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ABSTRACT
In this work, we present constraints on different shapes of primordial non-Gaussianity using the
Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data and the spherical Mexican
hat wavelet f nl estimator including the linear term correction. In particular, we focus on the
local, equilateral and orthogonal shapes. We first analyse the main statistical properties of
the wavelet estimator and show the conditions to reach optimality. We include the linear term
correction in our estimators and compare the estimates with the values already published using
only the cubic term. The estimators are tested with realistic WMAP simulations with anisotropic
noise and the WMAP KQ75 sky cut. The inclusion of the linear term correction shows a
negligible improvement (≤1 per cent) in the error bar for any of the shapes considered. The
results of this analysis show that, in the particular case of the wavelet estimator, the optimality
for WMAP anisotropy levels is basically achieved with the mean subtraction, and in practical
terms there is no need of including a linear term once the mean has been subtracted. Our best
estimates are now f̂

(loc)
nl = 39.0 ± 21.4, f̂

(eq)
nl = −62.8 ± 154.0 and f̂

(ort)
nl = −159.8 ± 115.1.

We have also computed the expected linear term correction for simulated Planck maps with
anisotropic noise at 143 GHz following the Planck Sky Model and including a mask. The
improvement achieved in this case for the local fnl error bar is also negligible (0.4 per cent).

Key words: methods: data analysis – cosmic background radiation – cosmology:
observations.

1 IN T RO D U C T I O N

In the recent years, the spherical Mexican hat wavelet (SMHW;
Martı́nez-González et al. 2002) has been used to construct a new
type of estimator for the primordial non-Gaussianity in the cos-
mic microwave background (CMB) characterized by the non-
linear coupling parameter fnl (Curto et al. 2009a, 2011b; Curto,
Martı́nez-González & Barreiro 2009b, 2010, 2011a). One of the
particularities of the wavelet estimator as it has been tradition-
ally presented in the literature compared with direct bispectrum-
based estimators (Komatsu & Spergel 2001; Komatsu et al. 2002,
2003, 2005, 2009, 2011; Babich, Creminelli & Zaldarriaga 2004;
Babich 2005; Creminelli et al. 2006; Creminelli, Senatore &
Zaldarriaga 2007; Spergel et al. 2007; Yadav & Wandelt 2008; El-
sner & Wandelt 2009; Smith, Senatore & Zaldarriaga 2009; Liguori
et al. 2010; Senatore, Smith & Zaldarriaga 2010; Smidt et al. 2010;
Fergusson, Liguori & Shellard 2010a,b; Fergusson & Shellard 2011)
is the absence of a linear term. In the bispectrum-based estimators,
the linear term plays a key role to achieve optimality in the cases
where the rotational invariance of the CMB is broken because of dif-
ferent instrumental complexities such as anisotropic noise or partial

�E-mail: curto@ifca.unican.es

sky coverage (see for example Creminelli et al. 2006, 2007; Yadav
& Wandelt 2010; Fergusson & Shellard 2011).

The computational difficulties related to the inversion of the co-
variance matrix present in the bispectrum estimator, especially in
future data sets with higher �max as for example Planck,1 together
with the unknown effect that different systematics from the in-
strument and background residuals might have on the estimates,
motivated the search for new estimators based on different tools
such as the SMHW described in this paper, the binned bispectrum
(Bucher, van Tent & Carvalho 2010), the general modal expansion
and polyspectra estimation (Fergusson et al. 2010b; Fergusson &
Shellard 2011), the needlets (Marinucci et al. 2008; Pietrobon et al.
2009; Rudjord et al. 2009; Donzelli et al. 2012), the HEALPIX wavelet
(Casaponsa et al. 2011a), neural networks (Casaponsa et al. 2011b)
or a Bayesian approach (Elsner & Wandelt 2010; Elsner, Wandelt
& Schneider 2010) among others.

