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 Nitrate-fed and dark-stressed beans (Phaseolus vulgaris)  and peas 

(Pisum sativum)  were used to study nodule senescence. In beans, nitrate (1 

d) caused a partially reversible decline in nitrogenase (N2ase) activity and an 

increase in O2 diffusion resistance, but minimal changes in carbon 

metabolites, antioxidants, and other biochemical parameters, indicating that 

the initial decrease in N2ase activity is due to O2 limitation. In peas, dark (1 d) 

led to a 96% decline in N2ase activity and sucrose, indicating sugar 

deprivation as the primary cause of activity loss. In later stages of 

senescence (4 d with nitrate or 2 to 4 d with dark), nodules showed 

accumulation of oxidized proteins and general ultrastructural deterioration. 

The major thiol tripeptides of untreated nodules were homoglutathione (72%) 

in bean and glutathione (89%) in pea. These predominant thiols declined by 

approximately 93% after 4 d with nitrate or dark, but  the loss of thiol content 

can be only ascribed in part to limited synthesis by glutamylcysteine, 

glutathione, and homoglutathione synthetases. Ascorbate peroxidase was 

immunolocalized primarily in the infected and parenchyma (inner cortex) 

nodule cells, with large decreases in senescent tissue. Ferritin was hardly 

detectable in untreated bean nodules but accumulated in the plastids and 

amyloplasts of uninfected interstitial and parenchyma cells following 2 or 4 d 

with nitrate, probably as a response to oxidative stress.  
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 Legume N2 fixation is particularly sensitive to environmental perturbations, 

including defoliation, water deficit, continuous darkness, and nitrate fertilization 

(Vance et al., 1979; Witty et al., 1986; Layzell et al., 1990). In most types of stress, 

the initial decrease of N2ase activity is associated with a decline in the O2 

concentration reaching the infected cells and bacteroids (Witty et al., 1986; Carroll 

et al., 1987; Layzell et al., 1990; Escuredo et al., 1996). Prolongation of stress 

induces premature nodule senescence, which shares some features with natural 

senescence (nodule aging) such as the loss of N2 fixation, the increase in lytic 

activities, and the formation of green pigments from Lb (Pfeiffer et al., 1983; Sarath 

et al., 1986). This stress-induced senescence has been linked to the enhanced 

production of oxidants and the lowering of antioxidant defenses (Escuredo et al., 

1996; Gogorcena et al., 1997). Oxidants include inorganic (H2O2) and organic (lipid) 

peroxides as well as 'catalytic' iron, which represents the fraction of iron in plant 

tissues capable of catalyzing the generation of hydroxyl radical through Fenton 

reactions (Becana et al., 1998). 

 A major antioxidant mechanism operating in the nodule cytosol is the 

ascorbate-GSH cycle, which results ultimately in the detoxification of H2O2 at the 

expense of NAD(P)H. The pathway involves the concerted action of four enzymes 

(APX, DR, MR, and GR) and requires a continuous supply of ascorbate, thiols, and 

reduced pyridine nucleotides (Dalton et al., 1986; 1992). The initial enzyme of the 

pathway, APX, may account for up to 1% of the total soluble protein of nodules 

(Dalton et al., 1998). The thiol tripeptide GSH (Glu-Cys-Gly) also participates in the 

the removal of peroxides through the ascorbate-GSH cycle, but it performs 

additional roles in plants, such as the transport and storage of sulfur, the control of 

redox status, and the detoxification of heavy metals (Rennenberg, 1995; May et al., 

1998). The synthesis of GSH involves two ATP-dependent reactions catalyzed by 

the enzymes ECS and GSHS. Thiol tripeptides are particularly abundant in the 

leaves, roots, and seeds of legumes, where a thiol tripeptide homolog, hGSH (Glu-
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Cys-Ala), may be present in addition to, or instead of, GSH (Klapheck, 1988). 

Apparently, an specific hGSHS  catalyzes the second step of hGSH synthesis in the 

leaves of some legumes (Macnicol, 1987; Klapheck et al., 1988). It is not known 

whether hGSH and hGSHS are present in the nodules.  

 An entirely different antioxidant mechanism, involving the sequestration of  

catalytic iron by ferritin, may operate also in the nodules. Plant ferritins are 

composed of 24 subunits and can store up to  4500 atoms of iron in a safe, non-

toxic form (Briat and Lobréaux, 1997). In nodules, ferritin may act also as an iron 

reservoir for N2ase, Lb, and other iron-proteins, since ferritin protein increases early 

in nodulation and then declines concomitantly with the increase in N2ase activity 

and in heme and non-heme iron (Ragland and Theil, 1993). However, little is known 

about ferritin in  senescent nodules. This information may be of considerable 

interest because nodules are extremely rich in iron (Ragland and Theil, 1993) and 

this may become available (catalytic iron) for Fenton reactions by proteolysis during 

nodule senescence, either natural or induced by stress (Becana et al., 1998). 

 Many other important alterations related to oxygen, carbon, and nitrogen 

metabolism occur in nodules during senescence, but the precise sequence of these 

biochemical changes is far from clear (Carroll et al., 1987; Layzell et al., 1990; 

Gordon et al., 1997). There is also a paucity of information regarding the structural 

changes involved in stress-induced nodule senescence. LM or EM studies have 

been carried out with nodules of detopped alfalfa (Vance et al., 1979), dark-treated 

soybean (Cohen et al., 1986), and nitrate-treated lupine (Lorenzo et al., 1990). 

