polisacáridos y la 

fluorescencia de sustancias pseudo-proteicas y pseudo-húmicas, con el objetivo 

de caracterizar la materia orgánica lábil (monosacáridos, aminoácidos libres), 

semilábil (polisacáridos) y refractaria (sustancias húmicas). 

En el margen del NO Ibérico se encuentran dos ramas del Agua Central 

Atlántica Nororiental (ENACW) que son modificadas en superficie por los 

aportes continentales y el intercambio de calor con la atmósfera. La 

combinación de un análisis inverso de masas de agua, capaz de separar las 

componentes física y biogeoquímica de las variables medidas en el dominio del 

ENACW, con un modelo estequiométrico nos ha permitido estudiar los 

patrones espaciales y temporales de la mineralización de nutrientes, i.e., la 

contribución de los distintos grupos de materia orgánica disuelta (disuelto, en 

suspensión y en sedimentación) a la respiración microbiana de la materia 

orgánica mineralizada. 

Como complemento se ha realizado un estudio orientado a procesos de corta 

escala (frecuencia de 1/2 semana) en la Ría de Vigo durante el invierno, 
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primavera, verano y otoño 2002, buscando la cuantificación de las tasas de 

reactividad microbiana y fotoquímica de la materia orgánica disuelta. 

1. La materia orgánica disuelta contribuye significativamente al consumo 

de oxígeno en el dominio de las aguas centrales en el margen NO 

Ibérico 

Se han definido tres capas en el dominio de las aguas centrales: la primera 

abarca los 150 m superiores (σ < 26.95), la segunda entre 150 y 300 m (26.95 < 

σ < 27.10) y la tercera entre 300 y 500 m (σ > 27.10). La contribución de la 

materia orgánica disuelta a la mineralización de nutrientes es significativa solo 

en los primeros 150 m, contribuyendo al 17 ± 4% de la mineralización de 

nitrógeno. En las capas inferiores la solubilización de las partículas en 

sedimentación adquiere mayor importancia, generando tasas de solubilización 

mayores que las de mineralización. Sin embargo el aporte de la materia 

orgánica disuelta al consumo de oxígeno en las aguas centrales aumenta 

significativamente en la plataforma costera, donde adquiere valores del 20 al 

30%. En esta masa de agua, alrededor de un 20% de los nutrientes inorgánicos 

regenerados son debidos a la mineralización de la materia orgánica en 

suspensión y más de un 50% a la mineralización de las grandes partículas en 

sedimentación. Por otro lado, la relación C/N de la materia orgánica disuelta 

mineralizada en el dominio de las aguas centrales del borde de plataforma (6 ± 

2) es similar a los valores observados en la plataforma (7.3 ± 0.7) y en la ría (6.3 

± 0.8). Estas relaciones no son significativamente distintas de la relación C/N 

de los productos de síntesis y degradación temprana del fitoplancton marino. 

2. Fraccionamiento durante la mineralización de la materia orgánica en el 

margen NO Ibérico 

Se ha estimado la composición bioquímica de los productos de degradación 

temprana de la materia orgánica disuelta, en suspensión y en rápida 

sedimentación con la implementación de un análisis inverso de masas de agua y 
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un modelo estequiométrico. Como resultado, las anomalías de C, N y P 

debidas a la mineralización fueron convertidas en anomalías de proteínas, 

lípidos, compuestos de fósforo y carbohidratos. Así, en el dominio de las aguas 

centrales existe un fraccionamiento durante la mineralización de los materiales 

biogénicos, siendo los compuestos de N y P consumidos preferentemente, i.e., 

en comparación con la fórmula de Redfield, en la capa superficial, y los 

compuestos de C (carbohidratos y lípidos) en las capas más profundas. A lo 

largo de la plataforma las proteínas son preferentemente oxidadas en el 

material orgánico en sedimentación, los carbohidratos en el material orgánico 

disuelto y los lípidos en el material orgánico en suspensión, comparándolos de 

nuevo con los valores de la fórmula de Redfield. 

3. Carbohidratos, un importante componente de carbono en el margen del 

NO Ibérico 

Los cambios en la concentración de carbohidratos están acoplados a los 

cambios en el conjunto total del carbono orgánico en la escala de tiempo de la 

frecuencia de muestreo (2 semanas; r > +0.82, n = 298, p < 0.001). Así, 

aproximadamente el 30% de los cambios observados en el carbono orgánico 

disuelto es debido a los carbohidratos disueltos. Por otro lado, la acumulación 

superficial de carbono orgánico disuelto está especialmente enriquecida en 

carbohidratos, incrementándose el porcentaje de azúcares de un 12-14% a un 

30-40%, lo que indica que los carbohidratos disueltos son el componente 

principal del material recientemente producido en comparación con las 

envejecidas aguas centrales, donde solo el 9% del carbono orgánico disuelto 

son carbohidratos disueltos. El exceso superficial de carbohidratos presenta, 

además, una mayor contribución de polisacáridos (80-90%), lo que sugiere que 

este material es esencialmente semilábil. Además, el tiempo medio de 

renovación del agua de la Ría de Vigo, 11 días, lo que totalmente compatible 

con la acumulación de material semilábil en la superficie. 
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4. Ciclo de los aminoácidos aromáticos disueltos 

