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Abstract

Complex ecological and epidemiological systems require multidisciplinary and

innovative research. Low cost unmanned aircraft systems (UAS) can provide

information on the spatial pattern of hosts’ distribution and abundance, which is

crucial as regards modelling the determinants of disease transmission and

persistence on a fine spatial scale. In this context we have studied the spatial

epidemiology of tuberculosis (TB) in the ungulate community of Doñana National

Park (South-western Spain) by modelling species host (red deer, fallow deer and

cattle) abundance at fine spatial scale. The use of UAS high-resolution images has

allowed us to collect data to model the environmental determinants of host

abundance, and in a further step to evaluate their relationships with the spatial risk

of TB throughout the ungulate community. We discuss the ecological,

epidemiological and logistic conditions under which UAS may contribute to study

the wildlife/livestock sanitary interface, where the spatial aggregation of hosts

becomes crucial. These findings are relevant for planning and implementing

research, fundamentally when managing disease in multi-host systems, and

focusing on risky areas. Therefore, managers should prioritize the implementation

of control strategies to reduce disease of conservation, economic and social

relevance.

Introduction

Understanding the spatial distribution of risks for multi-host diseases in complex

ecological scenarios is a key issue for disease management in wildlife [1] and also
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at the domestic/wildlife interface [2]. Population demography, resource allocation

and behaviour determine the spatiotemporal structure of interactions among

hosts. These characteristics may therefore play an important role in pathogen

transmission [3], [4], [5]. The distribution range and abundance of domestic and

wild animals can be affected by natural (biotic and abiotic) and human-mediated

factors [6]. In an epidemiological context these factors are able to drive intra and

inter-specific disease transmission rates [7]. For instance, areas commonly grazed

by both cattle and wildlife - including artificial feeding and watering areas - have

been proved to increase the risk of pathogen transmission between species [8], [9].

But risk factor analyses are highly dependent on the spatial scale, as the

relationships between factors and the transmission rates may change with the

selection of different areal units [10].

Determining the patterns of host abundance at a finer resolution for large areas

requires an impressive sampling effort and/or the use of predictive modelling (e.g.

[11], [12]). The use of expensive methods, such as manned aircrafts, may apply to

wildlife monitoring [13]. Low cost unmanned aircraft systems (hereafter UAS)

have recently emerged as an efficient alternative for wildlife monitoring and

ecological research [13], [14]. These systems offer the ability to monitor biological

processes of large areas remotely and rapidly. Thus, UAS may become an

affordable, safe and accurate option for a wide variety of studies [15], [16], [17].

UAS equipped with on board cameras have been used to obtain high-resolution

images of wildlife occurrences in quasi real time in highly dynamic landscapes

(e.g. [16], [18]), but their possible efficacy in predicting distribution and

abundance of animals has not been proven. UAS therefore have a high potential as

regards collecting precise information on hosts, which is highly prized by

epidemiologists since it is useful to determine the spatial risk of disease

transmission (e.g. [19]).

Most multi-host diseases (e.g. foot and mouth disease, rabies, anthrax,

brucellosis and tuberculosis) often emerge and/or persist in complex ecological

communities involving several domestic and wild hosts [20], [21]. Of special

relevance are diseases involving wild ungulates in their epidemiological cycles, as

these species are undergoing a generalised expansion (e.g. [22]). This promotes

epidemiological scenarios in which disease transmission often results in the

maintenance or amplification of diseases that affect not only wild ungulates, but

also livestock production, public health and endangered wildlife species (e.g. [23],

[24]). This research proposes an epidemiological approach to evaluate applica-

tions of UAS as feasible tool for monitoring wildlife distribution and abundance.

Tuberculosis (TB), which is caused by the Mycobacterium tuberculosis complex,

is an important re-emerging zoonotic disease that is shared between cattle and

wildlife, and the existence of wildlife reservoirs limits the control of this disease

[21], [25]. The TB infection generally develops into chronic infections, with long-

term persistence in populations, and is able to induce a period of infectiousness

during which direct and indirect contact favouring disease transmission between

individuals (intra and inter-specific) occurs. In South-central Spain, complex

epidemiological connections between TB prevalence in cattle and wild ungulates
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(wild boar Sus scrofa, red deer Cervus elaphus and fallow deer Dama dama) have

been established [23], [26], thus highlighting the role of wildlife as TB

maintenance hosts in this complex system (see also [8], [23], [27]).

