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ABSTRACT
We explore different estimators of the local non-linear coupling parameter, fNL, based on
the binned bispectrum presented in Bucher et al. Using simulations of Wilkinson Microwave
Anisotropy Probe (WMAP)-7-year data, we compare the performance of a regression neural
network with a χ2-minimization and study the dependence of the results on the presence of
the linear term in the analysis and on the use of inpainting for masked regions. Both methods
obtain similar results and are robust to the use of inpainting, but the neural network estimator
converges considerably faster. We also examine the performance of a simplified χ2 estimator
that assumes a diagonal matrix and has the linear term subtracted, which considerably reduces
the computational time; in this case inpainting is found to be crucial. The estimators are also
applied to real WMAP-7-year data, yielding constraints at 95 per cent confidence level of −3 <

fNL < 83.

Key words: methods: data analysis – methods: statistical – cosmic background radiation.

1 IN T RO D U C T I O N

Cosmic microwave background (CMB) fluctuations naturally arise
in inflationary models. Discriminating between different models is
a difficult task, but can be addressed by observing very faint non-
Gaussian signals in the high-order correlation functions of the CMB
temperature anisotropies. A popular approach is to search for the
local form of non-Gaussianity, where the initial curvature Gaussian
perturbations are expanded up to the second order as

� = �g + fNL

[
�2

g −
〈
�2

g

〉]
(for more details see e.g. Babich, Creminelli & Zaldarriaga 2004;
Bartolo et al. 2004).

Wilkinson Microwave Anisotropy Probe (WMAP) constraints on
the amplitude of the local form of non-Gaussianity have been able to
rule out exotic models such as ghost inflation (Arkani-Hamed et al.
2004). New data sets, such as the recent release from Planck satellite
(Planck Collaboration 2013), significantly reduce the uncertainties
on local fNL, ruling out some ekpyrotic models and imposing strong
constraints on multifield inflationary models. In fact, for single-
field inflation, fNL (hereafter fNL is the local form) should be of
the order of the spectral index (Creminelli & Zaldarriaga 2004),
given the consistency relation derived in Maldacena (2003). Recent

� E-mail: casaponsa@ifca.unican.es

papers show that this relation does not hold for non-vacuum ini-
tial states (Agullo & Parker 2011; Ganc 2011) and non-constant
superhorizon modes (Chen et al. 2013), but the vast majority of
single-field models should be ruled out by a detection of a larger fNL

value.
This type of primordial non-Gaussianity may be detected using

higher order correlation functions. The simplest of these is third
order, which is equivalent to the bispectrum in spherical harmonic
space. The first derivation of the optimal estimator, in the sense
of an unbiased estimator that saturates the Cramer–Rao inequality,
is given in Babich (2005), assuming an isotropic field. Working
with real data, however, is usually more complicated. In particular,
CMB maps have anisotropic noise due to the scanning strategy and
masked regions, both of which break the isotropy assumption for
these theoretical estimators. The masked regions are particularly
difficult to treat, as they introduce correlations among the Fourier
modes, which are otherwise expected to be independent. Crem-
inelli et al. (2006) applied the optimal estimator to real data, show-
ing that the presence of a term proportional to the a�m is required
to account for such anisotropies. In that paper the constraints are
computed using an approximation to avoid numerical difficulties.
Finally, this estimator was successfully applied in its complete form
to WMAP data by Smith, Senatore & Zaldarriaga (2009), Komatsu
et al. (2011) and Bennett et al. (2012) for 5th, 7th and 9th year,
respectively.

New imaging reconstruction techniques have recently been used
to pre-process CMB maps by smoothing the contours of the masked
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Local fNL estimators 797

regions. A simple approach is to apodize the mask by introducing
a smooth function in the pixels surrounding the masked regions.
Another approach is to fill the masked regions with a pseudo-signal,
which is termed inpainting. Several techniques have been proposed
in the literature for inpainting, which is a very delicate process since
the signal can be distorted (Bajkova 2005; Abrial et al. 2008; Starck,
Fadili & Rassat 2013).

Consequently, primordial non-Gaussianity analyses can be com-
putationally demanding, and new techniques should therefore be
investigated to overcome the computational cost of large matrix
estimations and inversions. Here we investigate the utility of a neu-
ral network to obtain the necessary weights in the fNL estimator
and compare it with the direct approach via χ2 minimization. Over
the last 20 yr, artificial intelligence techniques have been use in a
number of areas of astrophysical analysis: morphological galaxy
determination, photoredshift estimations and classification of dif-
ferent objects are examples of successful applications of neural
networks (Storrie-Lombardi et al. 1992; Firth, Lahav & Somerville
2003; Vanzella et al. 2004; Carballo et al. 2008). In particular, for
cosmological analysis, they have recently been used to reduce the
computational time of cosmological parameter estimation from ob-
servations of the CMB power spectrum (Auld et al. 2007; Auld,
Bridges & Hobson 2008). Also in CMB analysis, Casaponsa et al.
(2011b) used neural networks to define a new non-Gaussianity es-
timator and showed that networks are a valuable tool for bypassing
the inversion of ill-conditioned matrices, and to avoid covariance
matrix estimation in a χ2 analysis.

