
Sensors 2015, 15, 611-634; doi:10.3390/s150100611 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Analysis of Discrimination Techniques for Low-Cost  
Narrow-Band Spectrofluorometers 

Ismael F. Aymerich 1,2,*, Albert-Miquel Sánchez 1, Sergio Pérez 1 and Jaume Piera 1 

1 Physical and Technological Oceanography Department, Institute of Marine Sciences (ICM-CSIC), 

Pg. Marítim de la Barceloneta, 37-49, Barcelona 08003, Spain;  

E-Mails: amsanchez@icm.csic.es (A.-M.S.); slezcano@gmail.com (S.P.); jpiera@icm.csic.es (J.P.) 
2 AtlantTIC, University of Vigo (UVigo), Maxwell Street, Vigo 36310, Spain 

* Author to whom correspondence should be addressed; E-Mail: ismael.aymerich@gmail.com;  

Tel.: +34-93-2309500; Fax: +34-93-2309555. 

Academic Editor: Vittorio M.N. Passaro 

Received: 7 October 2014 / Accepted: 23 December 2014 / Published: 30 December 2014 

 

Abstract: The need for covering large areas in oceanographic measurement campaigns and 

the general interest in reducing the observational costs open the necessity to develop new 

strategies towards this objective, fundamental to deal with current and future research  

projects. In this respect, the development of low-cost instruments becomes a key factor, but 

optimal signal-processing techniques must be used to balance their measurements with  

those obtained from accurate but expensive instruments. In this paper, a complete  

signal-processing chain to process the fluorescence spectra of marine organisms for  

taxonomic discrimination is proposed. It has been designed to deal with noisy, narrow-band 

and low-resolution data obtained from low-cost sensors or instruments and to optimize its 

computational cost, and it consists of four separated blocks that denoise, normalize,  

transform and classify the samples. For each block, several techniques are tested and  

compared to find the best combination that optimizes the classification of the samples. The 

signal processing has been focused on the Chlorophyll-a fluorescence peak, since it  

presents the highest emission levels and it can be measured with sensors presenting poor 

sensitivity and signal-to-noise ratios. The whole methodology has been successfully  

validated by means of the fluorescence spectra emitted by five different cultures. 
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1. Introduction 

Chlorophyll (Chl) fluorescence techniques have been widely used to assess the taxonomic composition 

of microscopic photosynthetic organisms (phytoplankton) in order to avoid the time constraints imposed 

by the microscopic analysis of water samples [1]. The basis of fluorometric taxonomic discrimination 

relies in the specific features of the excitation and emission spectra of each phytoplankton taxonomic 

group [1,2], and multiple approaches have been used to determine such differences. For instance, the 

spectral deconvolution analysis, used in [3] to discriminate between two different organisms, or the  

self-organizing maps (SOM) technique, applied in [4] to classify seven strains from different taxonomic 

groups of phytoplankton, among others. Nevertheless, those techniques have mostly been tested with 

accurate and precise data obtained with expensive instruments. This involves an important limitation, 

since the observational costs spent in infrastructure and instruments in order to obtain high volumes of 

accurate data in shallow or open water is extremely high, and consumes most part of the money budget 

available in a research project. In this regard, the concept of “citizen science” has arisen as an effective 

methodology to mitigate the expenses while covering large areas with high temporal and spatial resolution 

measurements [5], but this concept only makes sense through the development of extreme low-cost  

sensors, as those presented in [6–12]. Reportedly, their accuracy (sensibility, resolution and  

signal-to-noise ratio (SNR)) is not comparable to the most precise (and consequently, expensive)  

alternatives, but they present a considerable potential if a correct pre-processing step is performed. 

Therefore, there is an increasing need for the development of signal-processing strategies able to suitably 

process the noisy and low-accurate data obtained from instruments based on low-cost sensors. 

In this paper, the analysis of the discrimination skills of a potential low-cost hyperspectral  

fluorescence instrument presenting a lower performance in terms of sensibility, SNR and processing 

capabilities is presented. To this end, three different techniques based on pattern recognition are tested, 

evaluated and compared to find which one presents the optimal performance considering two main  

constraints. First, a successful taxonomic discrimination must be obtained even when using as primary 

information only the highest fluorescence emission levels (if the SNR of the sensor is extremely low, 

only those levels would be reliable), which correspond to the Chl fluorescence peak (around the  

680 nm). This consideration differs from [3,4] where the whole optical spectra bandwidth is analyzed, 

and it is actually feasible assuming that the fluorescence signal in this wavelength range is not only due 

to the Chl-a emission peak, but also the Chl-b, -c and -d emission peaks along with additional complement 

pigments (such as the phycocyanin, whose fluorescence emission is located in the 630-to-660-nm band). 

Besides, this consideration relaxes the needed sensor’s spectra bandwidth performance. Second, the 

computational cost needed to develop the algorithms must be optimally reduced in order to decrease the 

electronic hardware requirements needed to implement the instrument (which will directly influence on 

its economic cost). In order to deal with these two requirements and considering high levels of noise in 

the measurement samples, three signal-processing blocks previous to the classification one have been 

established, accounting for denoising, normalization and transformation of the measured data. The  
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denoising block reduces the noise introduced by the sensor; the normalization block equals the emission 

contribution measured at different growth states, which improves the discrimination outcomes; and the 

transformation block transforms and reduces the data dimension, improving the computational-cost  

efficiency. Thereby, the most convenient technique in each of these three blocks, which, in combination 

with the best classification algorithm, provides an optimal taxonomic discrimination even when dealing 

with the two measurement constraints described above, is sought. 

In order to test the performance of different algorithms in the presented signal-processing chain, the 

fluorescence spectra of five isolated cultures have been measured at different growth stages.  

Hyperspectral low-cost fluorescence instruments for in-situ or in-vivo measurements of phytoplankton 

responses have not been developed yet. Fluorescence sensors or instruments based on low-cost technology 

are presented in [6,10–12], but their measurements do not exhibit a hyperspectral performance.  