Since environmental features (e.g. natural water sources, water holes, marsh-

shrub ecotone and/or grazing areas) frequently used by hosts could act as

important sources of TB and/or favour closer contact of individuals both between

and within the species, we hypothesise that the pattern of TB frequency can be

explained by the spatial patterns of the host abundance. Our aim when using UAS

high-resolution images was specifically to: i) model the spatial pattern of

abundance for each potential host species in a Mediterranean scenario, and ii)

evaluate the explanatory capacity of the predicted abundance of hosts with the

spatial risk of TB throughout the ungulate community as a way to validate the

predictions of host abundance obtained from UAS data.

Materials and Methods

Ethics statement

This study utilized samples from wild ungulates captured (shot by the Park’s

rangers) and necropsied in the context of the Doñana National Park health-

monitoring programme. Sampling followed a protocol approved by the Animal

Experiment Committee of Castilla-La Mancha University and by the Spanish

Ethics Committee, and designed and developed by scientists (B and C animal

experimentation categories) in accordance with EC Directive 86/609/EEC for

animal handling and experiments. The work was conducted complying with the

current Spanish legislation involving aviation safety and field technicians had the

required licenses to operate in the frequencies they used. Doñana National Park

authorities (P43-2010), MINECO (AGL2010-20730-C02-01) and Aeromab

Project (P07-RNM-03246) field permits approved these methods.

Study area

The study was carried out in Doñana National Park, DNP (37 0̊9 N, 6 3̊09 W,

54,000 ha), a nature reserve located on the Atlantic coast of South-western Spain.

DNP has the highest level of environmental protection in Spain and is one of the

most important natural reserves in Europe in terms of biodiversity. The region has

a dry sub-humid Mediterranean climate with marked seasons. In the wet season

(winter and spring), the marshlands are flooded and ungulates graze in the more

elevated shrublands. The hardest season for ungulates in this area is summer

(from July to September), when herbaceous vegetation, wetlands and water bodies

(i.e., there is no water flow during this season) dry up in most habitats, and only a

few meadows remain green on the boundary between the upper area of shrubs

and the low dry marsh (ecotone). During the dry season, a north-south oriented

longitudinal humid ecotone – dominated by wetland plants including Scirpus
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Fig. 1. Map of the study area, Doñana National Park in Southern Spain, obtained from [36]. Six main habitats can be differentiated: dense shrubland
(LT1), low-clear shrubland (LT2), herbaceous grassland (LT3), woodland (LT4), bare land (LT5), watercourse vegetation and water body (LT6). Locations of
the necropsied wild ungulates and of the UAS tracks at the five cattle management areas are shown.

doi:10.1371/journal.pone.0115608.g001
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maritimus and Galio palustris with Juncus maritimus associations – can be

identified between the shrublands and the edge of the dry marshlands (Fig. 1).

A traditional breed of cattle (locally called ‘‘marismeña’’) is present in DNP, in

which 5 different cattle management areas (MA) can be identified from north to

south (Fig. 1). The southern MA, Marismillas (MA1, n5318 cattle) has a density

of 3.1 cattle/km2. The central area comprises 3 MA (MA2, n5152 cattle; MA3,

n5168 cattle and MA4, n5350 cattle) and an average of density of 4.2 cattle/km2.

There are no cattle in the northern MA, which is called Coto del Rey (MA5). Wild

ungulates in the area include: wild boar, red deer and fallow deer. Agriculture and

hunting are prohibited in DNP, and artificial feeding practices are not conducted.

However, cattle TB reactor rates are still high in DNP despite compulsory testing

and the culling of infected animals [23], [28]. Previous studies have revealed that

M. bovis infection prevalence is spatially structured, leading to among the highest

rates of TB reported in wildlife worldwide [23], [27]. In addition to behavioural

factors, it is probable that environmental features may explain variations in TB

rates in wildlife since they favour direct and/or indirect contact between

individuals and species during the dry season [8], [29].