Nevertheless, legume symbioses differ in their tolerance to stress and at least some 

of these differences may be related to the growth pattern (indeterminate versus 

determinate) of nodules (Sprent, 1980). Comparison of the inhibitory effects of 

stress on other legumes may provide insight about the mechanisms underlying 

stress tolerance and nodule senescence. The general objective of this work is to 

ascertain the time course of events leading to the loss of function and structural 

deterioration of nodules following stress application to the plant.  The specific 
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objective is to gain further information on the role of some important antioxidants 

(APX, thiols, and ferritin) in the protection of legume N2 fixation against the noxious 

effects of peroxides, free radicals, and catalytic iron. Data presented in this paper 

are intended to complement two previous reports (Escuredo et al., 1996; 

Gogorcena et al., 1997), so as to provide an orthogonal comparison of nitrate and 

dark stress-induced senescence in determinate and indeterminate nodules. 

 

 

MATERIALS AND METHODS 

  

Plants and Treatments 

 Nodulated beans (Phaseolus vulgaris L. cv Contender x Rhizobium legumino-

sarum  biovar phaseoli  3622) and peas (Pisum sativum  L. cv Lincoln x R. 

legumino-sarum  biovar viciae NLV8) were grown in a perlite/vermiculite mixture 

(2/1) in controlled-environment chambers as described by Gogorcena et al. (1997). 

When beans had reached the late vegetative stage (30-32 d), pots were divided at 

random into four groups, which received 10 mM potassium nitrate for 1, 2, or 4 d, 

whereas control plants receiving N-free nutrient solution were harvested on the third 

day. Likewise, when peas had reached the late vegetative stage (34-36 d), pots 

were divided at random into four groups, which were placed in the dark (with 

otherwise identical conditions) for 1, 2, or 4 d, whereas control plants kept in the 

light were harvested on the third day. These control plant harvests were arranged 

so that the maximum age difference between treated and control plants was 2 d. 

The same protocol was used to produce dark-treated bean and nitrate-treated pea 

plants so as to obtain nodules for microscopic studies. Nodules to be used for LM 

and EM analyses were fixed immediately upon detachment as described under "LM 

Studies". Nodules to be used for biochemical analyses were flash-frozen in liquid 

N2 and stored at -80°C for later analysis (within 4-5 weeks).  
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Nodule Activity and Carbon Metabolites 

 N2ase activity  and  root respiration of intact, undisturbed plants were measured 

simultaneously using a flow-through gas system (Minchin et al., 1983) housed in a 

controlled-environment chamber. Root systems were sealed into the growth pots and 

allowed to stabilize for 18 h. In vivo N2ase activity was measured as H2 evolution 

(Witty and Minchin, 1998) using electrochemical H2 sensors (City Technology Ltd., 

Portsmouth, UK) and respiratory CO2 production was measured using an IR gas 

analyzer. Measurements were made  in air for 5 min and then in a gas stream of 

79% Ar/21% O2. Following exposure to Ar/O2, steady-state conditions were reached 

after 60 to 80 min and the external O2 concentration was then increased over the 

range of 21 to 60% (8.55 to 24.54 mmol O2 L-1) in steps of 5 or 10%. Each increase 

in O2 took 5 to 6 min and was followed by a 20- to 25-min equilibration period. These 

data were used to calculate the ODB resistance and carbon costs of N2ase, as 

described in Escuredo et al. (1996). 

 Based on maximum H2 production under Ar/O2, the electron allocation 

coefficient for N2 was 0.67 for control pea nodules and 0.73 for control bean 

nodules. The hup  negative genotype of the two Rhizobium  strains used in these 

studies was confirmed by Southern blot analysis of EcoRI-digested total DNA using  

a hup-specific DNA probe prepared by dioxigenin-labeling of cosmid pAL618 

containing the entirehup gene cluster from R. leguminosarum  biovar viciae  strain 

UPM791 (Leyva et al., 1990). 

 Lb was determined by a method based on the fluorescence emitted by the 

tetrapyrrol ring after removal of Fe by hot saturated oxalic acid (LaRue and Child, 

1979) using  myoglobin (horse skeletal muscle; Calbiochem) as the standard. 

Protein of the nodule cytosol and bacteroids was determined with a commercial dye 

(Bio-Rad) using crystalline BSA (Sigma) as the standard. Total lipids were extracted 

from nodules at room temperature essentially as described by Bligh and Dyer 

(1959).  
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 Carbohydrates were  extracted from 0.2 g of nodules with 10 mL of boiling 80% 

ethanol. The ethanol-soluble extracts were dried in vacuo at 40°C and the soluble 

compounds redissolved in 4 mL of water. The samples were centrifuged at 20,000g  

for 10 min and the contents of Glc, Fru, and Suc were determined spectrophoto-

metrically at 340 nm using enzymatic assays coupled to the formation of NADH 

(González et al., 1995). Starch was extracted from the ethanol-insoluble residue 

and quantified as the Glc released following digestion with amyloglucosidase 

(MacRae, 1971). 

