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Abstract Harbors and marinas are well known

gateways for species introductions in marine environ-

ments but little work has been done to ascertain

relationships between species diversity, harbor type,

and geographic distance to uncover patterns of

secondary spread. Here, we sampled ascidians from

32 harbors along ca. 300 km of the NWMediterranean

coast and investigated patterns of distribution and

spread related to harbor type (marina, fishing, com-

mercial) and geographic location using multivariate

techniques. In total, 28 ascidians were identified at the

species level and another 9 at the genus level based on

morphology and genetic barcoding. Eight species

were assigned to introduced forms, 15 were given

native status and 5 were classified as cryptogenic.

Aplidium accarense was reported for the first time in

the Mediterranean Sea and was especially abundant in

23 of the harbors. Introduced and cryptogenic species

were abundant in most of the surveyed harbors, while

native forms were rare and restricted to a few harbors.

Significant differences in the distribution of ascidians

according to harbor type and latitudinal position were

observed. These differences were due to the distribu-

tion of introduced species. We obtained a significant

correlation between geographic distance and ascidian

composition, indicating that closely located harbors

shared more ascidian species among them. This study

showed that harbors act as dispersal strongholds for

introduced species, with native species only appearing

sporadically, and that harbor type and geographic

location should also be considered when developing

management plans to constrain the spread of non-

indigenous species in highly urbanized coastlines.

Keywords Tunicates � Introduced species �
Barcoding � Artificial substrates � Distribution �
Diversity

Introduction

Maritime activity has been spreading non-native

species around the globe since early attempts to

voyage by sea (Hewitt et al. 2009). However, recent
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increases in the number of artificial substrates avail-

able to non-indigenous species have greatly acceler-

ated the introduction process (Glasby and Connell

1999). Once a species is well established in a new area,

local fishing and recreational boating potentially

facilitate further range expansion (Wasson et al.

2001; Darbyson et al. 2009; Davidscon et al. 2010).

Thus, harbors and marinas play crucial roles in the

introduction of marine species, including the initial

inoculation of a species from another area and the

subsequent spread at a local level (also called pre-

border and post-border processes; Forrest et al. 2009).

To date, most studies have focused on cataloguing the

exotic species observed in a given location or harbor

(e.g. Arenas et al. 2006; Callahan et al. 2010; Carman

et al. 2010; Sephton et al. 2011; Pyo et al. 2012); while

a surprisingly low number of studies have explored the

links between these harbors, including patterns of

species turnover (beta-diversity), harbor type (recre-

ational, fishing, commercial or mixtures thereof), or

temporal or geographic trends (e.g. Lambert and

Lambert 2003; Cohen et al. 2005; Grey 2009a).

The Mediterranean is the largest enclosed sea on

Earth and is connected to most parts of the world by

substantial maritime traffic (Kaluza et al. 2010; Keller

et al. 2011), although vessels from the North Atlantic

represent over 55 % of all entries (CIESM 2002). The

shipping industry is largely responsible for the intro-

duction of alien species from distant areas into the

Mediterranean Sea and is one of the major vectors of

spread, second only to corridors such as the Suez

Canal (Zenetos et al. 2012). In addition, the highly

urbanized Mediterranean Sea supports a dense net-

work of harbors and marinas, especially along the

northwestern coast (Airoldi and Beck 2007). Thus, the

Mediterranean Sea is a well-suited location to test the

importance of harbors as entrance gates to exotic

species, while the densely packed northwestern coast

and its high number of harbors and marinas allow

testing relationships between species diversity, harbor

type, and geographic distance to uncover patterns of

secondary spread. Moreover, the enclosed nature of

Mediterranean harbors allows for immediate quaran-

tine and confined attempts of eradication should a

known invader arrive. In this sense, knowledge of the

processes of secondary spread can be used to define

internal borders (Forrest et al. 2009), and direct

contingency responses to maximize efficiency.

Ascidians or sea-squirts (Chordata, Tunicata) are

sessile invertebrates ideally suited for the study of

introduction processes as related to harbor dynamics.

Firstly, ascidians are especially abundant on artificial

substrates and are among the taxa with the highest

recorded number of introduced species (Lambert and

Lambert 1998, 2003; Paulay et al. 2002; Callahan et al.

2010; Aldred and Clare 2014). Secondly, ascidian

larvae are short-lived and usually settle within a few

hours or days (Svane and Young 1989; Ayre et al.

1997; Rius et al. 2010a, b) so these animals mostly rely

on human transport for their long-distance dispersal.

Furthermore, recurrent introductions are common in

ascidians, increasing propagule pressure and, there-

fore, the probability of success of an introduction

(Dupont et al. 2010; Goldstein et al. 2011; Pineda et al.

2011; Rius et al. 2012).

Successfully introduced ascidians have a series of

biological characteristics that enable them to quickly

become established in a new habitat, including the

ability to outcompete resident species (Rius et al.

2009b) and high growth and reproductive outputs

(Rius et al. 2009a; Morris and Carman 2012; Pineda

et al. 2013). The long-term establishment of a non-

indigenous ascidian also depends on both the physical

(e.g., temperature, salinity) and biological (resident

biota) conditions characterizing the new habitat (Bru-

netti et al. 1980; Vázquez and Young 2000; Whitlatch

and Osman 2009; Bullard and Whitlatch 2009; Pineda

et al. 2012a, b). To date there are few instances of

introduced ascidians becoming invasive and spreading

to natural habitats (Castilla et al. 2004; Turon et al.