Unmanned Aircraft Systems (UAS) methodology

We performed UAS fieldwork during the summer (August and September) of

2011, the season when water resources are more limited for wildlife, the

availability of food is severely reduced [30] and the aggregation of individuals

around water resources is therefore expected to be at its maximum [31]. The UAS

platform was built using the foam fuselage of a radio controlled model Easy Fly

plane (St-models, China) propelled by a brushless electrical engine. The embarked

systems are: an on-board video camera used for First Person View Flight (FPV), a

GPS (10 Hz, Mediatek, model FGPMMOPA6B), an Ikarus autopilot (Electronica

RC, Spain) which provides flight stabilization, On Screen Display (OSD), a

Panasonic Lumix LX-3 digital photo camera 11MP (Osaka, Japan), a three

dimension waypoint following capability and an ‘‘emergency return home’’

function. The ground station is composed of a case containing a monitor, a DVD

recorder, a video receiver and the control signal transmitter with the

corresponding antennas. It also includes a Laptop with which to program the

autopilot, store the pictures and data logs, and decode in-flight telemetry, thus

allowing the position of the UAS to be tracked in real time on a Microsoft map

(Redmond, WA, USA). For further details please see [17] and [18].

We conducted a total of 60 aerial tracks (each of which was ,4 km in length

and 0.1 km wide: total surveyed length 240 km, covering 10.1% of the study area)

between 17.30 h and 21.00 h local time, the time when the animals are most active

as the temperature begins to decrease [32]. Two types of tracks – east-west and

north-south oriented transects (Fig. 1) – were surveyed in each MA and replicated

six times. The UAS were programmed to fly at an altitude of 100 m and at an

average speed of 40 km/h. Details of the image processing can be found in [18].

The information obtained was divided into patches of 1 ha (our territorial unit
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for modelling). The patch size was adjusted to the width (0.1 km) of aerial tracks

which is also consistent with a previous study on deer spatial ecology in the study

area [33]. For each territorial unit and species, the abundance index (our response

variables for modelling) was estimated as the number of individuals seen per ha.

Environmental predictors for modelling host abundance

Environmental variables were chosen on the basis of their availability for the study

area and their potential predictive power (e.g. [14], [31], [34]). The predictors

calculated for each territorial unit were: straight-line distance (km) to nearest

artificial water hole (DW); straight-line distance (km) to nearest marsh–shrub

ecotone (DE); exacted grid area (ha) surveyed by UAS (GA); number of water

points per km2 (WDN); proportion of dense scrub (LT1); proportion of low-clear

shrubland (LT2); proportion of herbaceous grassland (LT3); proportion of

woodland (LT4); proportion of bare land (LT5); and proportion of watercourse

vegetation (LT6; summarized in Table 1). Landcover data was obtained from

Andalusia Environmental Information [35].

Canopy cover reduces visibility and thus the detection of ungulates in UAS

images. We therefore calculated detection coefficients in order to take this fact

into consideration. Detection coefficients were calculated for both types of

vegetation cover, dense shrub land (LT1) and woodland (LT4), in order to correct

the reduction of visibility when ungulates were found below these canopy covers.

We analysed the probability of detection of 100 random circle points (1 m2 size)

per habitat image (surface51 ha), considering any point above vegetation cover

as ‘‘not detected’’ and any point without vegetation cover as ‘‘detected’’. This was

repeated in ten different images of each cattle management area and landcover

type (n5100 images). For each landcover type, the detection coefficient is

calculated as the proportion of points that were detected per image. The detection

coefficients used in the statistical analyses were 0.538 and 0.359 as thresholds of

visibility in LT1 and LT4 cover types, respectively. This means that we could only

detect 53.8% of the ungulates located in LT1 habitat and 35.9% of the ungulates

located in LT4. Collinear variables were excluded using a variance inflation factor

(VIF) coefficient.3 threshold cut-off value [36].