The aim of the present work is to continue our earlier study of the
power of the neural networks in the statistical analysis associated
with CMB non-Gaussianity. To this end, this paper is focused on
the study of different tools, in order to identify the most robust
and efficient estimator when dealing with real data. We compare
three different approaches to estimate fNL, based on the binned
bispectrum. The first estimator is obtained by minimizing a χ2 of
the binned bispectrum components. A second approach is based on
the optimal estimator, without taking into account the correlations
among the binned bispectrum components, which for an isotropic
field would be the same as the former. And the third method uses
the weights of a regression neural network. From these approaches
we construct different estimators to account for the effects of pre-
processing the data with inpainting and the presence of a linear
term.

The paper is organized as follows. An overview of the type of
neural network employed and the training procedure is given in
Section 2. In Section 3 we describe the binned bispectrum. The
definition of the estimators is presented in Section 4 followed by an
explanation of the main details of the implementation in Section 5.
The results are presented in Section 6, and finally the conclusions
are summarized in Section 7.

2 N E U R A L N E T WO R K S

Artificial neural networks (ANN) are a methodology for comput-
ing, based on massive parallelism and redundancy, which are fea-
tures also found in animal brains. They consist of a number of
interconnected nodes each of which processes information and
passes it to other nodes in the network. Well-designed networks
are able to ‘learn’ from a set of training data and to make predic-
tions when presented with new, possibly incomplete, data. These
algorithms have been successfully applied in several areas, in par-
ticular, we note the following applications in cosmology: Bacci-

Figure 1. Schematic diagram of a three-layer feed-forward neural network.

galupi et al. (2000), Firth et al. (2003), Ball et al. (2004), Auld
et al. (2007, 2008), Casaponsa et al. (2011b) and Nørgaard-Nielsen
(2012).

The basic building block of an ANN is the neuron or node.
Information is passed as inputs to the neuron, which processes
them and produces an output. The output is typically a sim-
ple mathematical function of the inputs. The power of the ANN
comes from assembling many neurons into a network. The net-
work is able to model very complex behaviour from input to out-
put. We use a three-layer feed-forward network consisting of a
layer of input neurons, a layer of ‘hidden’ neurons and a layer
of output neurons. Fig. 1 shows a schematic design of such a
network.

The outputs of the hidden layer and the output layer are related
to their inputs as follows:

hidden layer: hj = g(1)
(
f

(1)
j

)
; f

(1)
j =

∑
i

w
(1)
ji xi + θ

(1)
j , (1)

output layer: yk = g(2)
(
f

(2)
k

)
; f

(2)
k =

∑
j

w
(2)
kj hj + θ

(2)
k (2)

for each hidden node j and each output node k. The index i runs
over all input nodes. The functions g(1) and g(2) are called activation
functions. The non-linear nature of g(1) is a key ingredient in con-
structing a viable and practically useful network. This non-linear
function must be bounded, smooth and monotonic; we use g(1)(x) =
tanh x. For g(2) we simply use g(2)(x) = x. The layout and number of
nodes are collectively termed the architecture of the network. For a
basic introduction to artificial neural networks the reader is directed
to Mackay (2003) and Golden (1996).

For a given architecture, the weights w and biases θ define the
operation of the network and are the quantities we wish to determine
by some training algorithm. Basically, the training process is an
iterative algorithm that optimizes a given objective function that
quantifies the accuracy of the network outputs. We denote w and θ

collectively by the network parameters a. As these parameters vary
during training, a very wide range of non-linear mappings between
inputs and outputs is possible. In fact, according to a ‘universal
approximation theorem’ (Leshno 1993), a standard three-layer feed-
forward network can approximate any continuous function to any
degree of accuracy with appropriately chosen activation functions
and a sufficient number of hidden nodes.
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In our previous application of ANN to the estimation of fNL, a
classification neural network was used (Casaponsa et al. 2011b).
Here, we instead use a regression network, which we find to be as
useful as the classification approach, and also allows a more direct
comparison with the χ2 minimization procedure. Additionally, us-
ing a regression network has the advantage of reducing the network
parameter space, making the training faster.

In Casaponsa et al. (2011b), we used neural networks for which
the inputs were third-order moments of two wavelet decomposi-
tions of the CMB map: the Healpix wavelet (HW; Casaponsa et al.
2011a) and the spherical Mexican hat wavelet (SMHW; Curto,
Martı́nez-González & Barreiro 2009, 2011). We found the resulting
fNL estimator had the same accuracy as the standard one based on
χ2-minimization, but was much faster to evaluate. Here, the inputs
to our neural networks are the estimator for the bispectrum proposed
by Bucher, van Tent & Carvalho (2010), defined in a number of bins
in l-space, which reduces the dimension of the problem by a factor
of 105. Our aim is to learn a mapping from the binned bispectrum
components of the (possibly) non-Gaussian CMB (assembled into
an input feature vector x) to the corresponding fNL of the map; this
is discussed in more detail below.