Therefore, measurements have been firstly obtained with an accurate fluorescence instrument and  

degraded afterwards in terms of resolution and SNR to emulate the potential low-cost sensor  

performance. Those measurements are then processed in each block, where well-known methods such 

as moving average, wavelet or principal components, are put into practice along with other algorithms 

developed in this study specifically designed for this work. This new approach, mainly based on a  

reliable signal-processing chain, considerably reduces the sensor’s requirements (spectra bandwidth and 

computational cost) needed to perform a suitable classification. Besides, its conclusive results  

constitute an important stimulus to develop new and optimal low-cost fluorometers enhancing their  

discrimination capabilities and encouraging marine research groups to continue studying this field by 

considerably reducing the instrumentation costs. 

This paper is structured as follows. A brief introduction to the algorithms used in this study is  

presented in Section 2. In Section 3, measurements from five phytoplankton cultures from different  

taxonomic groups are used to perform a comparison of the different algorithms. The results presented in 

this section were processed first with the original data, and later with a degraded version of the  

measurements in order to simulate the performance of a low-cost sensor. Section 4 outlines the  

conclusions derived from this work. 

2. Processing Techniques 

Figure 1 shows the block diagram of the four-step signal-processing chain. Three steps before  

addressing a classification method, where the taxonomic discrimination is performed, are proposed in 

order to optimize the processing efficiency. Any electro-optical sensor is a noisy source mainly due to 

the shot and thermal noise, and this is emphasized in low-cost sensors, which usually present a lower 

performance. Denoising techniques are firstly applied to mitigate the noise effect, considering that a 

careful attention must be paid in order to avoid the loss of information due to an excessive smoothing. 

The fluorescence intensity depends upon the cell concentration, the biological growth state, the  

temperature conditions and the incident light, among other factors, and measurements of the same  

culture may present significant range variations. Since the classification techniques are usually based on 

the Euclidean distance between the sample under test and a reference, their objective functions will not 

appropriately discriminate the samples if such variations are presented within the same culture. Therefore, 

all measurements must be normalized in a second step in order to make the contribution of their  

particular features equivalent. Finally, the transformation techniques that adapt the data to increase the 
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discrimination capacity of the classification algorithms, and the reduction of dimension methods that 

increase the efficiency of the learning algorithms, are included in the third step. In the latter, if the  

classification techniques have to deal only with those wavelengths that are more representative of the 

features that characterize the culture (obviating redundant information), the computational cost is  

considerably reduced. 

 

Figure 1. The four-step signal-processing chain. 

The whole set of techniques used in each step are presented in Table 1, and described in the following 

subsections. Widely known methods such as moving average, principal components or ݇-neighbors are 

used along with other techniques developed and adapted to improve the taxonomic analysis proposed in 

this paper. Moreover, the complete signal-processing chain has been centered in the Chl-a fluorescence 

peak (around 680 nm), which largely simplifies the computational cost that the analysis of the whole 

hyperspectral data would need.  

Table 1. Algorithms of the four-step signal-processing chain. 

Denoising Normalization Transformation Classification 

WMA Min-Max Derivative ݇-neighbors 

Savitzky-Golay GSM * Genetic Algorithm * SOM * 

Wavelet * SNV PCA GCS 

 Modified SBN *   

* Algorithms modified or developed by the authors. 

2.1. Denoising 

Optical detectors are subjected to several influences such as optical shot noise (which follows a  

Poisson distribution), thermal noise (Poisson distribution), read noise (approximately Gaussian),  

background light from blackbody radiation (Plank distribution), flicker noise (pink power distribution) 

and technical noise due to various imperfections (which do not follow a specific distribution). The  

noise-floor level in a measurement is determined by the thermal and the read noises, while the shot noise 

dominates at high signal values. In a low-performance sensor, it is expected to have significant levels of 

noise and, in consequence, a poor SNR. Therefore, a denoising block is needed as a first step for the 

proposed processing chain. Three different techniques have been considered to smooth the measurements 

acquired for this study (see the first column of Table 1). These techniques are briefly described below.  
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2.1.1. The Weighted Moving Average Method 

The weighted moving average (WMA) [13] is the most widely used technique for denoising. In it, 

the output averaged data vector (ݕ ) can be computed as the weighted mean of the nearest 2 ·   

wavelengths (  wavelengths for each side) for each value of the noisy raw data (ݔ ), and can be  

expressed as: 

()ݕ = 1∑ ߱()
ୀି ෍ ߱()ݔ(− )

ୀି  (1)

being ߱  the weighting factor vector and   the wavelength. The particular case where all weighting 

factors are equal to one is usually known as the standard moving average.  

2.1.2. The Savitzky-Golay Method 

The Savitzky-Golay technique [13] computes a local polynomial regression to approximate the 

nearest noisy samples using the least squares method, as: 

()ݕ = ෍ ܾ଴()ݔ(− )

ୀି  (2)

being ܾ଴ the steady-state Savitzky-Golay filter which coefficients are determined using the least-squares 

fit. The main advantage of this approach is that it tends to preserve distribution features such as relative 

maxima, minima and width, usually flattened with the WMA technique at the expense of not removing 

as much noise as the WMA. 

2.1.3. The Wavelet Method 

The wavelet denoising [14] is a more refined method that separates the frequency content of the 

original signals into different data structures. The low-frequency components (approximation  

coefficients) keep the global features of the signal, while the high-frequency components (detail  

coefficients) retain the local features. For discrete data, it can be computed as: ݔ෤(, ) = ෍ ()ݔ 1√2ߖቆ− 22 ቇஶ
ୀିஶ  (3)

being ߖ  the mother wavelet function, ݔ෤  the discrete wavelet transform (DFT), and   a location  

parameter. A fast algorithm to compute the discrete wavelet transform is presented in [15]. Soft and hard 

threshold techniques [16,17] can be used to reduce the noise, and the threshold level is selected as [16]: ݐℎݎ = ඥ2 log(݊) (4)

where ݊ is the number of samples and  is a rescaling factor estimated from the noise level present in 

the signal. The estimation of the noise level can be based on the first level of the detail coefficients (ܦଵ) 

as [14]: 

 = median(|ܦଵ|)0.6745  (5)
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Finally, by applying the inverse wavelet transform, a smoothed version of the original signal is  

recovered. The advantage of this method relies on a denoising procedure that does not affect the sharp 

structures of the original data.  