Modelling ungulate abundance

Since information on ungulate distribution for the whole DNP was incomplete,

we used spatially explicit modelling for predicting abundance values for overall

study area. Habitat-species relationships can be parameterised with this feasible

and reliable tool from the sampling obtained with UAS. The statistical model

obtained could then be used to forecast species abundance in areas where

information about the target species was not available [12]. When calibrating the

abundance model, we only used the east-west UAS track data because we found

very low habitat variation in the north-south UAS tracks (mainly overlapping

with ecotone habitat), whereas the east-west tracks randomly sample the different

UAS for Disease Risk Modelling

PLOS ONE | DOI:10.1371/journal.pone.0115608 December 31, 2014 6 / 17



habitats present in DNP. Previously to modelling, the dataset from the east-west

UAS was randomly split by using a subset to parameterise the models (70%),

whereas the rest (30%) was reserved for model validation on independent data.

The north-south UAS track data were, however, also used to validate predictions

from modelling using another set of independent data.

For each species (red deer, fallow deer and cattle - wild boar were excluded

owing to low diurnal detection of the species; see [37]), the response variable was

the abundance index for the territorial units. Then, the values of each

environmental predictor were summarized for each sampling unit using ‘zonal

statistic tool’ with Quantum GIS version 1.8.0 Lisboa [38]. The local abundance of

each species per territorial unit was modelled using a generalised linear model,

with a negative binomial distribution and a logarithmic link function [39]. We

opted for the negative binomial distribution owing to high levels of over-

dispersion in the data when the models were fitted with Poisson distributions. The

final models were obtained using a forward-backward stepwise procedure based

on Akaike Information Criteria (AIC; [40]).

After modelling, predicted abundances were quantitatively compared with the

data observed in the validation datasets by using Pearson’s correlations

(significant threshold; p,0.05) on both the east-west UAS independent data and

the north-south UAS data. All statistics were carried out using R 2.15.2 [41].

Sampling and tuberculosis diagnosis

From 2006 to 2012, 949 wild ungulates comprising wild boar (n5570), red deer

(n5190) and fallow deer (n5189) were randomly captured, necropsied and

sampled in the context of the DNP health-monitoring programme (Fig. 1). The

exact shooting location of each animal sampled was geo-referenced with a

Table 1. Environmental predictors used for spatial modelling of both host species abundance and Mycobacterium tuberculosis complex transmission risk
factors.

Codes Descriptions Mean SD

DW Distance to nearest water point (km) 0.45/0.97 0.36/0.71

DE Distance to nearest marsh-shrub ecotone (km) 1.01/2.33 0.89/2.15

GA UAS grid area (ha) 1.23/1 0.80/0.00

WDN Water point density (n/km2) 0.82/0.51 1.18/0.35

LT1 Dense shrub (%) 20.94/11.39 34.47/26.51

LT2 Low-clear shrub (%) 23.72/30.56 33.08/39.41

LT3 Herbaceous grassland (%) 24.91/11.55 36.99/30.78

LT4 Woodland (%) 14.66/17.69 31.43/34.04

LT5 Bare land (%) 7.12/10.64 21.83/26.11

LT6 Water course vegetation (%) 5.87/10.92 19.25/27.84

MA Cattle management area (factor, 5 categories) – –

For continuous predictors, mean values and standard deviations (SD) are reported for both the surveyed area (UAS track grids; in bold) and the whole study
area (surveyed/study area).

doi:10.1371/journal.pone.0115608.t001
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portable GPS (GarminLtd., Cayman Islands). Species, sampling year, gender and

age were recorded on each of the animals sampled using similar criteria to

previous studies (see [23]). Briefly, age classes were typified as juveniles (,24

months old) or adults (.24 months old) [8]. Necropsies were performed by

qualified wildlife veterinarians with a wide experience in the diagnostics of

macroscopic TB compatible lesions via the detailed inspection of lymph nodes

and abdominal and thoracic organs (see [42]). Cultures were performed in order

to confirm TB, using Lowenstein-Jensen piruvate medium. In the four MA in

which cattle were present, veterinarian authorities used skin tests on the cattle

populations and positive reactors were slaughtered during same period, as part of

the National TB control Programme.