In a previous paper (Curto et al. 2011a), we described the main
features of the wavelet estimator based on the cubic statistics con-
structed from the SMHW coefficient maps. Those cubic terms were
written as a function of the non-linear coupling parameter fnl and
the bispectrum of the primordial non-Gaussianity. In that paper,

1 http://www.esa.int/planck
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we also showed that the power of the method to detect fnl, that
is the variance of this parameter σ 2(fnl), matches that of the di-
rect bispectrum-based estimators for ideal conditions (full sky and
isotropic noise) and realistic conditions (partial sky coverage and
anisotropic noise). The wavelet estimator variance was obtained
in two different ways: through the Fisher matrix and by means of
Monte Carlo (MC) simulations, providing very similar results. A
remarkable result of these works is the fact that the wavelet esti-
mator is, in practice, able to reach optimality on the fnl estimation
without including any linear term correction. However, from sev-
eral works (see for example Creminelli et al. 2006; Fergusson &
Shellard 2011) it has been shown that in order to reach minimum
variance, all the cubic estimators need a linear term correction. A
recent work has solved this apparent controversy (Donzelli et al.
2012) by showing that in Wilkinson Microwave Anisotropy Probe
(WMAP)2 anisotropy conditions, the linear term correction is nearly
equivalent to the mean subtraction performed for each wavelet co-
efficient map in the wavelet estimator.

In this paper, we re-examine the main statistical properties of
the wavelet estimator and show the conditions to reach optimal-
ity. We compute the linear term correction for the local, equilateral
and orthogonal fnl shapes. In particular, we see that the linear term
correction for the local case provides a 1 per cent reduction in the
error bars (in agreement with Donzelli et al. 2012, for the SMHW),
while the correction for the other shapes is even smaller. Section 2
introduces the SMHW estimator, its variance and its linear correc-
tion. In Section 3, the estimator with its linear correction is applied
to WMAP seven-year data for the local, equilateral and orthogo-
nal shape. In Section 4, we explore the linear correction on Planck
simulations at 143 GHz for the local shape, and in Section 5, the
conclusions are presented.

2 T H E WAV E L E T A P P ROAC H

In this section, we present an approach for the fnl estimator based
on the statistical properties of the cubic terms of the SMHW coef-
ficients averaged over the sky. In this case, we exploit the property
of the SMHW wavelet that performs a strong decorrelation of the
data at distances larger than the wavelet resolution. The expected
values of the cubic terms in the sky are obtained from the sum of
a large number of almost independent elements, and therefore, its
distribution will be close to Gaussian by the central limit theorem.
We will first review the SMHW and its decorrelation properties,
and then, we will construct the wavelet estimator based on those
properties including the linear term correction.

2.1 The SMHW coefficients and their correlation

Detailed information about the SMHW and a (non-complete) list
of applications to the CMB maps and cosmology can be found in
Antoine & Vandergheynst (1998), Martı́nez-González et al. (2002),
Cayón et al. (2003), Vielva, Martı́nez-González & Tucci (2006),
Vielva (2007), McEwen et al. (2007), Martı́nez-González (2008),
Zhang et al. (2011) and Yu et al. (2012).

Given a function f (n) defined at a position n on the sphere and a
continuous wavelet family on that space �(n; b, R), we define the
continuous wavelet transform as

w(R; b) =
∫

dnf (n)�(n; b, R), (1)

2 http://map.gsfc.nasa.gov/

where b is the position on the sky at which the wavelet coeffi-
cient is evaluated, R is the scale of the wavelet and �S(θ ; R) ≡
�(n(θ, φ); 0, R) is given by

�S(θ ; R) = 1√
2πN (R)

[
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)2
]2 [
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and

y = 2 tan

(
θ

2

)
. (4)

Considering a set of different angular scales {Ri}, we define a
third-order statistic depending on three scales {i, j, k} (Curto et al.
2009b)

qijk = 1

4π

1

σiσjσk

∫
dnw(Ri, n)w(Rj , n)w(Rk, n), (5)

where σ i is the dispersion of the wavelet coefficient map w(Ri, n).
In the particular case of R0 = 0, w(R0, n) ≡ f (n). For a particular
pixelization on the sphere, equation (5) can be written as

qijk = 1

Nijk

Npix−1∑
p=0

wi(p)wj (p)wk(p)