2007; Rius et al. 2009b; Lambert 2009; Morris et al.

2009; Morris and Carman 2012; Stefaniak et al. 2009,

2012), but plenty of ascidians have established

themselves on artificial substrates as fouling organ-

isms, increasing management costs and impairing the

normal development of commercial species in aqua-

culture facilities (reviewed in Aldred and Clare 2014).

The main aim of this study was to uncover patterns

of secondary (post-border) spread of introduced

benthic species in highly urbanized areas since some

harbor types are known to be reservoirs for further

spread while others act as sinks for migrants (Dupont

et al. 2009). To achieve this goal, we performed a

thorough inventory of the ascidian fauna in 32

Mediterranean harbors spanning the highly urbanized

Catalan shores (NE Iberian Peninsula). These data
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were used to (1) characterize the presence and

abundance of introduced species (2) analyze the role

of harbors in the spread of introduced species by

assessing patterns of diversity as a function of harbor

type and geographic distance, and (3) establish a

baseline for future studies.

Materials and methods

Sample collection

Thirty-two harbors along ca. 300 km of the Catalan

coast (NE Iberian Peninsula) were surveyed between

November 2012 and April 2013 (Fig. 1) and classified

in three categories according to the type of activities

observed (Table 1): (1) recreational marina, (2)

marina and fishing, and (3) marina, fishing and

commercial (vessels from local businesses; e.g. diving

boats, tourist boats). Both fishing and commercial

vessels in the investigated harbors operate daily and do

not normally navigate overnight or internationally.

The surveyed harbors provide a broad representation

of small- to medium-sized harbors along the Western

Mediterranean coast, ranging from 118 m (linear

length) of concrete docks to 3,271 m (data obtained

either from the harbor’s website or measured from

aerial photographs using the software ImageJ;

Table 1). The two largest commercial ports in Cata-

lonia are located in the cities of Barcelona and

Tarragona, and to date they are the only ones housing

big cruise vessels, cargo ships, oil tankers and other

vessels traveling internationally for trade. Unfortu-

nately, these two ports could not be surveyed due to

logistic reasons but their absence should not prevent us

from observing patterns of secondary spread, since

these are more likely to be dictated by the intense local

traffic between medium and small harbors.

Sampling was achieved using a variant of the Rapid

Assessment Method described by Campbell et al.

(2007) and consisted of monitoring at least 6 docks for

each harbor (always including a central dock, an inner

dock, and the dock located closest to the harbor

entrance). When a marina (recreational activity) had

Fig. 1 Map of the study

area indicating the harbors

surveyed (codes as in

Table 1)
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more than 6 docks, then we monitored 6 docks plus

one of every two (e.g. if a harbor had 12 docks, we

monitored 9). All docks dedicated to fishing and

commercial activities were sampled since there were

not as numerous. Surveys were always conducted by

the same 2–4 people (all well-trained in recognizing

ascidian species) and lasted between 30 min

(Aiguablava) to over 5 h (L’Escala), depending on

the harbor size and type.

At each harbor, we recorded all ascidian species

observed by pulling ropes, examining submerged

structures, and turning around partially submerged

buoys. Other substrata such as tires and plastic

structures were occasionally observed hanging from

Table 1 List of the 32 harbors surveyed in this study, with name, code, type (1: marina, 2: marina and fishing, 3: marina, fishing and

commercial), sampling date, geographic region (or province, north: Girona; central: Barcelona; south: Tarragona), GPS position, total

linear length (meters) of all docks per harbor, and number of species observed at each harbor

Harbor name Code Type Sampling date Location GPS position Dock length No. of species

St. Carles de la Ràpita SC 3 November 9, 2012 South 40�34.500N; 0�33.200E 2,286 10