Se midieron paralelamente, en incubaciones de 24 h (luz y oscuridad), y por 

primera vez en un sistema de afloramiento costero, la fluorescencia de los 

aminoácidos disueltos y el oxígeno disuelto. Los resultados mostraron una 

correlación lineal significativa entre la producción primaria bruta y la 

producción neta de aminoácidos disueltos en la luz, lo que indica un rápido 

consumo de los materiales pseudo-proteicos a una tasa media de -1.4 ± 0.2 ppb 

Trp d-1, que solo se acumulan en la columna de agua cuando la producción 

primaria bruta es superior a 80 ± 20 µmol kg-1d-1. Por lo tanto, la fluorescencia 

de la materia orgánica disuelta puede ser usada como un trazador de 

producción y/o consumo de materia orgánica lábil. Las distribuciones de esta 

fluorescencia indican que los aminoácidos disueltos pueden ser producidos 

tanto en la superficie, como se ha demostrado en los experimentos de 

incubación, como en el fondo. La fluorescencia pseudo-proteica es así 

acumulada 1) en la capa fótica, debido a la exudación del fitoplancton o a la 

lisis celular; y 2) en el lecho nefeloide, debido a una producción in situ por una 

intensa actividad microbiana y/o a la liberación desde las aguas intersticiales de 

los sedimentos pelágicos. La contribución de la fluorescencia de los 

aminoácidos disueltos al conjunto del carbono orgánico disuelto en la capa 

superficial de la ría presenta un patrón estacional, aumentando 

significativamente desde un mínimo invernal a un máximo otoñal. 

5. Producción de sustancias húmicas como subproducto de los procesos 

de oxidación microbiana 

Se han observado cambios significativos en el contenido de oxígeno disuelto 

y en la fluorescencia de las sustancias húmicas al cabo de incubaciones de 24 h 

en oscuridad en el sistema de afloramiento costero de la Ría de Vigo. En un día 

el sistema mostró una producción neta de sustancias húmicas (0.0-0.4 ppb QS 

d-1), la cual correlaciona con las tasas de respiración, con una relación de 0.027 
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± 0.003 ppb QS (µmol kg-1 O2)-1, sugiriendo la síntesis diaria de sustancias 

húmicas como subproducto de la respiración bacteriana de la materia orgánica 

disuelta. Así, la fluorescencia de estos compuestos constituye un indicador 

adecuado de los procesos de mineralización de nutrientes. Las correlaciones de 

las anomalías de fluorescencia de sustancias húmicas y oxígeno de los tres 

ambientes muestreados durante este estudio mostraron pendientes similares a 

las de los experimentos de incubación: -0.024 ± 0.003, -0.025 ± 0.002 y -0.019 

± 0.007 ppb QS (µmol kg-1 O2)–1 para Ría de Vigo, la plataforma costera y el 

borde de plataforma, respectivamente. Alrededor de un 10% del carbono 

orgánico disuelto mineralizado es convertido en sustancias húmicas como 

subproducto de los procesos de oxidación microbiana. En consecuencia, la 

fluorescencia de las sustancias húmicas puede utilizarse como trazador de 

procesos de descomposición microbiana. Las distribuciones de esta 

fluorescencia sugieren que los compuestos húmicos son producidos en la 

columna de agua por mineralización in situ, especialmente en los sedimentos y 

en el lecho nefeloide, donde las sustancias húmicas contribuyen en más de un 

90% del carbono orgánico disuelto acumulado. La distribución de la 

contribución de la fluorescencia húmica al carbono orgánico disuelto en las 

capas profundas de la ría presenta un incremento significativo desde el invierno 

al otoño. 

6. Patrón estacional de la fotodegradación de las sustancias húmicas 

El consumo neto de sustancias húmicas en las incubaciones de luz menos las 

de oscuridad correlaciona inversamente con la producción neta de sustancias 

húmicas en oscuridad, sugiriendo una rápida fotodegradación de las sustancias 

húmicas formadas recientemente como subproductos de la respiración 

microbiana. Las incubaciones demuestran que las tasas de fotodegradación y 

los niveles de fluorescencia residual presentan un patrón estacional 

caracterizado por un marcado máximo otoñal, tanto en muestras de río (65% 
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de material fotodegradado por día) como en muestras de la ría (90 y 55% de 

material fotodegradado por día en aguas de fondo y de superficie, 

respectivamente). Es significativo el hecho de que las aguas del fondo de la ría, 

enriquecidas en sustancias húmicas marinas, se fotodegradan más rápidamente 

que las aguas de superficie de la ría y el río. Las distribuciones de fluorescencia 

húmica sugieren que los ácidos húmicos son fotodegradados en la superficie 

por la luz solar. El afloramiento de las aguas más profundas de la ría provoca 

que el material producido durante la respiración bacteriana en el fondo sea 

rápidamente fotodegradado en la superficie mediante procesos fotoquímicos. A 

pesar de estos procesos, en el medio de la ría se observa la acumulación del 

material húmico producido en el interior de la ría (en la bahía de San Simón, 

donde ocurren intensos procesos de mineralización que conllevan  procesos de 

humificación más intensos que los de fotodegradación). Por el contrario, los 

procesos fotoquímicos son los dominantes en el transito desde la superficie de 

la ría hasta la plataforma, donde se observa un consumo neto de sustancias 

húmicas. 
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