Figure 2 shows an example of a three-level wavelet decomposition. First, the original signal ݔ yields 
one series of approximation coefficients ܣଷ and a set of three distinct detail coefficient signals ܦଵ,ଶ,ଷ. 

Then, either a soft or a hard threshold methodology is applied on the detail coefficients. In a soft threshold 

(Figure 3a), coefficients smaller than the threshold ‘ݐℎݎ’ are suppressed while the rest of the coefficients 

are shrunk an equivalent of the threshold value [15]. In a hard threshold (Figure 3b), coefficients smaller 

than the threshold ‘ݐℎݎ’ are set to 0 while the rest of the coefficients remain intact. The denoised profile ݔ′  is finally recovered from the transformed coefficients by applying the inverse discrete wavelet  

transform (IDWT). 

 

Figure 2. Schematic diagram of the three steps of the wavelet method: multilevel  

decomposition, thresholding, and multilevel reconstruction. Thresholding is obtained via (a) 

soft threshold techniques or (b) hard threshold techniques. 

 

Figure 3. (a) Fluorescence measurements of a particular culture at different growth states; 

(b) Fluorescence at 660 nm and 680 nm related to each fluorescence maximum, and linear 

regression for the two cases. 
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2.2. Normalization 

Once the measurements have been denoised, the next step is the normalization. The second column 

of Table 1 shows the normalization methods considered in this paper and described below. 

2.2.1. The Min-Max Method 

The Min-Max is a simple method of fitting the fluorescence curve into a fixed range. Minimum and 

maximum values (ܽ and ܾ, respectively) become equal for all the samples, and the normalized curve is 

obtained with: ݕ() = ܽ + ()ݔ) − ܾ)((ݔ)݊݅݉ − (ݔ)ݔܽ݉(ܽ − (ݔ)݊݅݉  (6)

2.2.2. The Growing Spectra Modeling Method 

The growing spectra modeling (GSM) is a new method that exploits the simplicity of the Min-Max 

normalization but uses the information of all the values at each wavelength simultaneously in order to 

increase its robustness. In it, each wavelength fluorescence value of a particular culture and at a  

specific growth state is compared with its fluorescence maximum. Measurements on different cultures 

have shown that this relationship is linear at all wavelengths, which allows obtaining an accurate  

approximation using their linear regression coefficients, as: ݈ܨ(݉) = ܽ݉+ ܾ (7)

being ܽ  and ܾ  the linear regression coefficients of the wavelength  , and ݈ܨ  its fluorescence 

evaluated at ݉. Figure 3a shows an example of the smoothed fluorescence measurements of a particular 

culture at different growth states. As can be observed, the fluorescence maximum presents an important 

level variability according to different growth states. When all the measurements on a single wavelength 

are plotted against its fluorescence maximum, a linear relationship, as shown in Figure 3b for two 

particular wavelengths (660 nm and 680 nm), is obtained. The linear regression has also been plotted for 

these two cases, showing a decrement on the slope when moving away from the maximum. In general, 

a unitary slope is obtained around 680 nm, and a close-to-zero slope around the fluorescence minimum. 

The model finally uses the linear regression coefficients to compute the normalization factor for each 

measurement and wavelength. This is done by evaluating Equation (7) at two point values, the  

maximum fluorescence in that measurement (obtaining ݈ܨଵ) and the desired (or normalized) maximum 

fluorescence (obtaining ݈ܨଶ ). The coefficient obtained from the relationship ݈ܨଶ ⁄ଵ݈ܨ   is the 

normalization factor used to normalize the initial data value. 

2.2.3. The Standard Normal Variate Method 

The standard normal variate (SNV) [18,19] is a robust method against noisy data. It is based on the 

mean and variance (ߤ and ߪଶ, respectively) matching of all the measured samples, as: 
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()ݕ = ()ݔ) − ߤ + ଶߪ√௧௢௧ଶߪ௧௢௧)ඥߤ  (8)

being ߤ௧௢௧ and ߪ௧௢௧ଶ  the averaged mean and variance of the whole set of samples. A typical approximation 

is done considering ߤ௧௢௧ = 0 and ߪ௧௢௧ଶ = 1. 

2.2.4. The Modified Scale-Based Normalization Method 

The three previous methods significantly distort those signals that are more different from the  

general pattern, leading, in some cases, to a significant deformation of the small details that characterize 

the nature of the sample. A more general and flexible version of the SNV method is the scale-based 

normalization (SBN) introduced in [18]. When applying the wavelet decomposition to a signal, its  

variance is also faithfully decomposed, allowing a more precise scaling. Variance normalization to  

௧௢௧ଶߪ) 1 = 1) and mean to 0 (ߤ௧௢௧ = 0) is performed using only those wavelets that do not contain the 

high-frequency noise, as: ݕ() = ௜()ܦ + ⋯+ ௜ଶߪ௝()ටܦ + ⋯+ ௝ଶߪ  
(9)

being ܦ௜, … , ݆ ௝()  theܦ − ݅  noise-free detail functions of the wavelet decomposition (obtained with 

Equation (3)), and ߪ௜ଶ, … ,  ௝ଶ their variances. The SNV method constitutes a special case of Equation (9)ߪ

by using	݅ = 1 and ݆ =   .ଶ݊ (being ݊ the number of discrete points of the original signal)݃݋݈