A suitable objective function for this problem is

L(a) = 1

2

∑
n

∑
k

[
t

(n)
k − y

(n)
k (x(n), a)

]2
, (3)

where the index n runs over the training data set D = {x(n), t (n)}, in
which the target vector t (n) for the network outputs are the fNL values,
as explained in the next section. One then wishes to find network pa-
rameters a that minimize this objective function as the training pro-
gresses. This is, however, a highly non-linear, multimodal function
in many dimensions whose optimization poses a non-trivial prob-
lem. We perform this optimization using the MEMSYS package (Gull
& Skilling 1999). This algorithm considers the parameters a to have
prior probabilities proportional to eαS(a), where S(a) is the positive–
negative entropy functional (Hobson & Lasenby 1998), and α is a
hyperparameter of the prior that sets the scale on which variations
in a are expected. The value of α is chosen to maximize its marginal
posterior probability, value of which is inversely proportional to the
standard deviation of the prior. Thus for a given α, the log-posterior
probability is proportional toL(a) + αS(a). For each chosen α there
is a solution â that maximizes the posterior. As α varies, the set of
solutions â is called the maximum-entropy trajectory. We wish to
find the solution for which L is minimized which occurs at the end
of the trajectory where α = 0. For practical purposes we start at a
large value of α and iterate downwards until α is sufficiently small
so that the posterior is dominated by the L term. MEMSYS performs
this algorithm using conjugate gradient descent at each step to con-
verge to the maximum-entropy trajectory. The required matrix of
second derivatives of L is approximated using vector routines only,
thus circumventing the need for O(N3) operations required for exact
calculations. The application of MEMSYS to the problem of network
training allows for the fast efficient training of relatively large net-
work structures on large data sets that would otherwise be difficult
to perform in a reasonable time. Moreover the MEMSYS package also
computes the Bayesian evidence for the model (i.e. network) un-
der consideration (see e.g. Jaynes & Bretthorst 2003, for a review),
which provides a powerful model selection tool. In principle, val-
ues of the evidence computed for each possible architecture of the
network (and training data) provide a mechanism to select the most
appropriate architecture, which is simply the one that maximizes the
evidence.

3 BI NNED BI SPECTRU M

Several approaches to bispectrum analyses have been proposed in
the literature, such as the KSW (Komatsu, Spergel & Wandelt 2005),
Skew-Cls (Munshi & Heavens 2010), wavelets (Curto et al. 2009,
2011; Casaponsa et al. 2011a) or needlets (Pietrobon et al. 2009;
Donzelli et al. 2012) among others. Furthermore, Bucher et al.
(2010) and Fergusson & Shellard (2011) presented bispectrum esti-
mators that reduce the dimensionality of the problem without losing
significant information. In particular, we use the bispectrum estima-
tor defined in Bucher et al. (2010). The proposed method consists of
joining the bispectrum components in bins, significantly reducing
the computational time, but maintaining the quality of the estima-
tor of fNL. Bucher et al. (2010) show that this is the case for ideal
maps, with isotropic noise and small symmetric masks. The binned
bispectrum is also applied to Planck data in Planck Collaboration
(2013) to constrain primordial non-Gaussianity. Here we study with
more detail its applications to realistic data, for which we used sim-
ulations with WMAP-7-year characteristics.

As a starting point, the angle-averaged reduced bispectrum is
defined by

bl1l2l3 =
∫

T�1T�2T�3 d�, (4)

where T�(n) = ∑
m a�mY(n). The binned reduced bispectrum is

then

babc =
∑
�1∈Ia

∑
�2∈Ib

∑
�3∈Ic

b�1�2�3 , (5)

where In are bins in �. This definition of the reduced bispectrum,
differing from the standard one by the factor I 2

�1�2�3
(for details see

Komatsu 2002; Bucher et al. 2010), is convenient since one can
write babc in terms of Ta, Tb and Tc which are the binned maps:

Tn =
∑
�i∈In

T�i
. (6)

The advantage of constructing maps in �-bins is that the number
of transformations to spherical harmonic space is significantly re-
duced. Then, the resulting bispectrum estimator is faster to construct
than the one based on the KSW estimator (Komatsu et al. 2005) or
the SMHW (Curto et al. 2011).

4 fNL ESTI MATO RS

The optimal estimator for fNL, in the sense of an unbiased estimator
that saturates the Cramer–Rao inequality, is obtained by performing
an Edgeworth expansion of the probability distribution of the a�m

for weakly non-Gaussian data (Babich 2005; Creminelli et al. 2006;
Smith et al. 2009). This estimator is found to have a cubic term and
a linear term in a�m. The latter term plays an important role under
realistic conditions, where anisotropic instrumental noise and/or a
mask are present.

The form of this estimator can also be understood using the
properties of the Wick product. As demonstrated in Donzelli et al.
(2012), Marinucci & Peccati (2011) and Peccati & Taqqu (2011),
the Wick product of a cubic variable, which is given by

: x1, x2, x3 := x1x2x3 − x1 〈x2x3〉 − x2 〈x1x3〉 − x3 〈x1x2〉 , (7)

has a smaller variance than the cubic variable itself, while not af-
fecting the mean value as long as the variables xi are Gaussian and
have a mean value of zero. Then, if we replace each cubic term in an
estimator by its Wick product, it will yield an estimator with lower
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variance. Following this reasoning, the binned bispectrum defined
in Section 3 can be replaced by its Wick product

: TIaTIbTIc : = TIaTIbTIc − 〈
TIaTIb

〉
TIc

− 〈
TIbTIc

〉
TIa − 〈

TIaTIc

〉
TIb . (8)

Note that Ti = Ti(x), since there is a dependence on the pixel for
anisotropic maps.