Port Balı́s PL 1 December 31, 2012 Center 41�33.500N; 2�30.500E 2,327 8

Arenys de Mar AR 2 January 19, 2013 Center 41�34.300N; 2�33.300E 2,314 9

Aiguablava AB 1 January 29, 2013 North 41�56.000N; 3�13.000E 118 4

Estartit ET 2 January 29, 2013 North 42�03.100N; 3�12.400E 1,100 7

L’Escala ES 2 January 30, 2013 North 42�07.000N; 3�08.600E 2,923 16

Roses RO 2 January 31, 2013 North 42�15.200N; 3�10.600E 2,780 11

Empuriabrava EM 1 January 31, 2013 North 42�14.600N; 3�08.100E 557 5

Port de la Selva PS 2 February 1, 2013 North 42�20.200N; 3�11.900E 1,041 11

Portbou PB 1 February 2, 2013 North 42�25.700N; 3�10.000E 573 6

Blanes BL 2 March 21, 2013 North 41�40.300N; 2�47.800E 1,486 8

Fòrum Barcelona FB 1 March 22, 2013 Center 41�24.910N; 2�13.720E 1,485 9

Garraf GA 1 March 1, 2013 Center 41�14.970N; 1�54.040E 956 6

Llançà LL 2 February 1, 2013 North 42�22.000N; 3�09.000E 1,648 7

Masnou MA 2 February 26, 2013 Center 41�28.500N; 2�18.600E 2,679 9

Mataró MT 2 February 16, 2013 Center 41�32.000N; 2�26.000E 1,796 9

Port Ginesta PG 1 March 12, 2013 Center 41�15.500N; 1�55.500E 3,271 7

Port Olı́mpic PO 1 March 14, 2013 Center 41�23.120N; 2�12.600E 1,864 9

Premià de Mar PM 1 March 25, 2013 Center 41�29.000N; 2�21.000E 1,132 10

Salou SA 1 March 27, 2013 South 41�04.400N; 1�07.800E 502 8

Sant Feliu de Guı́xols SF 2 March 17, 2013 North 41�46.300N; 3�01.540E 1,202 7

Sitges (Aiguadolç) SI 1 March 2, 2013 Center 41�13.900N; 1�49.400E 1,879 6

Port Nàutic Tarragona TA 1 March 27, 2013 South 41�06.200N; 1�15.800E 955 9

Torredembarra TO 2 January 28, 2013 South 41�08.030N; 1�24.150E 1,363 6

Vilanova i la Geltrú VG 3 January 28, 2013 South 41�12.300N; 1�43.700E 3,012 6

Cambrils CM 2 March 28, 2013 South 41�03.700N; 1�03.800E 1,482 9

Hospitalet de l’Infant HI 1 March 28, 2013 South 40�59.230N; 0�55.400E 1,081 11

Calafat CF 1 March 29, 2013 South 40�55.900N; 0�51.200E 754 5

Ametlla de Mar AM 2 March 29, 2013 South 40�52.000N; 0�47.000E 1,477 8

Ampolla AP 2 March 29, 2013 South 40�48.000N; 0�43.000E 1,809 10

Cases d’Alcanar CA 2 March 30, 2013 South 40�33.200N; 0�32.000E 992 9

Palamós PA 3 April 4, 2013 North 41�50.500N; 3�07.100E 1,549 7
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docks and these were also monitored. Surveying

organism diversity from the surface has been proven

to be highly efficient (Grey 2009b) but, when possible,

we also surveyed ship hulls and the harbor’s walls and

bottom by submerging an underwater camera and

observing the resulting digital pictures. Underwater

photos were used with the sole purpose of verifying

that all species have been sampled and to identify

other substrata favored by ascidians since our goal was

to maximize coverage and obtain exhaustive species

lists from each sampled harbor. In addition, salinity

was measured at -0.20 m with a refractometer.

At the end of each survey, relative abundance was

estimated according to the number of individuals (or

colonies) observed: (1) rare: one or a few specimens

observed; (2) common: species frequently observed

but not overly abundant; and (3) abundant: species

occurring frequently and in great numbers. When the

species was not readily recognized or we had any

doubt about its taxonomic identification, we collected

samples and preserved them in 4 % formaldehyde.

Identification of preserved samples was based on

standard taxonomic keys for ascidians and, particu-

larly, on comprehensive faunistic studies of ascidians

in the area (e.g., Turon 1987; Ramos-Esplá 1988).

Ascidian barcoding

Most ascidian species retrieved in this study were

barcoded using the standard 50 ‘‘barcode region’’ of the
mitochondrial gene cytochrome oxidase I (COI) to

facilitate future identifications. Some rare species for

which we only had material fixed in formaldehyde

could not be sequenced (Table 2) and we choose not to

sequence Styela plicata because hundreds of

sequences have been recently obtained for this species

in the same study area (Pineda et al. 2011). For each of

the other species, at least one individual or colony was

immediately preserved in absolute ethanol and stored

at -20 �C until processed. To maximize DNA

extractions, specimens were dissected under a stereo-

microscope to separate zooids from the tunic for

colonial species and a piece of the branchial sac for

solitary ones. DNA was extracted from the zooid

fraction or the branchial sac tissue using the DNeasy

Blood and Tissue kit (Qiagen). A ca. 600 bp fragment

of the COI gene was amplified using either the primer

set Tun_forward and Tun_reverse2 described by

Stefaniak et al. (2009) or the primer set LCO1490

and HCO2198 described by Folmer et al. (1994). Total

PCR volume was 25 ll, including 5 pmol of each

primer, 5 nmol of each dNTP, 19 reaction buffer

(Ecogen), and 2.5 units of BIOTAQ polymerase

(Ecogen). Amplification conditions included initial

DNA denaturing at 94 �C for 5 min, followed by 40

amplification cycles of 94 �C for 30 s, annealing at

40 �C for 30 s, and extension at 72 �C for 1 min, and a

final extension step at 72 �C for 10 min. PCR cleaning

and sequencing reactions were performed at Macro-

gen, Inc. (Seoul, Korea). The resulting 136 sequences

were deposited in the GenBank database (accession

numbers KF309529–KF309664).