σiσjσk

, (6)

where Npix is the total number of pixels of the map, Nijk is the
number of pixels available after combining the extended masks
corresponding to the three scales Ri, Rj and Rk and wi(p) ≡ w(Ri,
p) − 〈w(Ri)〉 is the wavelet coefficient in the pixel p evaluated at the
scale Ri after subtracting the mean value over the wavelet coefficient
map outside its extended mask.

Using the properties of the wavelet, we may write the wavelet
transform of the temperature map in the next form (Curto et al.
2011a)

w(Ri, n) =
∑
�m

a�mω�(Ri)Y�m(n). (7)

Using the isotropic properties of the CMB and the properties of
the wavelet, we can obtain the angular coefficient correlation Cij(θ )
between any pair of pixels n and n′ separated by an angular distance
nn′ = cos(θ ) and for two angular scales Ri and Rj:

Cij (θ ) ≡ 〈w(Ri, n)w(Rj , n)〉

=
∑

�

2� + 1

4π
C�ω�(Ri)ω�(Rj )P� (cos(θ )) , (8)

where ω�(R) is the window function of the wavelet at a scale R
and it is given by the harmonic transform of the mother wavelet of
the SMHW (Martı́nez-González et al. 2002; Sanz et al. 2006). The
dispersion of the wavelet coefficients at scale Ri is simply given by
σ i = Cii(θ = 0)1/2.

In Fig. 1, we show the correlation of the wavelet coefficients
as a function of the angular distance θ for several values of the
resolution scale R. As can be seen, the SMHW produces an effective
decorrelation of the signal at angular distances above the resolution
scale R.

2.2 The wavelet estimator

Considering the strong decorrelation produced by the convolution of
the SMHW on the temperature anisotropies, we can now apply the
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Figure 1. The normalized correlation functions for different wavelet coef-
ficient maps are plotted. From left to right, the curves correspond to maps
convolved with an SMHW of scale R = 0.◦27, 0.◦64, 1.◦50, 3.◦54 and 8.◦33,
respectively.

central limit theorem to the cubic statistics defined in equation (5).
Since the average value is calculated from the sum of a very large
number of almost independent elements (of the order of the number
of pixels in the sphere with size that of the resolution scale R), then
its distribution should be very close to a Gaussian. This is actually
seen in Fig. 2, where the distribution of the cubic terms for different

SMHW scales is shown. These distributions have been obtained
from MC simulations of Gaussian temperature anisotropies.

The previous results indicate that, for Gaussian temperature
anisotropies, a good representation of the n-point distribution of
the quantities qijk can be given in terms of a multinormal distribu-
tion. Allowing now for the presence of weak non-Gaussianity for
the temperature anisotropies (e.g. an amplitude for the primordial
non-Gaussianity consistent with WMAP data), one can use the next
likelihood for the fnl parameter:

L(fnl) ∝ e−χ2(fnl)/2, (9)

where χ2(fnl) is given by

χ2(fnl) =
∑

ijk,rst

(
qobs

ijk − fnlαijk

)
C−1

ijk,rst

(
qobs

rst − fnlαrst

)
, (10)

where qobs
ijk are the cubic statistics corresponding to the observed

data, αijk = 〈qijk〉fnl=1 and Cijk,rst is the covariance matrix of
the cubic statistics. A further test to check that the qijk are normally
distributed can be done by considering the property that �χ2(fnl) =
χ2(fnl) − χ2

min(fnl) is a χ2 distribution with one degree of freedom.
In particular, �χ2(fnl) = 1 (4) should provide the 1 (2)σ or 68 per
cent (95 per cent) confidence intervals for the fnl parameter. Using
MC simulations, we have checked that this is the case for the qijk

statistics.