Donzelli et al. (2012) have proved that for the case of wavelet
and needlet coefficients, the linear term is basically equivalent to
removing the mean value of the coefficients. In order to see if
this is the case for the binned bispectrum, we explore the option
of substituting T ′

n = Tn − 〈Tn〉, where 〈Tn〉 is computed with the
unmasked pixels. This would be less costly than estimating the
correlation matrix 〈TaTb〉 required for the computation of the linear
term.

In the following subsections, we describe three methods for
choosing the weights that are used to construct the final fNL es-
timator. In each case, estimators are constructed with and without
the linear term contribution to explore its importance. Also, the
performance of these estimators is tested on inpainted and non-
inpainted maps, with the methodology explained in Section 5.3. In
all cases the original mask M is applied again at the final stage when
computing the binned bispectrum components:

babc =
Npix∑
i=1

Mi(Ta,iTb,iTc,i)

4πNpix
, (9)

where Npix = ∑
iMi. The efficiency achieved by the estimators

will be compared to that defined by the Cramer–Rao inequality.
The Cramer–Rao bound states that the minimum variance for any
unbiased estimator is given by the inverse of the Fisher matrix
information. A useful reference value in the case of partial sky
coverage is obtained from the full sky estimator corrected by the
fraction of the available sky. Therefore, the minimum variance for
fNL is estimated to be

σ 2
fh =

[
fsky

∑
�1≤�2≤�3

(〈B�1�2�3 〉1
)2


C�1C�2C�3

]−1

, (10)

where 
 takes values 1, 2 or 6 when all �s are different, two are
equal or all are the same and fsky is the fraction of the sky available.
For (10) to be used for a realistic case, the power spectrum must
include the noise and the beam contribution. The beam also needs
to be included in the bispectrum part. We have used WMAP-7-year
characteristics, in particular the average of the two channels of 61
and 94 GHz (V and W) and the extended mask KQ75. In terms of
the reduced bispectrum defined in Section 3, the angular average
bispectrum B�1�2�3 is

B�1�2�3 =
√

4π

(2�1 + 1)(2�2 + 1)(2�3 + 1)

×
(

�1 �2 �3

0 0 0

)−1

b�1�2�2 . (11)

4.1 Approximated maximum likelihood estimator (AMLE)

The standard approach in this type of analysis is to use the fact
that the third-order moments are nearly Gaussian, and therefore the

maximum-likelihood estimator is obtained approximately by the
minimization of a χ2 given by

χ2 =
∑

abc,def

(
babc − fNL〈babc〉1

)
C−1

abc,def

(
bdef − fNL〈bdef〉1

)
, (12)

where 〈bdef〉1 is the expected value for fNL = 1 and C−1
abc,def =

〈babc〉〈bdef〉 − 〈babcbdef〉. From the previous equation is straightfor-
ward to show that the fNL estimator for an observed map is

fNL =
∑

abc,def

〈babc〉1C−1
abc,defb

obs
def∑

abc,def〈babc〉1C−1
abc,def〈bdef〉1

. (13)

In order to include the linear term correction, TaTbTc should be
substituted by its Wick product (8), wherever it appears. The mean
value of the linear term is zero, and thus it vanishes in the term of
the estimator related to the model, whereas it needs to be included
in the covariance matrix. Thus, the corresponding estimator is

fNL =
∑

abc,def

〈babc〉1C−1
abc,def∑

abc,def〈babc〉1C−1
abc,def〈bdef〉1

×
(

1

4πNpix

Npix∑
i

Td,iTe,iT
obs

f,i

−〈Td,iTe,i〉T obs
f,i − 〈Td,iTf,i〉T obs

e,i − 〈Te,iTf,i〉T obs
d,i

)
, (14)

where 〈babc〉1 is estimated using the regression coefficient of a lin-
ear fit to the mean values of 1000 non-Gaussian simulations with
different fNL values. In particular, this is a conservative number
that ensures that the mean values have converged.1 For C−1 we
assume that it is independent of fNL, which is a good approxi-
mation in the limit of weak non-Gaussianity, and it is thus esti-
mated with Gaussian simulations (∼25 000 are necessary for con-
vergence issues). The term 〈TaTb〉 is estimated with 1000 Gaussian
simulations.

4.2 Approximated maximum likelihood estimator with
diagonal covariance matrix (AMLED)

The estimator proposed by Bucher et al. (2010) used the approxi-
mation of assuming a diagonal covariance matrix. In this case, the
estimator simplifies significantly, since the covariance matrix does
not need to be estimated or inverted, and one obtains

fNL =
∑
abc

〈babc〉1bobs
abc/var(babc)∑

def(〈bdef〉1)2/var(bdef)
, (15)

where var(babc) is the variance of the binned bispectrum compo-
nents, which is computed with simulations. Besides its computa-
tional efficiency, another advantage of this estimator is that can be
obtained analytically (see Bucher et al. 2010, for details).