 

Catalase and Enzymes of the Ascorbate-GSH Cycle  

 Antioxidant enzymes were extracted at 4°C from 0.5 g (bean) or 0.25 g (pea) of 

nodules with a mortar and pestle. Catalase and APX were extracted with 10 mL 

(bean) or 5 mL (pea) of 50 mM potassium phosphate buffer (pH 7.0) containing 

0.5% (w/v) PVP-10. DR, GR, and MR were extracted with 5 mL (bean) or 2.5 mL 

(pea) of 50 mM potassium phosphate buffer (pH 7.8) containing 1% (w/v) PVP-10, 

0.2 mM Na2EDTA, and 10 mM -mercaptoethanol. The homogenate was filtered 

through one layer of Miracloth (Calbiochem) and centrifuged at 15,000g  for 20 min.  

 Catalase activity was assayed by following the decomposition of H2O2 at 240 

nm (Aebi, 1984). APX and DR activities were determined by measuring the 

oxidation of ascorbate at 290 nm (Asada, 1984), and the formation of ascorbate at 

265 nm (Nakano and Asada, 1981), respectively. MR and GR activities were 

assayed by monitoring the oxidation of NADH (Dalton et al., 1992) and NADPH 

(Dalton et al., 1986) at 340 nm, respectively.  

 All activities were measured at 25°C, in 1-mL reaction mixtures, and within the 

linear range. Measurements were made with a Lambda-16 spectrophotometer 

(Perkin-Cetus) during the first 1.5-3 min with no lag period, except for APX, which 

was measured after a lag of 40 s. Assays were made using sample volumes 

ranging from 10 L (catalase) to 100 L (GR). Where appropriate, controls made by 

omitting or boiling extracts were run in parallel to correct for nonenzymatic rates, 
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and buffers and reagents were treated with Chelex resin to avoid contamination by 

trace amounts of transition metal ions.  

 

Thiols and Thiol Synthetase Activities 

 GSH and hGSH were extracted from 50 mg of nodules with 500 L of 200 mM 

methanesulfonic acid containing 0.5 mM diethylenetriaminepentaacetic acid. After 

centrifugation at 13,000g   for 5 min, the supernatant was derivatized at pH 8.0 with 

2 mM monobromobimane (Fahey and Newton, 1987). The bimane derivatives of 

GSH and hGSH were separated and quantified by HPLC (Waters) using an 

analytical Nova-Pak C18 column (3.9 x 150 mm; 4 m; Waters) and a 15% 

methanol/0.25% acetic acid (pH 3.5) solvent at a constant flow of 1 mL min-1. 

Detection was by fluorescence (model 474 scanning fluorescence detector; Waters) 

with excitation at 380 nm and emission at 480 nm. Standards of GSH (Sigma) and 

hGSH (obtained by chemical synthesis at the University of Nebraska, Lincoln) were 

processed identically to the samples. The proportion of thiol tripeptides present in 

the oxidized form was determined by an enzymatic recycling procedure using yeast 

GR to reduce the disulfide forms and vinylpyridine as thiol blocking agent (Griffith, 

1980; Law et al., 1983).  

 The extraction and assays of ECS, GSHS, and hGSHS activities were 

performed by modification of previous protocols, based on the HPLC separation of 

synthesized Glu-Cys, GSH, and hGSH, after derivatization with monobromobimane  

(Hell and Bergmann, 1988; Kocsy et al., 1996).  

 

Other Metabolites 

 Ascorbate was extracted from 0.25 g of nodules with 5 mL of 5% (w/v) 

metaphosphoric acid and quantified by a method based on the ascorbate-

dependent reduction of Fe3+  to Fe2+. Formation of the complex between  Fe2+ with 

2,2'-dipyridyl was measured at 525 nm (Law et al., 1983).   
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 Pyridine nucleotides were extracted  from 30 mg of nodules with  2 x 0.5 mL of 

0.1 M NaOH (NADH, NADPH) or with 2 x 0.5 mL of 5% TCA (NAD+, NADP+) at 

room temperature. After thorough homogenization for 90-120 s in an Eppendorf 

tube, the extracts were boiled for 6 min, cooled on ice, and centrifuged at 13,000g  

for 6 min at room temperature. The supernatant (25 L for bean, 50 L for pea) was 

made up to 100 L with NaOH or TCA, and the nucleotides were quantified by the 

enzymatic-cycling method of Matsumura and Miyachi (1980).  

   

Oxidant Damage 

 Lipid peroxides were extracted from 0.5 g of nodules with 5 mL of 5% (w/v) 

metaphosphoric acid and 100 L of 2% (w/v in ethanol) butyl hydroxytoluene 

(Minotti and Aust, 1987). The extract was filtered through one layer of Miracloth and 

centrifuged at 15,000g  for 20 min. An aliquot of the supernatant was reacted with 

thiobarbituric acid at low pH and 95°C and cooled to room temperature. The 

resulting thiobarbituric acid-malondialdehyde adduct was extracted with 1-butanol 

and quantified by HPLC as described in detail by Iturbe-Ormaetxe et al. (1998).  

 Protein carbonyl content was measured by derivatization with 2,4-dinitrophenyl-

hydrazine as indicated by Levine et al. (1990) with some modifications. Proteins 

were extracted from 0.5 g of nodules with 5 mL of 100 mM potassium phosphate 

(pH 7.0), 0.1% (v/v) Triton X-100, 1 mM Na2EDTA, and 2.5 g each of aprotinin and 

leupeptin to prevent proteolysis of oxidized proteins during sample preparation. 