Data analysis

Once identified, each species was classified as native,

introduced, or cryptogenic (Carlton 1996), following

relevant literature (see Appendix 1). In short, introduced

species were those for which distributional or genetic data

existed supporting an alien origin. Native species were

those endemic to the Mediterranean, or with Atlanto-

Mediterranean distribution, known to inhabit natural

substrata not adjacent to artificial structures. Finally,

cryptogenic species were those for which there was

insufficient information to unambiguously decidewhether

they were introduced or native. The species classified as

cryptogenic were widely distributed and generally abun-

dantwithin harbors, so an introduced originwas suspected

in most cases. However, since no study to date has

determined their native area and in order to avoid errors,

cryptogenic species were not included in further analyses

comparing introduced and native species.

A linear regression analysis was performed to

determine whether there was a relationship between

harbor size (as linear length of docks) and number of

species recorded. Analyses of variance (ANOVA)

were used to test for differences in linear length among

harbor types or geographic zones. Likewise, tests were

done to compare species abundance across harbor

types and geographic zones. When the assumptions of

normality or homogeneity of variances were not met,

the non-parametric Kruskal–Wallis test was used

instead of ANOVA. All tests were performed using

the software SigmaStat v 3.5. To compare ascidian

diversity and structure across harbors two similarity

matrices were constructed. The first considered the

relative abundance of each species within each harbor

using the Bray-Curtis index (no transformation of data
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Table 2 Ascidian species (classified at least to the genus level) found in the 32 surveyed harbors

Order Species Origin Acc. num. # Harbors

Aplousobranchia Clavelina oblonga Introduced KF309648 1

Clavelina lepadiformis Introduced KF309563, -638 32

Clavelina sabbadini Native KF309535, -645 2

Diplosoma listerianum Introduced KF309531, -561, -581,

-605, -616, -638,

-639, -660, -664

30

Diplosoma spongiforme Native KF309624 2

Trididemnum cereum Native KF309632 3

Didemnum sp. 1 – KF309573 1

Didemnum sp. 2 – KF309622 1

Didemnum fulgens Native KF309576 1

Morchellium argus Native KF309620-21 1

Aplidium accarense Introduced KF309553, -558, -571, -574,

-584–586, -597–599, -601,

-646, -618, -625–27,

-629–630, -640,

-654–657, -663

23

Aplidium sp. 1 – – 1

Aplidium sp. 2 – KF309633 1

Phlebobranchia Ascidia virginea Native KF309647 1

Ascidia sp. – – 1

Ascidiella aspersa Introduced KF309533-34, -555,

-559, -562, -568,

-594, -606, -617,

-631, -637, -653, -661

27

Ascidiella scabra Cryptogenic KF309529, -556, -560, -572, -650 5

Phallusia ingeria Native – 1

Phallusia sp. – – 1

Phallusia mammillata Native KF309607 1

Phallusia fumigata Native KF309548 1

Ciona intestinalis Cryptogenic KF309614, -532, -554,

-570, -574, -578,

-580, -587, -591,

-593, -602–604, -613,

-628, -651, -658, -662

28

Ciona sp. – KF309636 1

Stolidobranchia Botrylloides leachii Cryptogenic KF309549, -551,

-608–611, -641–642, -644

3

Botryllus schlosseri Cryptogenic KF309536-47, -530,

-564–567, -579,

-592, -615, -659

30

Polyandrocarpa zorritensis Introduced KF309643 1

Distomus variolosus Native KF309623 2

Styela plicata Introduced – 21

Styela canopus Cryptogenic KF309590 2

Polycarpa pomaria Native – 2

Polycarpa sp. – KF309588 1

Molgula bleizi Native – 2

Molgula occidentalis Native – 1

Molgula sp. – – 1
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was applied, as our original data was semi-quantita-

tive). The second dataset consisted of presence–

absence data analyzed with the Jaccard index. Anal-

yses were carried out using the Primer v6.1.10

statistical package (Clarke and Gorley 2006) with

the PERMANOVA ? b20 module (Anderson et al.

2008) incorporated. Permutational analyses of vari-

ance (PERMANOVA) were applied to assess the

significance of the factors: geographic location (North,

Center, South, which corresponded to the three

provinces in the area: Girona, Barcelona, and Tarrag-

ona, respectively) and harbor type (three levels, see

above). In the case of significant factors, we ran

permutational pairwise tests on levels of these factors.

Likewise, we analyzed differences in relative disper-

sion among the groups determined by levels of

significant factors using PERMDISP. This was done

to verify that the significant outcome in PERMANO-

VA was due to differences in location in multivariate

space, not to differences in dispersion among the

groups. These analyses were performed for three

datasets, one comprising all species (32 harbors), one

with only introduced species (32 harbors), and one

with just the species identified as native (a restricted

set of the 15 harbors were native species were found).

Results were visualized with non-metric multidi-

mensional scaling (nMDS) plots. These analyses were

done with R v 2.14.2 (R Development Core Team

2012). The similarity matrices were transformed to

distances for input into the vegan 2.0-7 package

(Oksanen et al. 2013).We used the metaMDS function

of vegan with default parameters. Unlike MDS

programs that find a single configuration by iteration

and thus can get trapped in local optima, metaMDS

performs different (20) random starts and compares

them to find a stable solution. MDS configurations

were obtained separately for the entire dataset

comprising all species, for the introduced species,

and for the native species. The analyses were also run

separately for relative abundance and presence–

absence data and compared using Procrustes analysis

(Peres-Neto and Jackson 2001) as implemented in

vegan (function Protest), and the significance of the

correlations found was tested by permutation. For the

native species dataset, the final solutions reached were

not stable among runs due to the low number of data,

even after increasing the number of random starts

(parameter trymax) to one hundred. For this reason

MDS plots for the native species are not shown.