Figure 2. Histograms of the cubic statistics qiii for the different angular scales Ri considered in previous works (Curto et al. 2011a,b).
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After straightforward calculation, it can be easily seen that the
fnl estimator in this case is given by

f̂nl =
∑

αijkC
−1
ijk,rst qrst∑

αijkC
−1
ijk,rstαrst

, (11)

while that the variance of the f̂nl parameter in equation (11) is given
by

σ 2
F (f̂nl) = −1{

∂2logL(fnl)
∂f 2

nl

}
fnl=f̂nl

= 1

1
2

{
∂2χ2(fnl)

∂f 2
nl

}
fnl=f̂nl

= 1∑
ijk,rst αijkC

−1
ijk,rstαrst

. (12)

This estimator has already been shown to be nearly optimal on
WMAP data (Curto et al. 2009a,b, 2010, 2011a,b) without the need
of subtracting any linear term. However, as stated in Donzelli et al.
(2012), from all the possible cubic combinations of three Gaussian
variables, the Wick polynomials are shown to have minimum vari-
ance. This implies that in order to have a strictly speaking minimum
variance estimator, a linear term correction needs to be included.
In fact the linear term subtraction is equivalent to the mean sub-
traction at each wavelet coefficient map (Donzelli et al. 2012) for
low levels of anisotropy. This is indeed the procedure that has been
followed in Curto et al. (2009a,b, 2010, 2011a,b), and it explains
the competitive results obtained just by subtracting the mean using
the estimator in equation (11).

The linear term correction for the wavelet estimator can be written
as

f̂
(total)
nl = f̂

(cubic)
nl − f̂

(linear)
nl , (13)

where f̂
(cubic)
nl is given by equation (11) and

f̂
(linear)
nl = σ 2

F (f̂nl)
∑

ijk,rst

αijkC
−1
ijk,rst q

(L)
rst (14)

with

q
(L)
ijk = 1

Nijk

∑
p

{〈
wi(p)

σi

wj (p)

σj

〉
wk(p)

σk

+
〈

wi(p)

σi

wk(p)

σk

〉
wj (p)

σj

+
〈

wj (p)

σj

wk(p)

σk

〉
wi(p)

σi

}
. (15)

In the next sections, we apply the wavelet estimator to WMAP seven-
year data as well as to Planck simulations and compare the results
obtained with and without the linear term correction.

3 A PPLICATION TO WMAP V+W DATA

We have computed the linear term correction to the cubic wavelet
fnl estimator for the three shapes with a relevant interest in many
inflationary models: the local, equilateral and orthogonal shapes
(see for example Bartolo et al. 2004; Senatore et al. 2010; Komatsu
et al. 2011). The estimator can be easily applied to other bispectra
with a separable shape (Curto et al. 2011a). Results taking into
account only the cubic contribution are already published (Curto
et al. 2011b).

We have selected the same set of 15 angular scales from R0 =
0 to R14 = 767.3 arcmin as used in Curto et al. (2011b). We have
considered the V+W WMAP data optimally weighted by the Nhits

maps per radiometer in order to maximize the signal-to-noise ratio.
We also consider the same WMAP KQ75 mask and its extended

masks for each wavelet angular scale. The cubic covariance matrix
has been computed using 10 000 Gaussian simulations. A principal
component analysis has been performed in order to avoid contami-
nation from the lowest noisy eigenvalues of this covariance matrix
without losing non-Gaussian signal (Curto et al. 2011a). The two-
point correlation matrices needed for the linear term correction have
also been estimated with 64 000 Gaussian simulations. This number
of simulations is needed in order to achieve the required precision
in the estimation of the correlation matrices.