Determining the risk of TB at spatial scale

We used a Bayesian multivariable logistic regression approach [43] to evaluate the

association among the occurrence of TB at individual level (response variable) and

the predicted species abundances, while adjusting for the other risk factors

hypothesised to influence disease status in DNP [26]. Predicted abundances of

each modelled species (obtained in the UAS approach at 1 ha resolution; Fig. 2)

were assigned to each TB-tested animal by using ‘point sampling tool’ with

Quantum GIS. In addition, the covariates related to aggregation risky points (i.e.,

DW and WDN, see Table 1), species, sex, age class and sampling year of TB-tested

animals were also included in the model (S1 File). In Bayesian inference,

uncertainty in estimating predictor is fully reflected in the estimates and credible

intervals (CIs) of all other variables, which is particularly important when there

are a number of explanatory variables and smooth terms available [44]. This

Bayesian framework was run using Integrated Nested Laplace Approximations (R-

INLA package; [45]) to avoid the convergence and mixing algorithms of the

Markov Chain Monte Carlo based sampling methods [46]. Deviance information

criterion (DIC) was used for Bayesian model selection by following a backward

stepwise procedure and the model with the lowest value of DIC was retained [47].

The statistical significance of each explanatory variable was assessed by 95% CIs of

the probability distribution.

Results

Spatial distribution of ungulates abundance

The aerial tracks allowed a total of 3,149 ungulates to be located, identified and

recorded from the UAS images. This included 51.44% of red deer, 33.18% of

fallow deer, 11.36% of cattle, 2.89% of horses and only 0.22% of wild boar, while

0.89% was recorded as unknown species. The results of the best-fitting abundance

models and their coefficients for the environmental predictors are summarized in

Table 2. The common landscape predictors affecting the abundance indices

explained by the best-fitting models for all species were: LT1 (negatively related to

UAS for Disease Risk Modelling
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dense shrub), LT3 (positively related to herbaceous grassland) and MA (Table 2;

see for more details S1 Table).

Validation on independent datasets for both east-west and north-south UAS

track data showed significant correlations between observed and predicted

abundance values (Table 3). After being assessed using independent data, the final

models were used to predict species abundance in the whole of DNP (Fig. 2).

Common distribution patterns can be observed in the specific predictions of

species abundance throughout DNP. It is remarkable that all ungulate species

tended to spatially aggregate at the ecotone. Differences between MA were more

evident for cattle.

Fig. 2. Predicted patterns of species relative abundance (animals/ha) in Doñana National Park obtained by modelling abundance data obtained
from Unmanned Aircraft Systems (see Table 2).

doi:10.1371/journal.pone.0115608.g002

Table 2. Results of the generalised linear models (negative binomial error distribution and logarithmic link function) used to predict red deer, fallow deer and
cattle abundance on a spatial scale in Doñana National Park.

Response Final model

Red deer abundance , 20.001?DE 22.96?1LT1+0.78?LT3+0.44?2MA2+2.15?MA3+1.1?MA4+0.4?MA5

Fallow deer abundance , 22.17?DE 22.25?1LT1+2.9?LT3+7.22?1LT4 21.42?2MA2+2.73?MA3+3.68?MA4 21.34?MA5

Cattle abundance , 21.19?1LT1+2.93?LT3+3.36?2MA2+6.6?MA3+9.17?MA4 23.41?MA5

Coefficients are shown for the most parsimonious models according to AIC. Measures for model support and statistical parameters (test and p-values) for
the variables selected in the final models can be found in S1 Table. Variable codes are described in Table 1.
1LT1 and LT4 were corrected by detection coefficients, 0.538 and 0.359, respectively. 2Reference value of the parameter estimator was 0 for ‘‘cattle
management area 1 (MA1)’’. MA from 2 to 5 codify for the location of each sampling unit in each management area (1 when present and 0 when absence).

doi:10.1371/journal.pone.0115608.t002
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Spatial risk factors for TB infection

Infection was detected in 55.69% (SE54.12%; n5570) of wild boar, 35.79%

(SE56.86%; n5190) of red deer and 17.99% (SE55.49%; n5189) of fallow deer.

From 2006 to 2013, official skin testing of the 1,139 cattle in the DNP study area

revealed a maintained mean incidence of 9.04% (SE54.91%) TB reactors.