In this paper, this method has been extended and the normalization of the mean and variance in the 

approximation coefficients case, and only the variance in the detail coefficients case (since their mean 

is zero), is done using normalization coefficients different from 0 and 1, respectively. Thereby, the  

information useful for further classification contained in the relationship between the different levels is 

conserved. In order to select suitable normalization coefficients, the relationship between the mean and 

the standard deviation of the approximation and detail coefficients and their fluorescence maximum is 

firstly obtained. Several measurements on different cultures have shown that this relationship is linear, 

as seen in the example of Figure 4. In the standard deviation case (Figure 4b), the relationship is  

extremely linear with a decreasing slope as the detail level decreases. A higher dispersion is obtained in 

the mean case (Figure 4a), even though a linear relationship can still be considered. Then, the linear 

regressions for all plots are obtained as it was done with Equation (7) (also shown in Figure 4), and they 

are evaluated at the desired (or normalized) maximum fluorescence (ߤ஽ and ߪ஽). Finally, each wavelet 

level is independently normalized using (8) with ߪ௧௢௧ଶ = 1 and ߤ௧௢௧ = 0, and adjusted as: ܦ/ܣ௜ௌெ஻() = ௜ௌே௏()ܦ/ܣ · ஽௜ߪ + ஽௜ (10)ߤ

being ܦ/ܣ௜ the ݅ݐℎ approximation/detail coefficient. 
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Figure 4. (a) Mean (ߤ ) plotted against fluorescence maximum for the approximation  

coefficients at level 6, and (b) standard deviation ( ߪ ) plotted against fluorescence  

maximum for the approximation coefficients at level 6 and detail coefficients at levels 3–6, 

all obtained from fluorescence measurements on an actual phytoplankton culture. The linear 

regression is also shown for all cases.  

2.3. Transformation and Reduction of Dimension 

Before addressing the classification problem, the transformation and dimensionality reduction step is 

presented. The third column of the Table 1 shows the different approaches proposed in this paper. A 

brief description of these techniques is presented below. 

2.3.1. The Derivative Method 

The derivative method [20] is a transformation method that computes the derivative of the signal for 

discrimination purposes. A suitable analysis of this derivative is able to highlight subtle features from 

the original spectra.  

2.3.2. The Genetic Algorithm Method 

The genetic algorithm [21] is a heuristic-search method used to estimate those wavelengths that are 

more representative of the significant features that characterize a culture in order to reduce the data 

dimension. It is based on the process of natural selection and exploits the principles of evolution to find 

the optimal results. Its performance can be summarized as follows. First, a vector of solutions (each 

solution contains a reduced number of wavelengths) is randomly generated. Then, the complete vector 

is evaluated by the fitness function. This is done by using the fluorescence information contained only 

in those wavelengths given by each solution in a classification technique and verifying if a suitable 

discrimination is obtained. Better results give a better score to that solution. 

After the evaluation, the algorithm may stop if either a maximum number of generations (each  

generation is a new vector of solutions) or a satisfactory fitness level has been reached. If the  

convergence condition is not fulfilled, the best solutions are selected and separated. Part of these elite is 

then recombined (crossover) and randomly mutated to provide genetic diversity and broaden the search 

space. The new set of solutions is reevaluated and inserted again into the solutions’ vector, which  
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completes the cycle. After convergence is achieved, the algorithm presents the best solution it has been 

able to find. Figure 5 summarizes the performance of the genetic algorithm. 

 

Figure 5. Block diagram of the genetic algorithm performance. 

2.3.3. The Principal Component Analysis Method 

The principal component analysis (PCA) method [22] is an unsupervised method that uses an  

orthogonal transformation to convert the covariance matrix of the measured data into a set of linearly 

uncorrelated variables called principal components. This method highlights the similarities and differences 

between measurements and allows to clearly discriminating the least significant components, which can 

be discarded reducing thus the number of dimensions without much loss of information. 

2.4. Classification 

Classification algorithms can be grouped into parametric and non-parametric techniques. For  

parametric classifiers the data are assumed to follow a statistical distribution, which may be a major 

drawback if the data do not meet this condition. Furthermore, these algorithms are more likely to suffer 

from the problem of the curse of dimensionality or Hughes phenomenon [23] in hyperspectral  

classification. Therefore, only non-parametric methods for taxonomic discrimination are shown in the 

fourth column of Table 2. They are described below. 

Table 2. Taxonomic groups of the five cultures. 

Species Division Abbreviation 
Num. of Samples 
(First Sampling) 

Num. of Samples 
(Second  

Sampling) 

Thalassiosira weissflogii B Bacillariophyceae Thwi 16 22 

Dunaliella primolecta Chlorophyceae Duna 18 22 

Pleurochrysis elongata Primnesiophyceae Pl 16 22 

Alexandrium minutum Dinophyceae Amin 10 16 

Isochrysis Galbana Primnesiophyceae Iso 8 22 

2.4.1. The ݇-Neighbors Method 

The ݇-neighbors method [24] is a nonparametric technique that computes the distance between the 

sample that needs to be classified and a known set of ݇ samples. The sample is simply assigned to the 

class of the nearest neighbors. 
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2.4.2. The SOM Method 

The SOM method [4] consists of an artificial neural network based on unsupervised learning,  

i.e., the network learns only based on the training data. Each neuron has a weighting vector with the 

same dimension as the input data. The SOM projects the high-dimensional input samples onto a  

two-dimensional map, a feature useful for their visualization and classification, and modifies the 

weighting vector of those neurons closer to the sample. This is done as:  

௜ࣱ௝(+ 1) = ௜ࣱ௝() + ()ߙ × ℎ௖() × ቀݔ() − ௜ࣱ௝()ቁ (11)

where ݔ() is the input data vector, ℎ௖() is the learning neighborhood function (typically a Gaussian 

bell-shaped function), and ߙ() is the learning rate. At the end of the training phase the map is organized 

such that neighboring neurons in the grid have similar weighting vectors. 

2.4.3. The Growing Cell Structure Method 

The growing cell structure (GCS) method [25] is a self-organizing network which important feature 

is its ability to automatically find an optimal network structure and size suitable to deal with a specific 

problem. The algorithm starts with a very simple network and inserts new neurons near those positions 

that match better with the input data. This controlled growing process is an important advantage over 

other static neural networks such as SOM, which initiates the training process using a regular network 

with a fixed number of neurons, and may not be able to suitably adapt their initial structure to the problem 

under analysis. 