After precipitation of possible contaminating nucleic acids in the samples with 1% 

(w/v) streptomycin sulfate, an aliquot of 0.8 mL of the extracts was reacted with 0.2 

mL of 20 mM dinitrophenylhydrazine (in 2 M HCl) and another aliquot (control) with 

0.2 mL of 2 M HCl for 1 h, with vigorous shaking every 10 to 15 min. Proteins were 

then precipitated with 10% (w/v) TCA and the pellet was washed four times with 1:1 

(v/v) ethanol/ethyl acetate. Precipitated proteins were solubilized in 6 M guanidine-

HCl (pH 4.5) by incubation for 30 min with shaking. The insoluble material was 

removed by centrifugation and the absorbance of the hydrazones (derivatized 
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carbonyls) was measured at 370 nm (Levine et al., 1990). To obtain more accurate 

results, the amount of protein to be analyzed for carbonyl content was adjusted to 

0.5 mg in all samples. 

 

LM Studies 

 Prior to immunodetection of relevant proteins at the LM or EM levels, bean and 

pea nodule extracts were subjected to Western analysis (Cresswell et al., 1992). 

Polyclonal antibodies used in this study were raised in rabbits against N2ase 

(universal antibody to the ferroprotein of N2ase; courtesy of Dr. Paul Ludden), APX 

(soybean nodule cytosol; Dalton et al., 1993; 1998), and ferritin (soybean seeds; 

courtesy of Dr. Elizabeth Theil).  

 Nodules to be used for immunodetection of N2ase and APX were fixed 

overnight in 2% paraformaldehyde, 1.25% glutaraldehyde, and 50 mM Pipes (pH 

7.2). Fixed samples were dehydrated in an ethanol series, embedded in LR White 

resin, and cut into 1-m sections with a Reichert Ultracut R  microtome. For LM 

immunogold staining, slides were incubated overnight at room temperature in a 1:50 

dilution of antibodies raised against N2ase or APX. For both antigens, the slides 

were incubated for 1 h with secondary antibody consisting of affinity-purified goat 

anti-rabbit IgG conjugated to colloidal gold (Auroprobe, Amersham) at a 1:40 

dilution. Silver enhancement solution (InsenSEM, Amersham) was applied at room 

temperature and monitored for sufficient development (15-25 min) following the 

protocols of the manufacturer. All sections were counterstained with 0.5% safranin 

in water for 60 s. Representative nodule sections were photographed with a Leitz 

Laborlux S microscope equipped with a Nikon FE-2 camera.  

 For LM immunofluorescence staining of APX, the secondary antibody consisted 

of affinity-purified goat anti-rabbit antibodies conjugated to a Cy3 fluorophore 

(excitation at 550 nm, emission at 570 nm; Jackson ImmunoResearch Laboratories, 

West Grove, PA) at  a dilution of 1:300 for 30 min. Sections were viewed with a 

Leitz Laborlux S microscope equipped with a rhodamine filter. 
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EM Studies 

 Ultrastructural studies and immunolocalization of APX and ferritin at the EM 

level were carried out as indicated in Dalton et al. (1993), except that the APX and 

ferritin antibodies were used at dilutions of 1:500 and 1:25, respectively, and that 

grids were counterstained only with uranyl acetate. Nodule sections were obtained 

with a Reichert Ultracut E microtome and representative micrographs for all 

treatments were taken with a Zeiss 900T transmission electron microscope at 80 

kV. 

 

 

RESULTS 

 

N2ase Activity and Related Parameters 

 Beans were treated with 10 mM nitrate for up to 4 d to progressively induce  

nodule senescence, which was monitored by measuring general markers of 

metabolic activity (Table I). One day of nitrate application was sufficient to inhibit the 

in vivo N2ase activity by 73% and to increase the ODB resistance by 3-fold. At this 

stage,  the total root respiration and the carbon cost of N2ase did not vary, but there 

were significant increases in Lb and total soluble protein of nodules (Table I). After 2 

d with nitrate, the carbon cost of N2ase increased 1.7-fold whereas Lb and soluble 

protein returned to control values. After 4 d there was a further increase in the 

carbon cost of N2ase up to 2.4-fold and decreases of 53% and 31% in Lb and 

soluble protein, respectively, relative to the control. An increase in rhizosphere O2  

produced a recovery of N2ase activity at all stages of the nitrate treatment. 

Maximum activities at increased O2 concentrations relative to those at 21% O2 were  

82, 211, 141, and 130% after 0, 1, 2, and 4 d, respectively (Table I). 

 Dark treatment of peas led to a drastic inhibitory effect on nodule activity. After 

only 1 d of dark, in vivo N2ase activity was almost abolished, whereas total root 
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respiration declined by 68% and the ODB resistance was enhanced by 10-fold 

(Table I). However, there was no effect on the carbon cost of N2ase, and Lb and 

soluble protein only decreased by 29% and 14%, respectively. Prolongation of dark 

stress for one more day lowered Lb content by an additional 63% but had no effect 

on total soluble protein. There were no further significant changes after 4 d of 

darkness, except for total root respiration, which decreased by 86% relative to 

control (Table I). Increasing rhizosphere O2 concentrations above 21% caused a 

slight, but non-significant, rise in N2ase activity in peas after 1 d dark, but did not 

induce any recovery of activity after 2 and 4 d of continuous darkness.  

 

Carbohydrates 

 Nitrate had considerably less effect on nodule carbohydrates than dark stress. 