Variables in the best-fitting Bayesian model included the following predictors:

species sampled, WDN, predicted abundance of red deer and cattle (Table 4; the

distribution probability for each parameter is shown in S1 Fig.). The Bayesian

inference revealed that the increasing of TB risk was significantly associated with

the high predicted abundances for red deer (estimated as 0.21; SD50.05) and

cattle (estimated as 0.12; SD50.07). The infection risk was higher in wild boar

than red deer, but higher in red deer than in fallow deer. In general, areas with low

values of WDN were mostly related to wild ungulates infections.

Discussion

This research provides a multidisciplinary approach to study complex ecological

and epidemiological systems, which may benefit from innovative technologies

previously implemented in other fields, such as UAS. Although other study

designs are possible, this research could be considered as a case study where UAS

technology became a valuable tool to address host community abundance at finer

spatial scale. Thus, UAS is a promising alternative in studies that require the

estimation of spatial patterns of different species in large areas –like

epidemiological ones- where traditional methods (e.g. line transects, drive counts,

etc.) are not feasible due to logistical reasons. Our study identified points of high

host abundance, which were associated with a high risk of TB infection, probably

because these areas could act as important sources of TB and/or favour effective

intra- and inter-specific contacts. Results allowed to identify the cattle/wildlife

interface in which control strategies for TB – and other diseases that are

modulated by similar risk factors – should be prioritised, which is particularly

crucial for the development of disease control policies in the context of shared

diseases.

Table 3. Assessment of the predictive performance of the abundance models in independent datasets by using Pearson correlations (p,0.001 in all cases).

Abundance models

Model East-west UAS track data (30%) North-south UAS track data

Pearson’s r, n5501 grids Pearson’s r, n51013 grids

Red deer 0.32 0.26

Fallow deer 0.36 0.23

Cattle 0.19 0.34

doi:10.1371/journal.pone.0115608.t003
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On the methodological approach

Remote observation technologies based on low cost UAS have the potential to be a

reliable and efficient alternative to study the distribution of ungulate abundance

in open landscapes where multiple wild species can be differentiated by high

quality imagery. Therefore, UAS constituted an excellent tool for wildlife

monitoring in general and spatial epidemiology in particular. The valuable

advantages of UAS respect to other methodologies are its low impact on wildlife

behaviour and its capacity to provide high spatio-temporal accurate information

on the surveyed populations at open landscapes. For instance, high-resolution

images obtained from UAS (S2 Fig.) allowed us to record, for each species, the

local number of individuals and to avoid the animals’ reactive responses to

observer presence [16]. In DNP, a relatively open study area, we successfully

identified the species in 99.1% of the animals detected. This result contrasts with

previous studies using UAS pictures with rapid naked-eye image analysis, that

were not able to distinguish, at species level, herbivores smaller than elephants,

also in open habitats [16]. Differences between studies could be related with a

combination of methodological factors such as: the height of the UAS (100–750 m

[16] versus 100 m in this study) and the cruise speed (an average of 80 km/h [16]

versus 40 km/h in this study).

The high precision obtained with UAS and the cost-effectiveness of the method

suppose a notable advantage of this system when monitoring wildlife distribution

in large territories, because the effort required to obtain accurate information for

large areas – as demanded by epidemiologists – is unaffordable and/or

unapproachable with the use of traditional methodologies (e.g. [11]). Other cost-

effective indirect indicators of species presence and/or abundance, such as

droppings (e.g. [48]) and browsing indices (e.g. [49]), may not be able to

distinguish between species, and therefore are not useful to study multihost

systems. However, accuracy and variation in animal detection and identification

from UAS images may depend, among other things, on habitat visual permeability

Table 4. Results of the best-fitting (i.e. the lowest DIC value) Bayesian multivariable logistic regression model used to determine the most relevant factors
explaining species positivity as regards tuberculosis.