Additionally, Mantel tests were conducted to test for

correlations between geographic distances among har-

bors (in kilometers) and species dissimilarity for both the

abundance and the presence–absence data involving all

species, introduced species, and native species. Shortest

surface distances between pairs of harbors were calcu-

lated using free software developed byByers (1997). The

Mantel tests were performed using the ade4 package for

R (function mantel.rtest) and its significance tested by

permutation (Dray and Dufour 2007).

Results

Ascidian diversity

In the 32 harbors investigated, we identified 28

ascidians at the species level and another 9 at the

genus level (Table 2; Fig. S1). Samples that could not

be assigned a species name were normally single

specimens at immature stages, so key morphological

characters could not be observed (and, for those

barcoded, no perfect match was found in the databases

either). Consequently, these taxa could not be further

classified according to their origin and were only used

Table 2 continued

Order Species Origin Acc. num. # Harbors

Microcosmus squamiger Introduced KF309550, -552, -595,

-600, -612, -619,

-634–635, -649, -652

24

Pyura dura Native KF309596 4

Pyura squamulosa Native – 2

Species were further classified according to their origin: native, introduced, and cryptogenic (see Appendix 1). GenBank accession

numbers of the COI sequences generated in this study and the number of harbors in which the species have been found are also

indicated
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in analyses using the global dataset. On average,

Catalan harbors contained 8.18 ± 2.33 (SD) ascidian

species. The harbor that presented the highest species

richness was l’Escala (n = 16), followed by Roses,

Port de la Selva and Hospitalet de l’Infant, each with

11 species (Table 1). In contrast, we only found 5

species in Empuriabrava and Calafat, and 4 in

Aiguablava (Table 1). A significant relationship

between harbor size and species richness was observed

(linear regression, p\ 0.05), with harbor size explain-

ing 17.2 % of observed variance in species richness

among harbors (Fig. S2). However, no significant

differences in size were observed between harbor

types (ANOVA, F = 3.060, DF = 2,29, p = 0.062)

or between geographic zones (F = 1.928, DF = 2,29,

p = 0.164). The data on species and abundances

found at each harbor are listed in Table S1. Most

species were either known introduced ascidians

(n = 8) or were considered native from the area

(n = 15), while 5 were assigned cryptogenic status

(Table 2; Appendix 1). All species found had been

previously reported in the Mediterranean Sea, with the

exception of Aplidium accarense (see further taxo-

nomic remarks in Appendix 2).

No significant differences in species number were

found according to harbor type (Fig. 2, ANOVA

F = 2.179, DF = 2,29, p = 0.131) or geographical

area (F = 0.016, DF = 2,29, p = 0.984). Introduced

and cryptogenic species were the most common in all

harbor types (Fig. 2). The geographic span of the three

groups of species (introduced, cryptogenic and native)

was clearly different (Fig. 3). Introduced species were

present inmanymore harbors (an average ca. 20 harbors)

than native species (average of 1.7 harbors), while

cryptogenic species were found in 13.6 harbors on

average. The differences in spread between native and

the other two groups of species were significant, but not

between introduced and cryptogenic forms (Kruskal–

Wallis test, H = 10.371, DF = 2, p = 0.006, followed

by Dunn’s pairwise tests at p = 0.05).

Both colonial and solitary ascidians were widely

distributed among harbors (Table 2). The ascidian

Clavelina lepadiformis was found in all 32 sampled

harbors, while Botryllus schlosseri and Diplosoma

listerianum were observed in 30. The most common

solitary ascidian was Ciona intestinalis (present in 28

harbors) followed by Ascidiella aspersa (27 harbors)

and Microcosmus squamiger (24 harbors). All these

species were classified as introduced or cryptogenic

and were observed colonizing a wide range of

substrata, including ropes, buoys, tires, boat hulls

and metal ladders. On the other hand, the least

common ascidians (identified at the species level)

were the colonial forms Clavelina oblonga, Morchel-

lium argus, Didemnum fulgens, and Polyandrocarpa

zorritensis; and the solitary species Molgula occiden-

talis, Ascidia virginea, Phallusia ingeria, P. mammil-

lata and P. fumigata. These species were observed in a

single harbor and were exclusively found on ropes;

except for P. ingeria and D. fulgens that grew in

Fig. 3 Mean number of harbors in which each species was

found as per type of species (introduced, native, cryptogenic).

Bars are standard errors

Fig. 2 Mean number of ascidian species found at each harbor

type (type 1: marina; type 2: marina and fishing; type 3: marina,

fishing and commercial) and for each category of species. Bars

are standard errors
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mussels and P. zorritensis that was also observed

under buoys and attached to dock walls.

Twenty-seven species were identified genetically

(Table 2). The sequences generated for Clavelina

lepadiformis corresponded to the introduced Atlantic

clade defined in Turon et al. (2003). All sequences

obtained for Diplosoma listerianum corresponded to

clade A (Pérez-Portela et al. 2013), sequences for C.

intestinalis matched species A described in Caputi

et al. (2007) and Nydam and Harrison (2007), and

sequences for B. schlosseri corresponded to clade 5 in

López-Legentil et al. (2006), except for KF309545

that matched clade 1, and two sequences (KF309592,

KF309530) that presented 98 % identity (BLASTn)

with a USA specimen (GU065352, Callahan et al.