We have applied the estimator to one set of 10 000 Gaussian
maps and the WMAP data. The results are presented in Fig. 3 for the
three considered shapes. In the left-hand panels, the red histograms
correspond to the best-fitting fnl values obtained with the cubic
estimator and the black histograms correspond to the best-fitting
fnl values after the linear term correction. The vertical lines cor-
respond to the actual WMAP data values estimated with the cubic
estimator (red) and the linearly corrected estimator (black). In the
right-hand panels, we compare the best-fitting fnl values for the
same set of Gaussian simulations. Note that both f

(cubic)
nl and f

(total)
nl

are highly correlated and the deviations are not significant. Finally,
in Tables 1–3 the previous results are summarized. We present the
WMAP seven-year fnl best-fitting values for the cubic estimator
f

(cubic)
nl , the linear estimator f

(linear)
nl and f

(total)
nl for the clean and raw

(uncleaned) maps. The Fisher fnl error bar as described in equa-
tion 25 of Curto et al. (2011a) is also provided. For each case, we
observe a small reduction of the error bars when the linear term
is included. The largest correction is introduced in the local shape,
where σ is reduced from σ (fnl) = 21.6 to 21.4 (i.e. a reduction of
1 per cent, in agreement with Donzelli et al. 2012). The correction
for the other two cases, equilateral and orthogonal, is also negligi-
ble (about 0.2 and 0.1 per cent, respectively). This is in agreement
with Creminelli et al. (2006) for the equilateral shape, where the
standard deviations of fnl without the linear term were found closer
to the lower Fisher limit than in the local shape, suggesting a less
important contribution of the linear term correction.

Our best-fitting values, computing σ (fnl) with 10 000 Gaussian
simulations to characterize the errors, are presented below for the
three shapes.

Local form results:3

(i) f
(cubic)
nl = 38.9 ± 21.6

(ii) f
(total)
nl = 39.0 ± 21.4

Equilateral form results:

(i) f
(cubic)
nl = −53.3 ± 154.3

(ii) f
(total)
nl = −62.8 ± 154.0

Orthogonal form results:

(i) f
(cubic)
nl = −155.1 ± 115.1

(ii) f
(total)
nl = −159.8 ± 115.1

3 The average 〈qijk〉fnl is obtained using 1000 non-Gaussian simu-
lations of the local shape generated by the procedure described in
Elsner & Wandelt (2009), and publicly available at http://planck.mpa-
garching.mpg.de/cmb/fnl-simulations/.
The best estimates of the local shape presented in Curto et al. (2011b) are
f

(cubic)
nl = 32.5 ± 22.5. Note that in that work, a perturbative approach

is considered to simulate the non-Gaussian simulations used to compute
〈qijk〉fnl . The different approaches to simulate the non-Gaussianity and
the statistical errors due to the finite number of non-Gaussian simulations
explain the small differences between the error bars presented here and in
that reference.
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The effect of the linear term on the f nl wavelet estimator 1365

Figure 3. WMAP seven-year data best-fitting fnl values using the cubic estimator (equation 11) and the estimator with the linear correction (equation 13) for
the local (top), equilateral (middle) and orthogonal ( bottom) shapes. In the left-hand panels, the histograms of the best-fitting fnl values with (dashed dark
line) and without (solid red line) the linear term correction for each simulation are plotted. The vertical lines correspond to the values obtained with WMAP
data. The right-hand panels show the corresponding correlation between the same estimates.

Table 1. Constraints on the fnl parameter for the local shape with and without the linear term
correction. From left to right, the best-fitting values for the clean and the raw data maps, the mean,
dispersion, 16, 84, 2.5 and 97.5 per cent quantiles, respectively, of the fnl distribution obtained
with 10 000 Gaussian maps. The Fisher error bar obtained for this shape is σF(fnl) = 21.6.

Case f
(clean data)
nl f

(raw data)
nl 〈fnl〉 σ (fnl) X16 X84 X2.5 X97.5

Cubic 38.9 20.8 0.6 21.6 −21.1 21.9 −42.7 41.8
Linear −0.1 −0.0 0.0 3.1 −3.1 3.2 −6.1 6.2

Cubic–linear 39.0 20.8 0.7 21.4 −21.0 22.7 −42.6 41.3

Table 2. Constraints on the fnl parameter for the equilateral shape with and without the linear term
correction. From left to right, the best-fitting values for the clean and the raw data maps, the mean,
dispersion, 16, 84, 2.5 and 97.5 per cent quantiles, respectively, of the fnl distribution obtained with
10 000 Gaussian maps. The Fisher error bar obtained for this shape is σF(fnl) = 144.5.