Variable Coefficient SD 95% CI

2.5% 97.5%

Intercept –8.17 0.19 –8.57 –7.79

Species Red deer 0.71* 0.21 0.30 1.13

Wild boar 1.31* 0.18 0.95 1.68

WDN –1.50* 0.30 –2.11 –0.89

PRD 0.21* 0.05 0.09 0.31

PCT 0.12* 0.07 –0.04 0.26

Explanatory categorical variable was the TB-tested species: fallow deer, red deer and wild boar. Quantitative variables were water point density (WDN) and
predicted species abundance (PRD in red deer and PCT in cattle) obtained from the models summarised in Table 2 and Fig. 2. Coefficients, standard
deviations (SD) and 95% credible intervals (CI) are shown. Coefficients of species categories are relative to the fallow deer. Significant variables are marked
with (*).

doi:10.1371/journal.pone.0115608.t004
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and the species’ behavioural traits (e.g. [50]). On the one hand, habitat

detectability can be taken into account to estimate corrected abundances in closed

habitats, as it was done in this study. On the other, daytime elusive cryptic species

such as wild boar [37] are under-represented in the surveys (compared with

independent data, Natural Processes Monitoring Team at EBD, http://www-rbd.

ebd.csic.es/Seguimiento/mediobiologico.htm). No information with which to

model wild boar abundance was consequently obtained in this study. Future

improvements to the UAS must address this by for instance incorporating systems

with thermal sensors that are able to detect animals at night [17], [51].

Spatial patterns of ungulate abundance and TB infection

We have modelled the spatial distribution of wild ungulates and cattle on a very

fine-scale throughout DNP. In general, all the epidemiologically-connected

species selected the ecotone. This habitat offers key resources, namely food and

shelter (see also [31]), which are more relevant during the summer when drought

severely reduces the availability of resources [30]. We found differences in the

spatial patterns predicted for each species among the MA for all the species

studied. In the case of wild ungulates, this probably resembles differences in the

species’ habitat selection, as they have different ecological requirements on a local

scale (e.g. [52]). In particular, fallow deer had a higher predicted abundance than

red deer and cattle in the southernmost MA. Stone pine (Pinus pinea)

reforestations perform especially well in the southernmost MA of DNP, and

favour good pasture, which attracts fallow deer, which is probably the European

deer species that is most prone to grazing (e.g. [22]). Differences among MA were

quite significant for cattle as a consequence of the DNP cattle farming plan which

compulsorily establishes the maximum cattle stocks in each MA.

The host spatial patterns were recorded in summer 2011, when the maximum

aggregation of hosts is expected. However, TB data in sampled animals were collected

during 2006–2012. Therefore, to study the relationship between host abundance and

disease, we assumed that the spatial patterns did not change from year to year or

seasons. Our design is realistic due to TB is a chronic disease and seasonal changes are

not marked. Published observations on ungulate distribution confirm these seasonal

patterns are consistent every year [31]. In addition, the sampling years of the sampled

animals were included in the risk model, which controlled the effect of the changes in

the spatial pattern. Nonetheless future studies should address how yearly changes (or

due to the precipitation regime and water distribution in summer) in spatial

distribution affect the TB epidemiology and its spatial pattern.

By joining abundance, environmental and disease data in a unique Bayesian

modelling approach we have shown that spatial variation in the TB risk

throughout DNP could relate to: (i) TB-tested species, (iii) environmental

features, and/or (iii) predicted abundance of ungulates from UAS data. TB risk

was higher in wild boar than red and fallow deer which is consistent with the

infection pattern founded in this shared disease at South-central Spain, as has

previously been demonstrated by both field and molecular epidemiology [23],
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[27]. The Bayesian inference revealed that the high TB risk for wild ungulates was

negatively associated to water point densities. As the density of water points

increases, lower levels of aggregation are expected at these points, and the risk for

(direct and/or indirect) disease transmission should subsequently decrease [8, 53].

Water points and irrigated and cultivated fields have been identified as high-risk

areas for disease transmission between feral pigs (Sus scrofa) and cattle in

Mediterranean areas from USA [5]. These complex epidemiological scenarios

have also been described in dry areas in Africa, in which cattle share water points

and diseases with wildlife [54], [55]. In South Spain, a recent study has evidenced

that wildlife-livestock interactions occur much more often at water resources than

would be expected to occur by chance, and has argued that water points should be

considered as potential hotspots for TB transmission between wildlife and cattle

on extensive farms [53]. As a step forward, an experimental study in South Spain

evidenced that effective segregation strategies of wildlife and cattle at water points

under dry Mediterranean conditions have the potential to reduce inter-specific

contacts and TB transmission at the wildlife/cattle interface [29]. Further research

should therefore focus on the environmental persistence of M. bovis at watering

sites in ecosystems with marked dry seasons, particularly where water becomes

limited and leads to high animal aggregations.