2010). Identification of Ascidiella scabra and A.

aspersa was made based on morphological characters

following a recent review (Nishikawa et al. 2014).

However, while the COI sequences generated for A.

aspersa clustered within the A. aspersa clade of

Nishikawa et al. (2014), those of A. scabra formed a

well-supported clade separated from the correspond-

ing clade in that work, which only included European

Atlantic specimens (Fig. S3).

Permutational analyses considering both geo-

graphic location and harbor type as variables showed

that there was a significant effect of both factors on

ascidian community structure, which together

explained about 28–30 % of the variation found

among harbors (Table 3). No significant interaction

between these two variables was found, indicating that

the effect of each variable on our data was independent

of the other. The results were similar when considering

relative abundance and presence–absence data. The

PERMDISP analyses were not significant (Table 3),

indicating homogeneity in data dispersion across

levels of the considered factors, except for the

geographic region factor with the presence–absence

data matrix (p = 0.036). When the analyses were run

separately for introduced and native species, the same

results were obtained for the introduced species

dataset (Table 3), and in this case no evidence for

heterogeneity of dispersion between groups was found

(non-significant PERMDISP outcome). The native

species distribution did not show any significant

pattern according to harbor type or geographic

location.

Pairwise comparisons of levels of the significant

main factors revealed that, for the geographic regions,

there were significant differences between the North

and the other two zones (Center and South), which

were not different among themselves (Table 4). For

the presence–absence dataset, the PERMDISP analy-

ses also showed a significantly higher dispersion of the

data in the North and South than in the Center.

Pairwise comparisons between harbor types revealed

significant differences in the comparison between

marinas (type 1) and marina and fishing harbors (type

2) when considering relative abundance values for

both the total species and the introduced species

datasets (Table 5). Results were less clear-cut for the

presence–absence data, as no comparison was signif-

icant when considering all species, and only the

comparison between harbor types 2 and 3 (marina,

fishing and commercial) was significant for the

introduced species (Table 5).

Non-metric MDS plots constructed from relative

abundance data (using Bray–Curtis index) showed better

differentiation among harbors than those based on

presence–absence data (Jaccard index, Fig. 4). The

differences observed in PERMANOVA analyses accord-

ing to geographic location are graphically represented by a

separation of the group centroids; the northern harbors in

particular tended to be separated from the center and

southern harbors, which clustered more closely (Fig. 4).

Differences according to harbor type were less evident,

with all group centroids relatively close together. Some

type 1 harbors appeared consistently separated from the

other harbors, while a type 3 harbor (SC: Sant Carles) was

usually set apart at one extreme of the spatial ordination

(Fig. 4), due to the presence of some particular species at

this harbor that were not found in other harbors (see

Discussion). Overall, the spatial harbor arrangement was

coherent between theMDSplots of thewhole datasets and

those of introduced species and, to a lesser degree,

between abundance and presence–absence data (Fig. 4).

This was further corroborated by the results of the

Procrustes analyses (Table 6), which showed high corre-

lations (r[0.84) between the whole species and the

introduced species configurations (p\0.001), and lower

(r[0.56), although significant (p\0.001), correlations

between the abundance and the presence–absence con-

figurations (Table 6).

Ascidian distribution along the Catalan coast

The shortest surface distance between the northern-

most (Portbou) and southernmost (Cases d’Alcanar)
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harbors was 299.49 km, and between the closest

harbors (Garraf and Port Ginesta) 2.26 km. A Mantel

test showed a significant correlation between geo-

graphic distance and species dissimilarity (r = 0.321

for the relative abundance matrix, r = 0.325 for the

presence–absence matrix, p\ 0.001 in both cases).

Similar results were obtained when correlating geo-

graphic distances with dissimilarity based only on

introduced species (Mantel test, r = 0.271 for the

relative abundance matrix, r = 0.270 for the pre-

sence–absence matrix, p\ 0.001 in both cases). For

the harbors with native species, the correlations

between geographic distances and distances based on

diversity of native ascidians were weaker and non

significant (relative abundance data, r = 0.166,

p = 0.080; presence–absence data, r = 0.165,

p = 0.062).

Discussion

This study uncovered an unexpected diversity of

ascidians in northwestern Mediterranean harbors. Our

survey of 32 small- to medium-sized harbors identified

28 ascidians at the species level and another 9 at the

genus level. A recent review placed the total number

of ascidian species in the Mediterranean at 229 (Coll

et al. 2010), thus in just a single type of habitat along

ca. 300 km of shoreline, we have found ca. 16 % of the

total recorded biodiversity in the whole Mediterranean

Sea. We also found a clear pattern of ascidian

distribution, in which introduced (and cryptogenic)

species tended to be present in many more harbors

than native species, while native species abundance

was low overall. This pattern reinforces the general

understanding that harbors are not good habitats for

native species and are instead populated by highly

tolerant introduced forms. Thus, harbor connectivity

through shipping does not contribute to the spread of

indigenous species, but rather harbors and marinas are

strongholds for dispersion of introduced forms. In

addition, we found a significant and positive relation-

ship between harbor size and species richness, indi-

cating that larger harbors tended to contain more

ascidian species. We did not observe, however,

significant differences in the number of ascidian

species according to harbor type or geographic zone.