Treatment of bean plants with nitrate led to a progressive decline in Glc, Suc, and 

starch, whereas Fru increased by 35% after 1 d  and declined to 60% of the control 

value after 2 or 4 d (Table II). The contents of Glc and Suc decreased by 30 to 40% 

after 1 of nitrate application, 47 to 57% after 2 d, and 70% after 4 d. Starch was 

similarly affected after 1 and 2 d with nitrate, but remained at 52% of control after 4 

d (Table II).  

 In contrast, nodules of peas dark-treated for 1 d had lost 97% of their Suc 

content, along with 69% of Glc, 53% of Fru, and 74% of starch (Table II). The 

contents of Glc and starch remained essentially constant at this low level following 

prolongation of the dark treatment to 2 or 4 d, whereas Fru declined by 85% relative 

to control and Suc virtually disappeared after 4 d (Table II).  

 

Antioxidant Enzymes 

 Nitrate application for 1 d had only a minor effect on antioxidant enzyme 

activities from bean nodules, with the exception of GR activity, which increased by 

41% (Table III).  Following 2 d with nitrate, only APX activity had decreased 

significantly with respect to control, but after 4 d there was a general decline in 
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activities of all enzymes of the ascorbate-GSH cycle. The decreases ranged from 

18 to 20% for DR and GR to 63% for APX. Catalase activity responded quite 

differently, with no variation after 2 d of nitrate supply and a 52% decline after 4 d 

(Table III).   

 Likewise, after 1 d of dark stress, pea nodules did not show apparent changes 

in antioxidant activities, but after 2 d  there were decreases of 26 to 32% in APX 

and GR, and catalase activity increased by 31% (Table III). Following 4 d of dark 

treatment, there were major declines in the activities of the enzymes of the 

ascorbate-GSH cycle: 40 to 50% for APX, GR and MR, and 82% for DR. In 

contrast, catalase activity exceeded the control value by 44% (Table III). 

  

Antioxidant Metabolites and Nucleotides 

 Some improvements of an HPLC method based on the derivatization of thiols to 

form highly fluorescent adducts (Fahey and Newton, 1987) allowed us to quantify 

separately, for the first time, GSH and hGSH in nodules (Table IV). Control 

(untreated) bean nodules contained 103 nmol GSH and 262 nmol hGSH g-1 fresh 

weight, and pea nodules 698 nmol GSH and 90 nmol hGSH g-1 fresh weight. 

Hence, GSH was the major thiol (89%) in pea nodules, whereas hGSH 

predominated (72%) in bean nodules. Assuming uniform distribution and 85%  

water content in nodules, the total thiol tripeptide (GSH+hGSH) concentrations in 

bean and pea nodules were estimated as 0.4 mM and 0.9 mM , respectively. 

 As occurred with antioxidant enzyme activities, nitrate application for 1 or 2 d 

had only a very limited effect on the content of antioxidant metabolites and pyridine 

nucleotides in bean nodules (Table IV). After 1 d with nitrate, there were only minor 

or moderate changes in GSH (37% decrease), ascorbate (20% increase), and 

NADH and NADP+ (18% decrease). The contents of other nucleotides and hGSH 

remained essentially constant, as did the proportion of the disulfide forms of GSH 

and hGSH. Following 2 d with nitrate, both GSH and hGSH decreased by 28% but 

this decrease was not due to simple thiol oxidation since 98% of total thiols were still 
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present in the reduced form. Only after 4 d was there a significant, although rather 

modest, increase in the proportion of the disulfide forms, from 2  to 5%. At this 

stage, GSH and hGSH had declined by 64 and 85%, respectively, and  pyridine 

nucleotides, except NADPH, by 39 to 56%. In contrast, the ascorbate content of 

nodules treated with nitrate for 4 d was identical to that of untreated nodules (Table 

IV). 

 The effect of prolonged darkness on pea nodule antioxidants and nucleotides 

was also moderate after 1 d, with decreases in the range of 26 to 37% for 

ascorbate, NAD+, and NADH (Table IV). After 2 d, all parameters, except the hGSH 

content, experienced substantial declines ranging from approximately 24% for 

NADPH to 62% for NADH. In addition, the proportion of oxidized thiols rose 

significantly, from 14 to 20%. After 4 d, ascorbate and hGSH declined by 54 to 60%, 

and GSH by 92%. The nodule content of pyridine nucleotides also decreased 

markedly, albeit to a lower extent for NAD(H) than for NADP(H). Nevertheless, the 

NAD+/NADH and NADP+/NADPH ratios were kept at approximately 3 and 1, 

respectively, throughout the dark treatment. 
 

 

Synthesis of GSH and hGSH   

 Because nitrate and dark treatment led to major declines of  GSH and hGSH in 

nodules which cannot be accounted for by oxidation to the disulfide forms (Table 

IV), we decided to investigate whether there is GSH and hGSH synthesis in nodules 

and, in that case, whether this can be impaired by the stress treatments. 

Optimization of previous HPLC methods enabled us to assay all the enzyme 

activities required for the synthesis of GSH and hGSH in nodules (Table V), 

indicating that there is genuine synthesis of thiol tripeptides in the nodule tissue. 

The first committed step for the synthesis of both  tripeptides is catalyzed by ECS, 

and this activity was similar in control (untreated) bean and pea nodules. The 

second step is thought to be catalyzed by specific synthetases, GSHS or hGSHS. 
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Both activities were present in bean and pea nodules, but hGSHS activity 

predominated in bean nodules whereas GSHS activity predominated in pea 

nodules. This is in agreement with the major thiol tripeptides found in the respective 

nodules (Table IV), which strongly suggests that the relative abundance of GSH and 

hGSH  is determined, at least in part, by the corresponding thiol tripeptide 

synthetase activities.  