Strictly speaking, this estimator is optimal only for a full-sky
CMB experiment with isotropic noise (although it has been shown
to work well also in presence of a reduced symmetric mask). Under
realistic conditions, a linear term of a similar form to that used

1 To check that convergence is reached with N simulations, we simply test
that two independent sets of N/2 realizations give consistent results.
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above needs to be added, such that

fNL =
∑
abc

〈babc〉1/var(babc)∑
def(〈bdef〉1)2/var(bdef)

(
1

4πNpix

Npix∑
i

Ta,iTb,iT
obs

c,i

−〈Ta,iTb,i〉Tc,i − 〈Ta,iTc,i〉Tb,i − 〈Tb,iTc,i〉Ta,i

)
. (16)

As with the previous estimator, 1000 simulations were used for the
model estimation and another 1000 to obtain var(babc). This implies
a reduction by a factor >10 in the number of simulations required
with respect to the AMLE, as the convergence in the estimation of
the variance is reached with much smaller number of realizations
than that of the covariance matrix.

4.3 Neural network estimator (NNE)

The architecture of our three-layer neural network is defined by
three parameters: the number of input, output and hidden nodes.
The first two are determined by the problem at hand; in this case
the dimension of the input vector depends on the number of bins
chosen and there is a single output.

Although the MEMSYS algorithm provides routines to determine
the optimal value of the number of hidden nodes using the Bayesian
evidence (Gull & Skilling 1999), in this application nhid is deter-
mined empirically by measuring the accuracy of the trained net-
works on an independent testing set. In this application, we have
found that in fact the optimal architecture contains no hidden nodes,
resulting in what is effectively a linear mapping between input and
output. This is not surprising, since we are effectively ‘asking’ the
network to learn the mean value and dispersion of the binned bis-
pectrum components for each fNL; since the expectation value is
linearly dependent on the fNL, this network architecture trivially
satisfies this requirement. Indeed, networks of this sort provide a
simple way of obtaining the (pseudo)inverse of any matrix.

Then, for zero hidden nodes, the single network output is just a
linear function of the inputs. Once the network parameters (w, θ )
are found during the training process, the estimator for fNL is thus
given by

fNL =
∑
abc

wabcbabc + θ. (17)

As with the previous estimators the network is also trained including
the linear term, in which case

fNL =
∑
abc

wabc

(
1

4πNpix

Npix∑
i

Ta,iTb,iTc,i

−〈Ta,iTb,i〉Tc,i − 〈Ta,iTc,i〉Tb,i − 〈Tb,iTc,i〉Ta,i

)
+ θ. (18)

Comparing with the AMLE estimator, we can see that it is equivalent
to a neural network with parameters

wdef 	→
∑
abc

〈babc〉1C−1
abc,def∑

abc,def〈babc〉1C−1
abc,def〈bdef〉1

, (19)

θ 	→ 0. (20)

If this were the optimal linear combination to estimate fNL, the neu-
ral network would find the same result as the AMLE but avoiding
all the expensive calculations required in the direct computation of
this estimator (provided that we have chosen a linear combination

for the NNE). Conversely, if that combination were not optimal,
the network should be able to find different, more optimal, weights.
For instance, for the AMLE to be optimal, the considered statis-
tics should follow a Gaussian distribution, whereas the NNE does
not make any assumptions about the intrinsic distribution of the
inputs. Therefore, the neural network is expected to perform better
when working with non-Gaussian statistics. In addition, the neural
network does not require to assume that the covariance matrix is
independent of fNL. Even if this approximation works well for the
current application, it may not always be the case, which would
significantly complicate the calculation of the AMLE. In such cases
the NNE would represent a clear advantage over the χ2 minimiza-
tion. Finally, we would also like to point out that, although for the
current application a linear combination was found to be the best
choice for the NNE, in a general case, this estimator is not restricted
to a linear combination of the inputs, which can be useful in other
problems.

5 IM P L E M E N TAT I O N

In this section the non-Gaussian simulations used for the analyses
as well as some technical details required for the implementation of
the estimators are described.

5.1 Non-Gaussian simulations

Two different sets of non-Gaussian realizations are used. A set
generated with the map-making method proposed in Fergusson,
Liguori & Shellard (2010) and described also in Curto et al. (2011),
and a set of publicly available realizations2 generated by Elsner
& Wandelt (2009). In the first method, the non-Gaussian part of
the map (aNG

�m ) is taken directly from the theoretical bispectrum,
while the second algorithm starts from the primordial curvature
fluctuations and is therefore more precise.

The two different sets are used for the following reasons. Having
a large number of independent realizations is necessary to train the
network, as well as to test its performance with the number of train-
ing data. Since the first set is faster to produce, 30 000 independent
realizations were generated as in Curto et al. (2011). In the analysis
with the SMHW of Curto et al. (2011), they found the dispersion
on fNL to be slightly larger than using the simulations of set 2. In
Curto et al. (2011), constraints on fNL are obtained with both sets
finding a discrepancy of 5 per cent. We find similar deviations for
the binned bispectrum. This is observed if the average bispectrum
at the numerator in (10) is computed with simulations with both
sets. Then, as the model of set 1 is given by an approximation, the
minimum dispersion of the parameter obtained with realizations is
slightly larger than using the analytical dispersion in equation (10).
Conversely, using realizations of set 2 we find a closer value to the
analytically computed lower bound.