A significant correlation between geographic dis-

tance and ascidian diversity in the harbors studied was

detected. This correlation was mostly due to the

Table 3 Permutational statistical analyses (PERMANOVA) of ascidian similarity among harbors according to their type (marina;

marina and fishing, and marina, fishing and commercial) and geographic region (north: Girona; central: Barcelona; south: Tarragona)

df Abundance Presence–absence

SS pseudo-F p value Permdisp SS pseudo-F p value Permdisp

All species

Region 2 3,685.5 2.578 0.006 0.128 4,408 2.462 0.009 0.036

Harbor type 2 3,252.4 2.275 0.020 0.366 3,484.6 1.946 0.038 0.714

Interaction 4 3,384.8 1.184 0.287 – 4,879.6 1.363 0.138 –

Residual 23 16,440 20,588

Introduced species

Region 2 3,759.8 3.306 0.003 0.308 3,871.8 4.513 0.004 0.249

Harbor type 2 2,513.2 2.210 0.042 0.190 3,871.8 4.513 0.004 0.249

Interaction 4 2,597.4 1.142 0.375 – 3,171.5 1.848 0.095 –

Residual 23 13,079 9,866.4

Native species

Region 2 10,382 1.238 0.227 – 10,057 1.153 0.318 –

Harbor type 2 9,128.7 1.089 0.356 – 9,376.1 1.076 0.361 –

Interaction 2 9,485.8 1.132 0.347 – 9,390.6 1.077 0.378 –

Residual 8 33,533 34,867

Analyses were performed for abundance (Bray-Crutis index) and presence–absence (Jaccard index) data, and for the global dataset

(32 harbors), the introduced species dataset (32 harbors), and the native species dataset (15 harbors). PERMISP probabilities of

homogeneity of dispersion were also given for significant factors
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distribution of introduced species, and was weaker and

not significant when native species were considered.

This pattern is likely a result of the short-range

movement of vessels among the small- to medium-

sized harbors that enable species dispersal, while

species establishment is facilitated by environmental

similarity between close-by harbors. It is noteworthy

that, even in habitats subject to anthropogenic trans-

port (which usually ‘‘breaks’’ isolation by distance

patterns), differences can still be retrieved at the scale

considered here (i.e. 300 km). This observation has

important implications for secondary spread of intro-

duced species and points to stepping-stone processes

that are highly relevant for future preventive actions

(see below).

Permutational analyses of variance revealed that

harbor type and latitudinal position had significant

effects on ascidian community structure, with patterns

driven by the introduced species (both factors were not

significant for native species). For the factor ‘harbor

type’, pairwise tests showed significant (or marginally

so) differences for many comparisons in one or

another analysis (considering all species and intro-

duced species, as well as relative abundance and

presence–absence data), a fact likely reflecting the

different size, boating dynamics, and maintenance

levels of the different harbor types. Alternatively, the

different number of harbors scored in each category

(e.g., only three in category 3) may have also

influenced some of the p values obtained.

For the factor ‘geographic location’, pairwise

comparisons consistently showed a different compo-

sition between harbors located in the North (Girona),

and the central and southern zones (Barcelona and

Tarragona, respectively). Seawater temperatures in

southern Catalonia are 0.1–2 �C warmer than in the

North, depending on the season and year (López-

Legentil et al. 2005; Sabatés et al. 2006). Some of the

ascidian species found here are known to be very

sensitive to changes in seawater temperature and

feature resistance forms during summer (e.g. Didem-

num fulgens, López-Legentil et al. 2013), while others

such as Styela plicata are able to thrive in habitats

featuring seasonal temperature variations of 23 �C
(Pineda et al. 2012b). Thus, the absence of some

species in northern or southern Catalonia could be due

to differences in seawater temperatures, as found for

other ascidian species (Lambert 2005). Alternatively,

species that are present in just southern or northern

harbors could be recent introductions that have not yet

spread to harbors located further away.

In spite of a significant effect of the factors

analyzed, together they explain ca. 30 % of the

variability found, so other abiotic (e.g. salinity,

pollution) and biotic factors are influencing ascidian

populations. Salinity appears to be an important factor

in determining the distribution of some introduced

species (Dybern 1969; Lowe 2002; Epelbaum et al.