 Nitrate supply of bean plants for 2 d led to decreases of 40% in ECS activity 

and 60% in GSHS activity, but had no effect on hGSHS activity; prolongation of 

treatment up to 4 d led to a decline of 50 to 60% for all three activities of nodules 

(Table V). Placement of pea plants in the dark for 2 d caused decreases of 40% in 

GSHS and hGSHS activities of nodules; after 4 d, these activities had decreased by 

50 to 60%, whereas the ECS activity of nodules had increased by 34% (Table V).  

 

Oxidant Damage 

 The contents of lipid peroxides (malondialdehyde) and oxidatively modified 

proteins (carbonyl groups) were used as markers of free radical damage in nodules. 

The response of both parameters during senescence was, however, distinctly 

different (Table VI). Nitrate treatment of beans or dark treatment of peas for 4 d 

caused decreases of 40 to 48% in the content of lipid peroxides of nodules. In 

contrast, both nitrate and prolonged darkness increased the amount of oxidized 

proteins in nodules by approximately 34% (Table VI).  

 

Immunolocalization of N2ase and APX 

 Immunogold localization of N2ase with silver enhancement and dark-field LM 

indicated the presence of abundant protein in the infected cells of control 

(untreated) bean (Fig. 1A) and pea (data not shown) nodules. Little-or-no labeling 

occurred in nodules that had been exposed to either of the stress treatments for 4 d 

(Fig. 1B).  Using the same technique but with bright-field LM, APX protein was 

found to be localized predominantly in the endodermis and adjacent cell layers of 
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the nodule parenchyma (inner cortex) as well as in the infected zone of control bean 

nodules (Fig. 2A). Using immunofluorescence with the secondary antibody 

conjugated to the fluorophore Cy3, a similar distribution of APX protein was noticed 

in control pea nodules (Fig. 2C). Treatment with either nitrate or dark led to a 

substantial decrease in labeling intensity in both bean and pea nodules (Fig. 2, B 

and D), in agreement with the observed declines in enzyme activity (Table III). As 

expected, bean and pea nodule sections in which rabbit normal serum was used in 

place of the primary antibody showed only a very sparse background labeling.  

 The pattern of immunolocalization of APX at the EM level was similar to that 

observed at the LM level. No label was evident in negative controls (Fig. 3, A and 

B), whereas strong labeling was present in the cytosol of the parenchyma and 

infected cells of control bean and pea nodules (Fig. 3, C and D). Label was also 

noted in the cytosol of interstitial cells (Fig. 4B), over the symbiosomes, and 

occasionally over the mitochondria and bacteroids (Fig. 4C). Immunolabeling of 

APX decreased in bean and pea nodule tissue with nitrate and dark stress. The 

location of labeling was not affected by any of the two treatments.   

 

Ultrastructural Studies  

 Ultrathin sections of representative nodules from nitrate-treated beans and 

dark-treated peas were also examined by EM to follow the structural changes 

occurring during senescence and complement the physiological and biochemical 

data. In addition, nodules from dark-treated beans and nitrate-treated peas were 

processed in parallel to allow for orthogonal comparisons. 

  Infected cells of control (untreated) bean nodules were densely packed with 

symbiosomes, each enclosing one to four bacteroids. Bacteroids contained 

abundant poly-hydroxybutyrate granules, and organelles of the infected cell, 

including mitochondria and plastids, were confined to the periphery of the cell. Bean 

nodules treated for 1 or 2 d with nitrate essentially showed features similar to 

control nodules (Fig. 4D). After 4 d of nitrate treatment, significant disruption of the 
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host cytoplasm and of symbiosome membranes was observed; however, there 

were no evident changes in bacteroids or in poly-hydroxybutyrate content (Fig. 

4E). 

 Dark stress resulted in observable changes in bean nodules after only 1 d of 

treatment (Fig. 4F). Many infected cells, particularly toward the interior of the 

nodule, showed disrupted cytoplasm and discontinuities in the symbiosome 

membrane. After 2 d of dark, breaks in the symbiosome membrane were more 

frequently observed, and cytoplasmic breakdown of infected cells was evident (Fig. 

4G). Cell disruption was observed throughout the infected zone of the nodule after 4 

d of dark treatment and no intact symbiosomes were evident; however, the integrity 

of bacteroids was not affected and poly-hydroxybutyrate granules were 

comparable in appearance to those observed in controls (Fig. 4H).  

  Control pea nodules contained abundant symbiosomes within the dense host 

cytoplasm. No poly-hydroxybutyrate was observed within the bacteroids. Cell 

organelles were located at the periphery of infected cells, and profiles of the rough 

endoplasmic reticulum and Golgi apparatus were often apparent. One day of dark  

resulted in minimal change in infected cells (Fig. 5C). Following 2 d of dark 

treatment, cytoplasmic disruption was widespread, including cytoplasmic breakdown 

and lesions in the symbiosome membranes (Fig. 5D). Bacteroids ranged in 

appearance from those showing slight cytoplasmic disruption to others showing 

extensive breakdown. After 4 d of dark, bacteroids were often misshapen with 

disrupted cytosplasm and symbiosome membranes (Fig. 5E). The host cell 

cytoplasm was not discernible and host cell organelles were rarely observed.  