3. Results and Discussion 

In order to test the four-step signal-processing chain proposed in Section 2, the fluorescence emissions 

of five cultures belonging to different taxonomic groups were measured using an Aminco-Bowman 

Series 2 luminescence spectrometer (configured with a 4-nm slit width and a scan speed of 20 nm/s) (see 

Table 2). In all cases, the excitation wavelength was centered at 470 nm (since this excitation wavelength 

allows an optimal classification, as shown in [4]), and an emission bandwidth between 200 nm and  

800 nm in steps of 1 nm was obtained. Successive daily measurements were acquired while the cultures 

kept alive. Only some initial measurement samples were discarded while the concentration of 

phytoplankton was too diluted to obtain a meaningful signal with the spectrofluorometer (the first useful 

measurement is different for each culture due to a different growth speed among them). The total number 

of measurements is shown in Table 2. This experiment was done twice (first and second sampling) to 

increase the number of measurements and obtain a dataset useful for a suitable classification. 

In this section, each algorithm described above is analyzed and compared with the others in the same 

chain step in order to determine its effectiveness for a suitable classification. To this end, the signal 

processing has been applied only on the 630-to-730 nm band, avoiding the thermal emission (beyond 

the 730 nm) and the Rayleigh and Raman scatterings (below the 630 nm), with the Chl-a fluorescence 

peak at the band center. Thus, by avoiding the full measured spectra, the computational cost needed to 

suitably process the signal is largely simplified. At the end of this section, the algorithms are tested again 

with a degraded version of the measurements shown in Table 2 (by reducing the spectra resolution and 
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adding Gaussian noise), emulating the performance of worse sensors. Both methods (reduction of 

the emission band and measurement degradation) have been applied to determine if the algorithms 

presented in this paper are suitable for taxonomic classification when measuring with low-quality sensors 

and instruments. 

3.1. Denoising 

Smoothing methods cause changes to the original spectral data that may lead to inaccurate results in 

subsequent methods if relevant signal particularities are eliminated along with noise. In order to objectively 

examine the statistical properties of the measured data processed with the three denoising methods  

proposed in this paper, the covariance matrices of the original and smoothed data, which show the  

variance relationship between different wavelength distributions, are compared. The more similar the 

matrices are the least distortion is being introduced by the denoising method. 

Table 3 resumes the results obtained from fluorescence measurements in the Duna culture case,  

using different conditions for each denoising method. The similarity between the covariance matrices of 

the original and smoothed data is evaluated using the root mean square error (RMSE). As can be seen, 

the WMA method has been applied along with square windows of 3, 7 and 11 samples and with three 

Gaussian windows, each one with a different standard deviation (ߪଵ, ߪଶ and ߪଷ, respectively), as shown 

in Table 3 and Figure 6; the Savitzky-Golay method has been applied along with windows of 13, 17 and 

23 samples; and a 6th-level wavelet method (using the Daubechies wavelet family with nine vanishing 

moments as in [14] and suitable for signals with zero-mean Gaussian white noise) has been applied 

considering two different filtering thresholds. While the first method (ݐℎݎଵ) uses a soft threshold on the 

whole detail level set, the second method (ݐℎݎଶ) applies a hard threshold on the same set (Figure 3a  

and 3b, respectively). In both cases, the adaptive threshold selection technique described in Section 2.1.3 

is used to estimate the suitable threshold level. It must be noted that the optimal mother wavelet mainly 

depends on the noise properties and the signal characteristics, and therefore, once the low-cost sensor is 

implemented, an analysis of its characteristics should be performed for a suitable selection. 

 

Figure 6. Gaussian windows used with the WMA method. 
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Table 3. Root mean square error (RMSE) between the covariance of the original data and 

the covariance of the smoothed data at 684 nm. 

Algorithm Parameters RMSE  

WMA (square window) 

݊ = 3 0.012 ݊ = 7 0.047 ݊ = 11 0.102 

WMA (Gaussian window) 

ଵߪ = ଶߪ 0.016 1.04 = ଷߪ 0.030 1.56 = 3.12 0.090 

Savitzky-Golay 

݊ = 13 0.015 ݊ = 17 0.028 ݊ = 23 0.062 

Wavelet 
 ଶ 0.012ݎℎݐ ଵ 0.032ݎℎݐ

In general, for small or intermediate values of the smoothing parameters, the covariance curves  

present a high overlapping. As the smoothing factor increases, both curves diverge, increasing the RMSE 

between them. As observed, the covariance matrix comparison shows that the statistical properties in the 

WMA case diverges for square or Gaussian windows wider than a few samples, while the  

Savitzky-Golay method keeps a small distance length even for windows up to 17 samples. Finally, the 

wavelet method shows a smaller distance in the hard threshold case than in the soft one. Similar results 

have also been obtained using different cultures. Table 3 gives an idea about the smoothing rate  

introduced by each algorithm, but it is not decisive when selecting the most suitable one. Further results 

are shown in Section 3.4 when using them to classify the samples. 

Figure 7 shows the original and smoothed spectra for the Pl measurements using the Savitzky-Golay 

method and ݊ = 17 as an example. 

 

Figure 7. (a) Original and (b) smoothed spectra of all the Pl measurements obtained with 

the Savitzky-Golay method and ݊ = 17. 
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3.2. Normalization 

Figure 8 shows the four normalization methods proposed in this paper applied on the Thwi  

measurements after denoising using the wavelet method and soft threshold.  

 

Figure 8. Normalizations applied on the denoised Thwi measurements (with wavelet method 

and soft threshold) using: (a) the min-max method; (b) the growing spectra modeling (GSM) 

method; (c) the standard normal variate (SNV) method; (d) the modified scale-based  

normalization (SBN) method. 

As can be observed, the four spectra plots are quite similar, but slight differences can be appreciated. 

The spectra obtained with the min-max method, Figure 8a, presents flat shapes around the 640 nm and 

680 nm with minimum and maximum values, respectively, not seen in any other plot, due to the scaling 

method. Such distortion may affect the statistical properties present at those wavelengths. As expected, 

the GSM method improves the spectral shape, as shown in Figure 8b, and presents the best normalization 

below 660 nm. However, all the curves tend to concentrate around a single point in its maximum since 

it is taken as the reference and it can affect the classification step. The SVN and the modified SBN 

methods, Figure 8c and d, respectively, present similar curves and do not suffer from any distortion on 

their fluorescence values. The four algorithms are objectively compared in Subsection 3.4 against the 

denoising and classification methods to determine the most suitable one.  
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3.3. Transformation and Reduction of Dimension 

3.3.1. The Derivative Method 

The derivative of the denoised and normalized samples (using the wavelet and SBN methods,  

respectively) of the Thwi culture was obtained using different band separations, as shown in Figure 9. 