TB risk was also positively associated with the high-predicted abundance of

ungulates and consequently served as an actual way to evaluate the explanatory

capacity of the predictions obtained by the UAS approach. The effect of local host

abundance on the inter-specific transmission is probably environmentally

mediated (indirect transmission) in Mediterranean areas [53], whereas direct

interactions, especially at intra social group level, may be more relevant as regards

determining direct rates for intra-species transmission [27]. Blanchong et al. [56]

evidenced that direct effective contacts within white-tailed deer Odocoileus

virginianus family groups were a significant mechanism for disease transmission.

Apart from water points, other scattered environmental resources have the

potential for disease transmission, such as grasslands, especially at the ecotone,

where ungulates aggregate in order to forage during the summer. Future studies,

which may benefit from the continued use of UAS for wildlife monitoring, should

take into account the seasonality of resources in a highly variable ecosystem like

DNP in order to assess both intra and inter-annual differences in the species

habitat selection and thus in the risk factors that drive disease transmission.

Supporting Information

S1 Fig. Estimated probability distribution by Bayesian modelling. Posterior

probability distribution of the variables included in the best-fitting Bayesian

model to evaluate the association among the occurrence of TB at individual level

and the predicted species abundances, while adjusting for the other risk factors

hypothesised to influence disease status in Doñana National Park.

doi:10.1371/journal.pone.0115608.s001 (DOCX)
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S2 Fig. High-resolution image obtained from UAS camera. High-resolution

image obtained from Unmaned Aircraft System camera. Domestic and wild

ungulates aggregated in the dry marshland of Doñana National Park are observed.

doi:10.1371/journal.pone.0115608.s002 (DOCX)

S1 Table. Results of abundance models. Results of the generalised lineal models

(negative binomial error distribution and logarithmic link function) used to

predict red deer, fallow deer and cattle abundance on a spatial scale in Doñana

National Park. Statistical parameters, coefficients (test-value), are shown for the

best-fitting models (in bold). Variable codes are described in Table 1. Measures

for model support (Akaike’s information criterion; AIC and DAIC) are included.

doi:10.1371/journal.pone.0115608.s003 (DOCX)

S1 File. Datasets of TB-tested animals and predicted abundances.

doi:10.1371/journal.pone.0115608.s004 (XLSX)
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Zoològica 11: 363–367.

UAS for Disease Risk Modelling

PLOS ONE | DOI:10.1371/journal.pone.0115608 December 31, 2014 15 / 17



32. Carranza J, Hidalgo de Trucios SJ, Medina R, Valencia J, Delgado J (1991) Space use by red deer in
a Mediterranean ecosystem as determined by radio-tracking. Appl Anim Behav Sci 30: 363–371.

33. Carranza J, Alvarez F, Redondo T (1990) Territoriality as a mating strategy in red deer. Anim Behav 40:
79–88.

34. Vicente J, Barasona JA, Acevedo P, Ruiz-Fons JF, Boadella M, et al. (2013) Temporal Trend of
Tuberculosis in Wild Ungulates from Mediterranean Spain. Transbound Emerg Dis 60: 92–103.

35. REDIAM (2013) Red de información ambiental de Andalucia. Consejerı́a de Medio
Ambiente y Ordenación del Territorio. Available: http://www.juntadeandalucia.es/medioambiente/site/
rediam.

36. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical
problems. Methods Ecol Evol 1: 3–14.

37. Russo L, Massei G, Genov PV (1997) Daily home range and activity of wild boar in a Mediterranean
area free from hunting. Ethol Ecol Evol 9: 287–294.

38. QGIS Development Team (2012) Quantum GIS Geographic Information System. Open Source
Geospatial Foundation Project. Available: http://qgis.osgeo.org.

39. Cameron AC, Trivedi P (2013) Regression analysis of count data (Vol. 53). Cambridge University
Press.

40. Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic
Control 19: 716–723.

41. R Development Core Team (2013) R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-project.org.
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