 One day of nitrate treatment had little effect on the appearance of infected cells 

in pea nodules. Cell plasmolysis and discontinuities in the symbiosome membrane 

were apparent after 2 d with nitrate (Fig. 5F). Bacteroids with irregular membranes 

were occasionally observed (Fig. 5G). Cytoplasmic and bacteroid degeneration was 

extensive following 4 d of nitrate treatment, and cellular detail was difficult to discern 

(Fig. 5H). 
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Ferritin Localization 

 Preliminary immunoblots of ferritin showed that the antibody raised to soybean 

seed ferritin recognized a single protein band of 28 kD, characteristic of ferritin 

subunits, in bean nodule extracts. As expected, a positive control, consisting of a 

soluble extract of tobacco leaves overexpressing soybean ferritin, produced an 

identical band (Fig. 6). The immunoblots also revealed that ferritin accumulated in 

bean nodules in response to nitrate treatment (Fig. 6).  

 The soybean antibody, however, exhibited very poor reactivity with pea ferritin 

(data not shown). Consequently, ferritin was only immunolocalized in bean nodules. 

Control (untreated) bean nodule sections showed little labeling for ferritin (Fig. 7A) 

but this was clearly visible after 2 or 4 d of nitrate treatment (Fig. 7, B-D), confirming 

blot analysis. After 2 d with nitrate, ferritin was localized in the plastids and 

amyloplasts of uninfected and infected cells, and occasionally over the bacteroids. 

The heaviest labeling was observed in the amyloplasts of the uninfected interstitial 

cells and of the parenchyma cells (Fig. 7, B and C). In some sections, scattered 

arrays or small clusters of ferritin particles could be seen in the amyloplasts without 

the assistance of gold labeling (Fig. 7B). After 2 d and, especially, 4 d of nitrate 

treatment, large ferritin aggregates were easily observed in the amyloplasts (Fig. 7, 

C and D). Quite often, these large deposits did not show any immunolabeling, 

although it was observed in plastids or amyloplasts within the same nodule sections 

(Fig. 7C), indicating that the antibody was recognizing isolated ferritin particles and 

smaller ferritin deposits. 
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DISCUSSION 

 

 In this work we have obtained simultaneously an array of physiological, 

biochemical, and structural data of bean and pea nodules induced to senesce by 

treating the plants with nitrate or prolonged darkness. This allowed us to monitor the 

progress of nodule senescence in a controlled manner and to discern more readily 

between the reversible and irreversible stages of stress application.  

 

Nitrate-Induced Legume Nodule Senescence 

 Nitrate had a two-stage effect on bean nodules. In the first stage (1 to 2 d), 

there were major declines in the in vivo N2ase activity and increases in the ODB 

resistance and carbon cost of N2ase, but only moderate or no changes in the 

nodule content of carbohydrates, antioxidants, and pyridine nucleotides; 

furthermore, there were significant increases in Lb, soluble protein, and ascorbate. 

At this early stage, there were no detectable changes in the nodules at the 

ultrastructural level. Therefore, it would appear that the decrease of N2ase activity 

after 1 to 2 d may be attributed to O2 limitation at the ODB level and not to 

biochemical factors such as degradation of N2ase or Lb, oxidative damage of cell 

components, or sugar deprivation of host cells or bacteroids. However, the causal 

relationship between N2ase activity and ODB operation cannot be fully examined by 

the present data and it is possible that N2ase activity is being decreased by an, as 

yet, unknown mechanism that, in turn, results in closure of the ODB. The O2 

limitation through the ODB was confirmed by the partial recovery of N2ase activity in 

nitrate-treated plants upon increasing the concentration of rhizosphere O2. This 

recovery, and the absence of structural and biochemical damage, indicate that at 

this early stage the effect of nitrate is still reversible. In contrast, in the second stage 

(4 d), there was almost completely loss of both N2ase activity and protein, along 

with a marked decline in Lb, soluble protein, sugars, antioxidants (except 

ascorbate), and nucleotides. There was also a general deterioration of nodule 
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ultrastructure, in particular of symbiosome membranes, and accumulation of 

oxidized proteins. This stage of nitrate inhibition would appear therefore to be 

essentially irreversible. However, these conclusions await final verification through 

recovery experiments. 

 The effects of nitrate on bean and pea nodules can be compared with the 

limited information available for other legumes. In lupine and clusterbean 

(Cyamopsis)  nodules, N2ase activity (assayed in both cases with a closed system) 

was inhibited by 35% after 3 to 5 d with 20 mM nitrate, and structural degradation of 

lupine nodules was only recognizable after 10 d (Lorenzo et al., 1990; Swaraj et al., 

1993). In bean and pea nodules, N2ase activity (assayed in both cases with a flow-

through gas system) was inhibited by approximately 85% after only 2 d with 10 mM 

nitrate. Structural data revealed, in turn, differences in the progression of 

senescence between pea and bean nodules. In pea nodules, the plasmolysis of 

host cells and the disruption of symbiosome membranes and bacteroids were 

already evident after 2 d, whereas, in bean nodules, nitrate had little effect on the 

shape and poly--hydroxybutyrate content of bacteroids even after 4 d. These data 

suggest that pea nodules are particularly sensitive to nitrate. 