Case f
(clean data)
nl f

(raw data)
nl 〈fnl〉 σ (fnl) X16 X84 X2.5 X97.5

Cubic −53.3 28.1 −1.6 154.3 −155.9 151.5 −302.4 302.2
Linear 9.5 13.7 −0.3 23.0 −23.6 22.6 −47.8 46.7

Cubic–linear −62.8 14.4 −1.3 154.0 −156.4 150.3 −304.5 300.3
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Table 3. Constraints on the fnl parameter for the orthogonal shape with and without the linear term
correction. From left to right, the best-fitting values for the clean and the raw data maps, the mean,
dispersion, 16, 84, 2.5 and 97.5 per cent quantiles, respectively, of the fnl distribution obtained with
10 000 Gaussian maps. The Fisher error bar obtained for this shape is σF(fnl) = 106.3.

Case f
(clean data)
nl f

(raw data)
nl 〈fnl〉 σ (fnl) X16 X84 X2.5 X97.5

Cubic −155.1 −119.4 0.2 115.1 −113.4 115.2 −230.4 225.6
Linear 4.7 4.8 0.2 18.5 −17.8 18.0 −36.5 36.7

Cubic–linear −159.8 −124.2 0.0 115.1 −113.2 115.0 −228.4 222.8

Figure 4. The fnl error bars computed using different Rmin angular scales for the local (left), equilateral (middle) and orthogonal (right) shapes. The diamonds
correspond to f cubic

nl and the crosses to f total
nl .

In order to check that the estimator has already reached optimality
with the considered scales for the three shapes, we have computed
σ (fnl) for different subsets of scales (Fig. 4). We compare the fnl

error bars for different minimum angular scales Rmin. To find the
equivalent multipole � range corresponding to each Rmin see fig. 5
of Curto et al. (2011a). The three shapes reach minimum variance
for Rmin = 0 arcmin.

The error bars of the equilateral and orthogonal shapes are also
similar to the values obtained with the direct bispectrum estimator
where σ (fnl) = 140 for the equilateral shape and σ (fnl) = 104 for
the orthogonal shape (Komatsu et al. 2011). The slightly larger val-
ues (∼9 per cent) obtained from the dispersion of the fnl distribution
corresponding to 10 000 Gaussian simulations, σ (fnl) = 154 and
115, respectively, are likely due to differences in the perturbative
approach used to simulate the non-Gaussian signal of these two
shapes (Curto et al. 2011b) or the statistical errors due to the finite
number of non-Gaussian simulations.

4 A PPLICATION TO PLANCK SIMULATIONS

We have computed the linear term correction to the cubic wavelet
fnl estimator for the local shape using Planck simulations in or-
der to forecast the amplitude of this correction on future Planck
analyses. We do not consider the two other shapes (equilateral and
orthogonal). From the results of the previous sections, we expect
the correction for those cases to be even smaller.

For this analysis, we have considered a new set of angular scales
that better suits the range of angular multipoles which are cosmic
variance dominated (�max ∼ 2000). The list of angular scales is
R0 = 0, R1 = 1.3, R2 = 2.1, R3 = 3.4, R4 = 5.4, R5 = 8.7, R6 =
13.9, R7 = 22.3, R8 = 35.6, R9 = 57.0, R10 = 91.2, R11 = 146.0,
R12 = 233.5, R13 = 373.6, R14 = 597.7 and R15 = 956.3 arcmin. As a
representative mask, we have used the available WMAP KQ75 mask
(75 per cent of the sky). We have simulated the Planck 143 GHz
channel using a fiducial CMB power spectrum that best fits WMAP
7-year data, �max = 2048 and a Gaussian beam with FWHM =
7.1 arcmin. The noise has been generated using an anisotropic Nhits

map computed from the scanning strategy of the Planck Sky Model4

(Delabrouille et al. 2012) and the noise sensitivity per pixel provided
in the Planck Bluebook5 (using an average noise sensitivity for 14
months of σnoise = 2.2 μK K−1 in a square pixel whose size is the
full width at half-maximum extent of the beam).