As the band separation increases, a smoother curve is obtained. In order to know if the derivatives of the 

original fluorescence signals contain hidden properties that may facilitate the discrimination process, 

they are used in Subsection 3.4, along with the three classification methods, to compare its taxonomic 

discrimination results with the ones obtained using the original measurements.  

 

Figure 9. Derivative of the Thwi samples for different band separation: (a) 5 sampling  

intervals; (b) 10 sampling intervals; (c) 20 sampling intervals. 

3.3.2. The genetic algorithm method 

The first step before using the genetic algorithm is to find the minimum data dimension that keeps a 

suitable classification efficiency. The maximum likelihood estimator (MLE) technique [26], which uses 

the principle of maximum likelihood on the distances between close neighbors to group them, was  

applied on the fluorescence data of the five cultures denoised and normalized with the wavelet (hard 

threshold) and SBN methods, respectively, obtaining a minimum dimension of 5 bands. Then, the  

genetic algorithm was used in combination with the ݇-neighbors classification method (with ݇ = 1) to 

find the value of these five wavelengths. Among the classification methods, the ݇ -neighbors was  

selected since it does not need a training and thereby it is the fastest one. The results obtained after 20 

generations over an initial vector of 100 solutions are 637 nm, 677 nm, 694 nm, 710 nm and 720 nm. 

Since these results are spaced along the whole bandwidth, it can be concluded that the particular  

features of each culture are not concentrated in a narrow band but widely distributed. 

3.3.3. The PCA method 

Figure 10 shows the results obtained with the PCA method applied on all the samples. As can be seen, 

a significant reduction of the data dimension can be applied since the first three components  

concentrate the 99% of the data variability. The other ones will not significantly contribute to obtain a 

better classification of the culture. In the next subsection, the first three components obtained with this 

algorithm are used in combination with the three classification methods to compare its results with  

previous methods. 
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Figure 10. Representation of (a) the first 20 eigenvectors, and (b) their percentage of variance. 

3.4. Classification 

The comparison between the classification methods (and the different denoising and normalization 

techniques) has been performed using the confusion matrix and the Kappa index (ܭ) [4]. The confusion 

matrix displays both the number of samples that were correctly and incorrectly classified, and, in the 

latter case, provides insight into which was the wrong chosen culture. The Kappa index is a measure of 

the global classification error whose calculation is made from elements of the confusion matrix.  

In order to maximize the performance of ݇-neighbors, a previous optimization of the variable ݇ was 

done finding the value that presents the best classification results, obtaining ݇ = 1. The training for the 

SOM and GCS classification algorithms, with 32 nodes each, was done using both sampling columns of 

Table 2 in a 5-fold cross-validation technique. 

Tables 4–6 resume the classification performance of the three classification methods, in combination 

with the three denoising methods and the four normalization techniques, through the Kappa index. As 

can be observed, all combinations present accurate classifications achieving in some cases a perfect 

result. In general, the net growing concept seems to present a better performance than the static net of 

SOM. However, the three tables coincide in pointing out the ݇-neighbors as the best classification 

method. Besides, among the denoising techniques, the WMA denoising algorithm (Table 4) gives the 

higher Kappa indices, as the SNV does among the normalization ones. Therefore, an optimal solution 

for the signal-processing chain is obtained when using these two algorithms (WMA and SNV) in  

combination with the ݇-neighbors method.  

Table 4. Kappa indices obtained with the three classification techniques and the four  

normalization methods when denoising with the weighted moving average (WMA) method 

(Gaussian window with ߪଶ). 

 Min-Max GSM SNV SBN ݇-neighbors 0.994 1 1 1 

SOM 0.925 0.987 0.994 0.994 

GCS 0.974 0.991 1 0.974 
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Table 5. Kappa indices obtained with the three classification techniques and the four  

normalization methods when denoising with the Savitzky-Golay method and ݊ = 13. 

 Min-Max GSM SNV SBN ݇-neighbors 0.994 1 1 1 

SOM 0.918 0.987 0.975 0.994 

GCS 0.965 0.991 1 0.982 

Table 6. Kappa indices obtained with the three classification techniques and the four  

normalization methods when denoising with the wavelet method (the letter denotes the use 

either soft or hard threshold). 

 Min-Max GSM SNV SBN ݇-neighbors 0.984 s/0.994 h 0.994 s/0.994 h 1 s/1 h 1 s/1 h 

SOM 0.919 s/0.931 h 1 s/0.975 h 0.981 s/0.987 h 0.994 s/0.994 h 

GCS 0.965 s/0.965 h 1 s/1 h 0.991 s/1 h 0.982 s/0.965 h 

Table 7 shows the Kappa index obtained with the three classification methods and the three  

transformation methods when considering the WMA (Gaussian window with ߪଶ) as a denoising method 

and the modified SBN to normalize. The optimal performance is obtained again with the ݇-neighbors 

method using only the five bands given by the genetic algorithm (as expected since the genetic algorithm 

uses the ݇-neighbors method to find the suitable wavelengths) or in combination with the first three 

components given by the PCA method. SOM gives its best result using the five bands of the genetic 

algorithm and, in contrast, GCS gives its one in combination with the PCA.  

Table 7. Kappa indices obtained with the three classification techniques and the three  

transformation methods, considering the weighted moving average (WMA) (Gaussian  

window with ߪଶ) as a denoising method and the modified scale based normalization (SBN) 

as a normalization method. 