2009; Pineda et al. 2012a). Our salinity measurements

were taken at one point in time and under different

weather conditions and thus can only be considered

‘snapshots.’ Not surprisingly, we did not find any

correlation between number of species and salinity

values (r2 = 0.001; results not shown). A potential

Table 4 Permutational pairwise comparisons of ascidian

similarity among harbors according to geographic zone (north:

Girona; central: Barcelona; south: Tarragona) for all species

and for the introduced species dataset

Abundance Presence–absence

t p value t p value

All species

South–Center 1.283 0.180 1.471 0.091

South–North 1.599 0.024 1.531 0.025

Center–North 1.810 0.017 1.681 0.018

Introduced species

South–Center 1.078 0.360 1.265 0.229

South–North 1.925 0.011 2.264 0.006

Center–North 2.118 0.010 2.401 0.010

Table 5 Permutational pairwise comparisons of ascidian

similarity among harbors according to their type (type 1:

marina; type 2: marina and fishing; type 3: marina, fishing and

commercial) for all species and for the introduced species

dataset

Abundance Presence–absence

t p value t p value

All species

Type 1–type 2 1.585 0.027 1.365 0.066

Type 1–type 3 1.443 0.118 1.412 0.102

Type 2–type 3 1.452 0.074 1.424 0.090

Introduced species

Type 1–type 2 1.711 0.042 1.664 0.091

Type 1–type 3 1.345 0.168 1.584 0.121

Type 2–type 3 1.149 0.293 1.992 0.038
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Fig. 4 Non-metric MDS

plots of the harbors studied

obtained from the

relative abundance and the

presence–absence data, for

the whole dataset and for the

introduced species. Every

plot is color-coded for the

geographic region (left;

north Girona; central

Barcelona; south Tarragona)

and for the type of harbor

(right; type 1 marina; type 2

marina and fishing; type 3

marina, fishing and

commercial). Lines join

harbors with their weighed

group centroid as for the

corresponding factor.

Coincident positions of the

presence–absence plots

were slightly displaced as

overlapping groups for

clarity. Some harbors are

identified (codes as in

Table 1) to ease comparison

of the configurations. MDS

plots with full code names

are given in Fig. S4. Stress

values are given for each

plot (upper left)
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exception was observed for the northern section of the

harbor of Sant Carles de la Rapita that received a

freshwater rivulet and for which we recorded a salinity

of 15 %, although it is likely that salinity drops are

episodic there. Notably, this section of the harbor was

very different from the rest (34 %) and was colonized

by only two species (out of a total of 10 recorded in

that harbor): Clavelina oblonga and Styela plicata,

both known to tolerate salinities\34 % (Rocha et al.

2009; Pineda et al. 2012b).

Pollution is also known to shape benthic commu-

nities in harbors, especially heavy metals (Piola and

Johnston 2009). Information about pollution levels at

the investigated Catalan harbors is scarce, but the few

studies conducted so far had reported moderate to low

levels of heavy metals (De Caralt et al. 2002; Cebrian

et al. 2007). It is known that some ascidian species

such as Ciona intestinalis, Microcosmus squamiger,

Styela plicata, Diplosoma listerianum, Botrylloides

leachii and Botryllus schlosseri are able to tolerate

high levels of pollution and that this tolerance has been

key for their successful introduction in new habitats

(Naranjo et al. 1996; Lambert and Lambert 2003;

Piola and Johnston 2008; Pineda et al. 2012a). Finally,

biotic factors such as competition and predation

(Whitlatch and Osman 2009; Ordóñez et al. 2013)

are also likely to have an impact on overall species

abundance and distribution between and within har-

bors and their importance remains to be tested.

In general, relative abundance data (here given as

semi-quantitative ranks) and presence–absence data

tended to give similar information in the analyses

performed. However, the ordination configurations

with presence–absence data were less resolved and

tended to clutter harbors, accentuating the importance

of acquiring abundance data whenever possible. MDS

plots showed that the overall ordination of harbors was

largely driven by the distribution pattern of introduced

species. Some northern harbors tended to appear

separated from the rest, with the harbor from Sant

Carles de la Ràpita (SC) offset from the others in

ordination space. This separation was explained by the

presence of some exclusive (Polyandrocarpa zorrit-

ensis, Clavelina oblonga) or almost exclusive (Clave-

lina sabbadini, Botrylloides leachii) species in this

harbor. SC harbor is the home base of fishermen

working in the nearby aquaculture facilities of the

Ebro Delta, a large artificial setup hosting several

introduced species (Ordóñez 2013). Thus, at least

some of the species retrieved in SC may have come

from the nearby aquaculture settings, and SC (which is

large and sustains recreational activities, a consider-

able fishing fleet and some commercial ships) may

now be acting as a focal point for further expansions.

This observation revealed a complex interplay among

harbor types, aquaculture activities in the vicinity, and

secondary spread of introduced species.

In conclusion, we have uncovered an unexpected

diversity of ascidian species in a relatively restricted but

vastly developed stretch of coast in the Western

Mediterranean. We also found an effect of harbor type,

size and geographic area on ascidian diversity and

distribution, as well as a pattern of higher similarity in

geographically closer harbors. Thus, highly urbanized

coastlines and their associated network of harbors and

marinas act as dispersal strongholds for introduced

species with little impact for the rarely observed native

ascidians. Cataloguing species and establishing periodic

surveys of artificial structures are easily achieved first-

steps to prevent spreading of detrimental species and are

critical for the development of cost-effective manage-

ment and contingency plans. Species inventories should

not only incorporate taxonomic surveys (for which

complementary genetic data is mandatory in the face of

taxonomic conundrums), but also a thorough assessment

of inter-harbor distribution patterns in order to define

efficient internal borders for further action.
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PinedaMC, López-Legentil S, TuronX (2011) The whereabouts

of an ancient wanderer: global phylogeography of the

solitary ascidian Styela plicata. PLoS One 6(9):e25495
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