The cubic covariance matrix and the linear correlation matrices
needed for the fnl estimator in equation (13) have been computed
using two independent sets of 10 000 Planck Gaussian simulations.
The results corresponding to the analysis of an additional set of
1000 Gaussian maps are presented in Fig. 5. Note that for this
simulated Planck level of anisotropy, f

(cubic)
nl and f

(total)
nl are also

highly correlated. Finally in Table 4, the properties of the previous
histograms are summarized. In particular, we see that using the
cubic estimator σ (fnl) = 7.98, and the linear term contribution
reduces this error bar to σ (fnl) = 7.95 (i.e. a negligible correction
lower than 0.4 per cent).

5 C O N C L U S I O N S

In this paper, we have performed a comprehensive study of the fnl

wavelet estimator. We have considered the main statistical assump-
tions to derive the estimator in terms of the cubic quantities qi and
showed the conditions to reach optimality. We have found that the
SMHW wavelet produces an important effective decorrelation of
the signal at angular distances above the angular resolution R. This
means that the cubic quantities are nearly Gaussian owing to the
central limit theorem, and using this property we have found an
expression for the likelihood of the fnl parameter in terms of the
cubic statistics. We have also included a linear term correction fol-
lowing the Wick polynomials introduced by Donzelli et al. (2012).
In particular, we have confirmed that the linear term correction is
basically achieved through the mean subtraction that we carry out

4 http://www.apc.univ-paris7.fr/∼delabrou/PSM/psm.html
5 The Planck Bluebook is available for download in the web:
http://www.rssd.esa.int/index.php?project=Planck
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Figure 5. Expected Planck 143 GHz best-fitting fnl values using the cubic estimator (equation 11) and the estimator with the linear correction (equation 13)
for the local shape. In the right-hand panel, the best-fitting fnl values with and without the linear term correction for each simulation are plotted.

Table 4. Expected constraints on the fnl parameter for the local
shape with and without the linear term correction for the 143 GHz
Planck channel. From left to right, the mean, dispersion, 16, 84,
2.5 and 97.5 per cent quantiles, respectively, of the fnl distribution
obtained with 1000 Gaussian maps. The Fisher error bar obtained
for this case is σF(fnl) = 7.5.

Case 〈fnl〉 σ (fnl) X16 X84 X2.5 X97.5

Cubic 0.4 7.98 −7.2 8.6 −15.0 17.2
Linear 0.0 1.43 −1.4 1.5 −2.7 2.8

Cubic–linear 0.4 7.95 −7.4 8.2 −15.4 16.7

on the wavelet coefficient maps for each angular scale (Curto et al.
2011a,b). We find that, in this case, the linear term correction only
reduces the error bars about 1 per cent for the local case using the
WMAP data. This correction is even smaller for the equilateral and
orthogonal cases (0.2 and 0.1 per cent, respectively). The results
presented in this paper are in agreement with the optimal results ob-
tained with the wavelet estimator already published where the mean
subtraction was performed (Curto et al. 2009a,b, 2010, 2011a,b).
Therefore, we conclude that the contribution of the linear term is
negligible (≤ 1 per cent) for the SMHW estimator for the three con-
sidered shapes. We have also explored the linear term correction
for Planck simulations at the 143 GHz channel. Our results indicate
that the correction for the local shape is lower than 0.4 per cent
considering the expected levels of noise anisotropy for this channel
and the WMAP KQ75 mask. From the results of WMAP data, we
expect the correction for the equilateral and orthogonal shapes to
be even smaller.
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