 
Derivative 

(First Order) 
Genetic Algorithm 

PCA 

݇-neighbors 0.994 1 1 

SOM 0.962 0.994 0.987 

GCS 0.974 0.982 0.991 

All these results reinforce the idea that an important reduction of the data dimension can be applied 

without much loss of performance, which involves a reduction of the needed computational cost. In 

order to evaluate the degree of optimization, Table 8 shows the time employed on the execution of the 

previous example with and without a reduction of the data dimension using an Intel Pentium 4 at 3 GHz, 

with a 1 GB RAM and running a Windows 7. As can be seen, the time needed to complete the signal 

processing is reduced between 30%–33% in the SOM case, 8%–9% in the GCS case, and 20%–24% in 
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the ݇-neighbors case. Even without the further computational-cost reduction, the ݇-neighbors algorithm 

is already much optimal than SOM and GCS algorithms, since training is not necessary, and therefore 

preferred from this point of view. On the other hand, the derivative of the original spectra does not seem 

to improve in a significant way the classification techniques, and its performance worsens proportionally 

to an increasing derivative order.  

Table 8. Computational cost expressed in terms of execution time (in seconds), considering 

the weighted moving average (WMA) (Gaussian window with ߪଶ) as a denoising method 

and the modified scale based normalization (SBN) as a normalization method. 

 Standard Genetic Algorithm PCA ݇-neighbors 1.13 s 0.90 s 0.86 s 

SOM 19.91 s 14.10 s 13.40 s 

GCS 106.06 s 98.10 s 96.87 s 

Tables 9 and 10 show the averaged confusion matrices (due to the five-fold cross-validation) for the 

worst solutions obtained in Tables 4–7, that is, the one obtained with the SOM classification method 

when using the Savitzky-Golay and the Min-Max methods to denoise and normalize (Table 9), and the 

one obtained with the SOM algorithm when using the wavelet method with a soft threshold and the  

Min-Max method to denoise and normalize (Table 10). Thus, those samples that are more difficult to be 

suitable classified can be identified. In the Savitzky-Golay case (Table 9), some Pl samples are classified 

as Duna, but the major error is produced with the Iso samples classified as Amin. In the wavelet case 

(Table 10), some Duna samples are classified as Pl, but, again, a considerable error is produced with the 

Iso samples classified as Amin. Both results show that small similarities exist between Duna and Pl 

samples and an important likeness between Iso and Amin.  

Table 9. Averaged confusion matrix obtained with the self-organizing maps (SOM)  

classification method when using the Savitzky-Golay and the Min-Max methods to denoise 

and normalize. Results of the confusion matrix have been averaged due to the five-fold  

cross-validation. 

 Thwi Duna Pl Amin Iso 

Thwi 8 0 0 0 0 

Duna 0 8 0 0 0 

Pl 0 0.2 7.8 0 0 

Amin 0 0 0 8 0 

Iso 0.2 0 0 2.2 5.6 
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Table 10. Averaged confusion matrix obtained with the self-organizing maps (SOM)  

algorithm when using the wavelet (soft threshold) and the Min-Max methods to denoise and 

normalize. Results of the confusion matrix have been averaged due to the five-fold  

cross-validation. 

 Thwi Duna Pl Amin Iso 

Thwi 8 0 0 0 0 

Duna 0 7.8 0.2 0 0 

Pl 0 0 8 0 0 

Amin 0 0 0 8 0 

Iso 0 0 0 2.4 5.6 

3.5. Classification Using Degraded Samplings 

The fluorescence measurements used in the previous subsections were obtained with an accurate 

spectral resolution of 1 nm and using a slit width of 4 nm. In order to simulate the performance of a  

low-cost fluorometer, the signal quality was degraded by reducing its spectral resolution by a factor of 

2 (since the monochromatic filter bandwidth was of 4 nm, no loss of information is produced) and its 

SNR by adding noise. Since the measurement’s noise-floor level is mainly described through a white 

Gaussian distribution, as stated in Subsection 2.1, the added noise followed a white Gaussian distribution 

with zero mean and a variance of 0.03. Figure 11 shows an example before and after this  

signal degradation. 

 

Figure 11. (a) Measured Thwi fluorescence; and (b) Thwi fluorescence after reducing the 

spectral resolution and adding noise, which follows a white Gaussian distribution with zero 

mean and a variance of 0.03, to emulate the measurements obtained with low-cost sensors. 

The algorithms of the signal-processing chain described in this paper were applied on the degraded 

samplings to determine if a suitable classification performance could be obtained under such constraints. 

The WMA denoising method with a Gaussian window (and using ߪଶ) showed to be the most successful 

one, as seen in Tables 4–6. Therefore, this method was selected to compare the three classification  

methods against the four normalization techniques, as seen in Table 11. Again, the best result is obtained 
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when using the SNV normalization method and the ݇-neighbors classification one, achieving almost a 

perfect classification. 

Table 11. Kappa indices obtained with the three classification techniques and the four  

normalization methods when denoising with the weighted moving average (WMA) method 

(Gaussian window with ߪଶ). 

 Min-Max GSM SNV SBN ݇-neighbors 0.750 0.625 0.994 0.794 

SOM 0.575 0.575 0.943 0.681 

GCS 0.279 0.310 0.680 0.517 

In order to determine if this new set of samples can be dimensionally reduced to decrease the 

computational cost but still obtaining accurate results, the genetic algorithm was applied again to obtain 

the five frequencies that mostly characterize them. By firstly using only these five frequencies along 

with the ݇ -neighbors classification method, and secondly the PCA along with the ݇ -neighbors 

classification method, the Kappa index obtained were of 0.890 and 0.981, respectively. This 

classification result shows that the best combination of algorithms, in the ݇ -neighbors method case, 

include the PCA method as the optimal one to reduce the computational cost (the successful 

classification percentage only drops a 2% and thus an accurate classification result is still obtained, 

whereas the execution time is reduced by a 28%). Additionally, in the PCA case, a study of the 

classification performance for different levels of noise was performed by modifying the variance of the 

Gaussian distribution, obtaining the results shown in Table 12. As expected, the Kappa index decreases 

as the variance increases. At a variance beyond 0.2 the classification cannot be considered successful 

(Kappa index drops far below 0.8).  

Table 12. Kappa indices obtained with the weighted moving average (WMA) method to 

denoise, the standard normal variate (SNV) method to normalize, the principal component 

analysis (PCA) method for a dimensional reduction and the ݇-neighbors to classify, by using 

the degraded samples with four different variances (ߪ) of the noise Gaussian distribution. 