Hence, after proving that the NNE converges with few thousand
realizations for the best performing form of the estimator, the second
set is used for the final results. This is convenient to be able to
compare our results with the Fisher dispersion of (10), and with
the ones obtained with the optimal estimator (Komatsu et al. 2011),
where simulations equivalent to the ones of set 2 are used.

The Gaussian and non-Gaussian harmonic coefficients of the
CMB realizations, aNG

lm and aG
lm, either generated from set 1 or set 2,

2 http://planck.mpa-garching.mpg.de/cmb/fnl-simulations/
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Figure 2. Inpainting effect shown in the masked WMAP-7-year map. On the top the initial temperature map with the mask in dark grey and an amplified
region are presented and on the bottom, the same map and region are given after inpainting.

are combined to obtain the non-Gaussian realization with different
values of fNL:

alm = aG
lm + fNLaNG

lm . (21)

Noise-weighted V + W band WMAP-7-year realizations were then
constructed as explained in Curto et al. (2009) and Casaponsa
et al. (2011a), and the KQ75 mask was then applied, which covers
roughly 29 per cent of the sky.

5.2 Binning scheme

One is free to choose the number and size of the bins in �-space for
the binned bispectrum. Bucher et al. (2010) found that for �max =
2000 and 64 bins the results obtained were 99.3 per cent of the
optimal value. For an application to WMAP, one has �max = 1024,
so the corresponding number of bins is 32. We have tested the
performance of the estimators with different number of bins and
find that for nbin = 28 the results have converged. Therefore, the
following results use this number of bins, which also provides a
modest saving in computation with respect to 32 bins. Conversely
to the exhaustive choosing of the binning scheme done in Bucher
et al. (2010) estimator, here we simply use logarithmic bins. The
logarithmic scale is chosen by imposing the condition that all bins
have at least one �.

The binned bispectrum components are computed
from combinations of three binned maps TaTbTc =∑

�1∈Ia

∑
�2∈Ib

∑
�3∈Ic

T�1T�2T�3 . It can be noticed that some
of the combinations �1�2�3 might not satisfy the triangle condition
(�3 − �2 ≤ �1 ≤ �2 + �3). To avoid as far as possible those
non-contributing combinations, we discard the binned bispectrum
components where all the contained � combinations do not meet
the triangle condition. For that reason the components used are the
ones that hold the following condition:

�min
Ic

− �max
Ib

≤ �max
Ia

≤ �max
Ic

+ �max
Ib

,

where �min
In

and �max
In

are the minimum and maximum value of � of
the bin In. Then, the binned bispectrum for nbin = 28 consists of
1077 components, whereas the full bispectrum would have ∼108

components.

5.3 Inpainting

Several inpainting methods have been developed for general imag-
ing reconstruction (see e.g. the review by Bertalmio et al. 2000). The
goal of these methods is to restore missing or damaged regions of
an image to recover the original signal as far as possible. For CMB
map reconstruction, the ideal inpainting method would lead to a
restored map preserving the statistical properties of the unmasked
map.

Different approaches have been used to reduce the discontinuities
generated by the mask edges in CMB maps, since they introduce
undesirable correlations among the binned bispectrum components.
As the intention here is to reduce this impact, rather than reconstruct
the full map, we use a simple iterative process that averages over
the direct neighbours of the masked pixels, and is based on the work
of Oliveira et al. (2001).

One begins with the map T (x) and the binary mask M(x). Then
each pixel of the masked map T′ = T M with value zero is substi-
tuted by the average of its immediate neighbours, whether masked
or not, using the HEALPix subroutine NEIGHBOURS. The process is re-
peated 1000 times, leaving the masked point sources completely
inpainted and smoothing the edges of the galactic mask. The re-
sults of this process are illustrated in Fig. 2. We find that, in this
case, the technique is more effective than simply using an apodized
mask.

5.4 Neural network training process

To train our fNL network we provide it with an ensemble of training
data D = {x(n), t (n)}. The nth input vector x(n) contains the binned
bispectrum components, explained in Section 3, of the ith simulated
CMB map. The output target is the corresponding fNL value of the
ith CMB simulation. Thus, for nbin = 28 the input vector has 1077
components, and the target vector t(n) for the network consists of
only one component. From the training set, 20 per cent of the
realizations are reserved for the validation process.

The network weights are computed during the training procedure,
which in this case requires only a few seconds. The performance
of the network is validated during the training process using an
independent set of testing data.
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Figure 3. In the top panel the Pearson correlation coefficient between true
fNL value and the network estimator f̂NL for case 3 of Table 2 versus the
number of iterations. Bottom panel is for the root mean squared error of fNL

at each iteration. Asterisks denote training data and dots denote validation
data.

Fig. 3 illustrates the training evolution for the regression network
with nhid = 0 and ndata = 10 000. In the top panel we plot the
correlation coefficient between the target and the network outputs
on the training set and the test set. We see that a divergence occurs
around 60 iterations of the MEMSYS optimizer due to overfitting.
The same behaviour is confirmed if the root mean squared error is
studied (bottom panel). The network parameters use to construct
our final network estimator in (17) and (18) are the ones that give
a maximum value of the correlation coefficient and a minimum of
the root mean squared error in the validation data set.