࣌  = ૙. ૙૜ ࣌ = ૙. ૙૟ ࣌ = ૙. ૚ ࣌ = ૙. ૛ 

Kappa index 0.981 0.937 0.850 0.787 

The results presented above show that the best combination of algorithms in the signal-processing 

chain that showed an optimal classification with the accurate fluorescence measurements, is also the best 

combination when handling with low-accurate data (degraded in terms of resolution and SNR). As stated 

in Table 11, this combination includes the WMA method to denoise, the SNV method to normalize, the PCA 

method for a dimensional reduction and the ݇-neighbors to classify the measurements (see Figure 12), 

reaching a discrimination performance with a Kappa index of 0.981 (when ߪ = 0.03). This is also the 

best solution in terms of computational cost, since the ݇ -neighbors algorithm presents the lowest  

execution time (5% of the total SOM execution time and 1% of the whole GCS execution time), and, 
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after adding the dimensional reduction block, the execution time is further reduced by a 24% (as seen in 

Table 8).  

Taking into account the results presented above, it has been proven the initial hypothesis of a feasible 

taxonomic classification using only the narrow 630-to-730 nm band of fluorescence emissions, which 

corresponds to the Chl-a peak, since other cellular contents (which differs depending on the strain) also 

modify its spectral shape. With this, the two constraints given by the measurements obtained with  

low-performance sensors, i.e., high noise levels in a narrow bandwidth and an optimal computational 

cost, have been dealt. To conclude, despite the fact that a limited number of samples obtained from only 

five different cultures constituted the whole dataset, the results presented in this section are significantly 

accurate, and constitute an optimistic beginning to continue working in this direction, either designing 

more accurate algorithms or improving the current ones. Besides, they stimulate the investment in the 

development of a new hyperspectral low-cost sensor with discrimination capabilities centred in the  

Chl-a peak spectral range. It should be noted that, if a new low-cost sensor was actually developed, its 

measurement uncertainty (regarding to spectrometric and radiometric errors) should be perfectly  

characterized and evaluated to see if the performance of the signal processing presented in this paper is 

severely degraded.  

 

Figure 12. Optimal algorithms for the four-step signal-processing chain designed to deal 

with low-accurate narrowband fluorescence measurements. 

4. Conclusions 

Current constraints in money budget for research projects have motivated the development of new 

low-cost technologies. That, in consequence, requires an effort to extract as much information as  

possible from instruments exhibiting a low performance. In this paper, an optimal-computational-cost 

signal-processing chain designed to deal with fluorescence measurements featuring poor signal-to-noise 

ratios, low resolution, narrow bandwidth and, therefore, suitable for low-cost sensors and instruments, 

has been presented. The main objective of this research was focused in finding that combination of 

algorithms that optimizes the instrument performance when discriminating between different taxonomic 

cultures of phytoplankton species present in marine environments considering two constraints. The first 

one was given by the potential low-performance of the sensor, which limits the measurable spectra (the 

lowest fluorescence emissions may be found under the noise floor level of the sensor). Thereby, only 

the highest values of fluorescence emissions, that is, those close to the Chlorophyll a peak placed around 

the 680 nm, were considered. The second constraint was given by the processing limits of a low-cost 

hardware. To minimize the signal-processing requirements, algorithms should exhibit an optimal  

performance in terms of computational cost. In order to fulfill with these two requirements, the  

signal-processing chain was established in four separated blocks, each one with a different processing 

function, which include the denoising, the normalization, the transformation and the classification of the 
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input data. The denoising techniques were used to smooth the noisy data, the normalization methods to 

make the hyperspectral signature of cultures measured at different growth stages equivalent, the  

transformation block to modify and reduce the data dimension in order to decrease the computational 

cost while trying to enhance its feature information, and finally the classification algorithms to discern the 

nature of the samples.  

The algorithms of the whole signal-processing chain selected in this research work were experimentally 

tested and compared using the actual fluorescence measurements obtained from five different species of 

phytoplankton. In order to deal with the objective of this paper, the data measured with a laboratory 

spectrofluorometer was synthetically degraded in terms of bandwidth, resolution and signal-to-noise 

ratio to simulate the performance of a potential low-performance low-cost sensor. Accurate classification 

results were achieved in most of the combinations when using the original data and, although a decrement 

in the classification performance was observed; still very good results were obtained in a few combinations 

when using the degraded quality signal. The optimal chain implementation was obtained by means of 

the weighted moving average technique as a denoising method, the standard normal variate method for 

normalization, the principal component analysis to reduce the data dimension and the ݇-neighbors to 

classify the cultures. The ݇-neighbors does not only provide the best classification results when dealing 

with fluorescence measurements, but it is also the fastest method, since it does not require a preliminary 

training, in contrast to the self-organizing maps technique or the growing cell structure method. This 

combination, additionally, is optimal in terms of the computational cost, and an accurate classification 

can be achieved with the minimum hardware requirements. 

This paper has also confirmed that a suitable discrimination of different taxonomic cultures can be 

achieved examining only the emission fluorescence data placed around 680 nm and excited at 470 nm, 

where the fluorescence peak of the Chlorophyll a is allocated. While other research works use the whole 

visible spectra to classify the samples obtained with accurate but expensive instruments, this work has shown 

that the 630-to-730-nm band presents enough information to determine the sample origin after smoothing, 

normalizing and reducing its dimension. This is due to a different proportion of the Chlorophyll-a among 

different cultures, but also to the presence of different pigment and Chlorophyll-b, -c and -d ratios, which 

slightly modify the spectral shape of the culture. These results, obtained from fluorescence measurements 

performed on pure cultures, are a preliminary but necessary validation in order to proceed with the more 

complex unmixing techniques for taxonomic discrimination in mixed scenarios. The methodology to 

obtain fluorescence measurements suggests that it is necessary to address this problem using a  

non-linear unmixing approach (since the photons emitted by one particle can be absorbed or  

scattered by other particles). This issue opens the way for the development of a wide range of new 

methodologies and techniques to be implemented in a low-cost instrument, which is of great importance 

to improve the current lengthy methods of taxonomic identification while reducing the expenses in 

oceanographic research.  
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