It is worth noting that for training the neural network, we need to
choose a certain range of |fNL| to generate the required simulations.
We find that [−220 220] is a safe interval for training the network,
without significantly biasing the results for |fNL| up to 30.

6 R ESU LTS

As a preliminary check, we applied the three estimators to Gaus-
sian full-sky maps without noise, finding very similar results in all
cases (see Table 1). In this ideal case, the AMLE should in principle
coincide exactly with the AMLED, but because of the lack of cor-
relations among the binned bispectrum components the AMLED
seems to be more efficient. This is probably due to numerical un-
certainties that arise in the covariance matrix estimation. The neural

Table 1. Results for noiseless full-sky
maps of set 1. The first column is for
the estimator used, second column indi-
cates the expected dispersion for �max =
1024 and in the last two columns the
dispersion and mean value found for
1000 Gaussian maps are shown.

Estimator σfh σg 〈fNL〉Gauss

AMLED 9.7 − 0.2
AMLE 9.7 10.3 − 0.3

NN 9.8 − 0.2

network is found to be nearly as efficient as the AMLED. It is also
worth noticing that the estimators do not present a significant bias.

An important difference between the estimators is the total num-
ber of realizations required to converge, which is directly related to
the computational efficiency. In particular, the generation of a sim-
ulation at lmax = 1024 takes around 1 min and the obtention of the
binned bispectrum components takes approximately 3 min of CPU
time. For the AMLED, a few hundred realizations are sufficient
to estimate the variance of the binned bispectrum. For the AMLE
estimator, however, it is necessary to estimate the covariance ma-
trix, which requires at least 25 000 Gaussian simulations. For the
NNE, a few thousand realizations are required for the training pro-
cess to converge. Nonetheless, it is worth noting that the number of
training realizations required by the NNE does vary with the case
being studied. For example, for inpainted maps where neither the
linear term is taken into account nor the mean is subtracted (case
1 of Table 2), the NNE needs 10 000 independent simulations to
converge.

In applying the three estimators to realistic simulations, based on
WMAP-7-year data, larger differences are observed in the results;
these are summarized in Table 2. We find that the AMLED estimator
reaches values close to the expected dispersion if and only if the
linear term is subtracted and inpainting is performed. Actually, if the
estimator is applied to non-inpainted maps, the dispersion worsens
by a ∼60 per cent. Of course, in the absence of the linear term, the
estimator becomes highly suboptimal, giving errors of 300 per cent.
This is not the case for the other two estimators. We notice that
the full covariance matrix χ2 estimator and the neural network give
similar results if instead of taking into account the linear term, the
mean value of the intermediate maps is subtracted, as is the case for
wavelets and needlets (Donzelli et al. 2012). This is observed in both
inpainted and non-inpainted maps, comparing cases 2 and 3 and 4
and 5, respectively (see Table 2). Indeed, these estimators appear
more robust, since the improvement due to the inpainting is small.
In particular, comparing cases 2 and 4, the NNE estimator without
inpainting increases the dispersion only by 5 per cent and for the
full χ2 estimator by ∼10 per cent, while for the AMLED the results
are much worse. Although similar results are found with the AMLE
and the NNE estimators, one important difference is the number
of simulations required to construct them. As commented before,
25 000 Gaussian realizations were used to estimate the covariance
matrix in AMLE. As shown in top panel of Fig. 4, the NNE requires
dramatically fewer training realizations and also has the advantage
that the average value of the binned bispectrum at fNL = 1 does
not need to be estimated. In the same figure, bottom panel, we plot
the bias found for the fNL estimates for 1000 Gaussian realizations
for the three estimators with the number of simulations used. One
sees that the AMLE requires more realizations than the other two
estimators to produce unbiased results.

All these results indicate that the neural network is a viable short
cut to obtaining the necessary weights to construct the AMLE es-
timator. In Fig. 5 the weights found for the neural network are
compared to those of the AMLE. Note that the weights of both
estimators are very similar, validating the relation stated in (19).
The contribution of the network parameter θ is negligible for all
cases.

In terms of computational demand, the most efficient estimators
are the NNE and the AMLED, with the number of simulations
required at least 10 times smaller than for the AMLE. Note that for
the AMLED we have used realizations to estimate the average of
the bispectrum at fNL = 1, therefore, the final number of realizations
employed is similar to the ones used for training the NNE.
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Table 2. Comparison of results depending on the estimator. The columns are the characteristic of the estimator, if
an inpainting of the simulations is made, if the linear term is added and if the mean was subtracted on the binned
intermediate maps. Next columns are σ (fNL) and 〈fNL〉 for 1000 Gaussian simulations. Finally, the relative error
related to the minimum expected dispersion is shown in the last column.

Case Inpainting Linear term Mean subs. Estimator σg 〈fNL〉Gauss (σfh − σg)/σfh(percent)

1 Yes No No AMLED 107 3 300
AMLE 32.7 − 1 45

NN 29.7 − 0.3 32

2 Yes Yes No AMLED 22 0.7 0.9
AMLE 23 0.7 3.5

NN 22 0.7 0.4

3 Yes No Yes AMLED 31.5 0.7 40
AMLE 24.0 0.7 6.7

NN 23.1 0.5 2.7

4 No Yes No AMLED 35.9 − 0.3 60
AMLE 24.3 0.1 9.3

NN 23.6 0.6 4.8

5 No No Yes AMLED 37.0 1.5 64
AMLE 24.6 − 0.4 8.0

NN 23.6 0.4 4.8

For all three estimators, the best results are obtained when the
map is inpainted and the linear term is subtracted (see case 3 of
Table 2, indicated in bold face). For this optimal case, we compute
〈babc〉1 with 1000 simulations of set 2 (Elsner & Wandelt 2009),
to compare it with the expected dispersion for a WMAP-7-year
characteristics, computed as in (10). The neural network is now
trained with this set of a�m. As we have seen, the NNE typically
requires 2500 independent training realizations to converge. Since
only 1000 are available, we therefore generated 10 000 simulations
using the same set of a�m rotating them and adding different noise
contributions. This procedure was used in Casaponsa et al. (2011b)
and was found to be useful when only a small number of realizations
is available.

In Table 3 the final results for all of the estimators are shown. The
values for WMAP-7-year data are without point sources correction,
which is given in the last column of the same table. The unresolved
point sources contribution to fNL is obtained using the same proce-
dure as in Curto et al. (2009) and Casaponsa et al. (2011a). As ex-
pected, by looking at the preliminary results, the tightest constraints
are given by the NNE and AMLED estimators. For comparison, the
WMAP-7-year map fNL estimate with the optimal estimator obtained
by Komatsu et al. (2011) is 42, without the point sources correction.
Note that the closest value is given by the NNE. The constraints for
fNL with the point source contribution taken into account at 95 per
cent confidence level are −3 < fNL < 83 to be compare with −2 <

fNL < 82 given by the optimal estimator.

7 C O N C L U S I O N S

We have trained a regression network with the binned bispectrum
components of non-Gaussian realizations in order to obtain con-
straints on the local non-linear coupling parameter fNL. We have
compared the results with those obtained with a maximum likeli-
hood estimator, using either a diagonal or a full covariance matrix.
We also studied the effect of the addition of the linear term, mean
subtraction and the use of inpainting.

We find that the three estimators become close to optimal if the
linear term is subtracted and inpainting is performed. We find that
the linear term is absolutely necessary if a diagonal covariance ma-
trix is used. However, its effect is very small if the full covariance
matrix or the neural network is used and the mean is subtracted from
the binned maps, as found for wavelets and needlets in Donzelli
et al. (2012) and Curto, Martı́nez-González & Barreiro (2012). In
that sense, the choice of the estimator depends on the difficulty of
computing the linear term. Although the best results for all estima-
tors are obtained when inpainted maps are used, the largest effect
of this technique is seen in the AMLED estimator, with the other
two being less affected by the presence of a mask. Thus, the most
robust tools are the AMLE and the NNE estimators, with the NNE
displaying a clear computational advantage, since the covariance
matrix does not need to be estimated or inverted; this reduces sig-
nificantly the number of simulations required. Another advantage
of the neural network estimator arises from the fact that for χ2 min-
imization the dependence of the covariance matrix on fNL makes
a full solution computationally hard, if not unfeasible, for certain
problems. Conversely, the NNE bypasses such calculations, thereby
simplifying the analysis.

We conclude that the most efficient tools are the neural network
regression estimator and the AMLED estimator. The latter would
be the choice if a small set of non-Gaussian simulations is available
(∼1000), or analytical models are preferred. However, the AMLED
depends on a specific pre-processing of the data. Neural networks
give almost optimal results, without the use of inpainting, thereby
avoiding the need to alter the data.

Finally, the constraints for WMAP-7-year data, with the unre-
solved point sources contribution included, at 95 per cent confidence
level would be −3 < fNL < 83. These results are compatible with
fNL = 0, as found in Komatsu et al. (2011), Curto et al. (2011) and
Bennett et al. (2012). Note that we have used foreground reduced
maps, and the foregrounds have not been marginalized over in this
analysis.

We note that neural networks would be a useful method to esti-
mate jointly other forms of non-Gaussianity, such as those where
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Figure 4. Comparison of the efficiency (top) and bias (bottom) of the three
estimators with respect to the number of simulations used to construct the
estimator. For reference, the optimal values for the dispersion and bias
(dashed black line) are also shown. Note that for the NNE, the simulations
are used for the training process, whereas for the AMLE they are employed
to estimate the covariance matrix. For the AMLED, they correspond to the
number of simulations used to obtain the diagonal elements of the covariance
matrix.

the number of outputs were set to a number of different fNL shapes
(e.g. local, equilateral, orthogonal), but this is left for future work.
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Table 3. Results for inpainted Gaussian realizations.
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& Wandelt simulations (set 2). The columns from left to
right are the estimator used, the Fisher σ computed from
equation 10, the dispersion and mean value of f̂NL for 1000
Gaussian simulations. Followed by the fNL value found for
WMAP-7-year data and the contribution expected by the
unresolved point sources (
fNL).

Estimator σfh σg 〈fNL〉Gauss f
map
NL 
fNL

AMLED 21.7 −0.2 33.4 3 ± 2
AMLE 21.3 22.4 −0.1 39.8 3 ± 2

NN 21.4 0.5 44.2 4 ± 2
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Curto A., Martı́nez-González E., Barreiro R. B., 2009, ApJ, 706, 399
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