 

Dark-Induced Legume Nodule Senescence 

 Prolonged darkness severely affected pea nodule metabolism. After only 1 d 

dark there were major effects on total root respiration, ODB resistance, and carbon 

costs of N2ase. In addition there were moderate decreases in Lb and in some 

antioxidants and nucleotides; however, the most affected parameters were, by far, 

the in vivo N2ase activity and the nodule Suc content, which decreased by 97%. 

The almost complete depletion of Suc, the major carbon and energy source for host 

cell metabolism, along with the substantial decreases in other carbohydrates, is the 

most likely cause for the limitation of N2ase activity in dark-treated peas. This 

conclusion is supported by immunoblots of N2ase showing no loss in the protein 

after 1 d dark in both bean (Gogorcena et al., 1997) and pea (data not shown), and 
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is also consistent with the finding that isolated bacteroids from dark-treated soybean 

retained 50% of the initial N2ase activity (Sarath et al., 1986) and fully recovered it 

upon addition of succinate (Carroll et al., 1987). After 2 d dark, pea nodules showed 

drastic decreases in Lb and carbohydrates, moderate decreases of many 

antioxidants, accumulation of modified proteins, and evident symptoms of structural 

deterioration. After 4 d dark, there was a general collapse of metabolism and 

extensive structural damage.  

 There are some significant differences in the response of other legume nodules 

to dark stress. Thus, inhibition of N2ase activity was much less dramatic in soybean 

(Sarath et al., 1986) and clusterbean (Swaraj et al., 1994) than it was in bean 

(Gogorcena et al., 1997) and pea (this work). Also, 2 d of dark had no significant 

effect on Lb or total soluble protein in nodules of soybean (Pfeiffer et al., 1983; 

Gordon et al., 1993), clusterbean (Swaraj et al., 1994), and bean (Gogorcena et al., 

1997). However, in pea nodules, the same treatment caused a 74% decline in Lb 

but only a 14% decline in total soluble protein, which is indicative of a relatively high 

sensitivity of pea Lb  to degradation compared with other cytosolic proteins. This 

conclusion agrees with an early observation that exposure of peas to 3 d of dark 

was sufficient to induce greening of nodules and breakdown of 50% of total heme 

(Roponen, 1970). Because the pathway for Lb degradation in vivo is largely 

unknown, it can only be speculated that the rapid loss of pea Lb in dark-stressed 

nodules is due to a particularly rapid activation or decompartmentation of proteases, 

which are located in the infected cells and display a high affinity for Lb, especially at 

the acidic intracellular pH of senescing nodules (Pladys et al., 1991). 

 

Thiols, APX, and Ferritin in Senescent Legume Nodules 

 Three important antioxidants, GSH and APX, which are critical for the operation 

of the ascorbate-GSH cycle, and ferritin, which is critical for the control of the 

cellular concentration of catalytic iron, have been studied in further detail to extend 

earlier studies on the mechanism of stress-induced nodule senescence.  



  
   

24

 An enzymatic method (Griffith, 1980) was previously employed to estimate the 

concentration of GSH in nodules. Because this method could not distinguish 

between GSH and hGSH (Klapheck, 1988) and it was uncertain whether hGSH was 

present in nodules, we estimated the concentration of total tripeptides in pea and 

bean nodules as 0.9 mM (Escuredo et al., 1996; Gogorcena et al., 1997). Using 

HPLC, we have found in this work that hGSH is present in nodules at variable 

concentrations: 0.12 mM GSH and 0.31 mM hGSH for bean nodules, and 0.82 mM 

GSH and 0.11 mM hGSH for pea nodules. Thus, the enzymatic method tends to 

overestimate the thiol content in plant tissues having primarily hGSH  because the 

reaction of yeast GR with hGSH is faster than with GSH (Klapheck, 1988). For pea 

nodules, which mainly contain GSH,  both methods yielded similar results.  

 An obvious question raised in this work is why hGSH is the major thiol in bean 

nodules. Although this cannot be answered at present, our results show that the 

relative abundance of GSH and hGSH in nodules is likely to be dictated by the 

presence of specific tripeptide synthetases: hGSHS in bean nodules and GSHS in 

pea nodules. This conclusion is reinforced by the partial purification of distinct 

enzymes from pea (GSHS) and mungbean (hGSHS) leaves (Macnicol, 1987), which 

contain only GSH and hGSH, respectively (Klapheck, 1988). The fact that hGSH is 

the only thiol tripeptide present in the leaves of some legumes also implies that the 

corresponding chloroplasts have a functional ascorbate-hGSH pathway to avoid 

photoxidative damage and that hGSH and GSH share at least an antioxidative role 

in vivo.  

 The drastic decreases of the major thiols after 4 d treatment, 85% hGSH in 

bean nodules and 92% GSH in pea nodules, cannot be accounted for by oxidation 

to the disulfide forms or by the 50 to 60% decline in GSHS and hGSHS activities. 

Nor can it be ascribed to a limitation of ECS activity, either directly (the activity only 

declined by 60% in bean nodules and even increased moderately in pea nodules) or  

through the availability of Cys (the content of this substrate decreased by 50 to 60% 

in both bean and pea nodules after 4 d treatment). The lack of evidence for the 
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inhibition of thiol synthesis, together with the extensive Lb degradation and oxidative 

reactions taking place in stressed nodules, which are manifest by loss of Lb heme 

and accumulation of oxidized proteins, may provide a clue for the large decline in 

GSH and hGSH. These thiols may be consumed by nonenzymatic reactions with 

activated oxygen species or by enzymatic degradation, with possible formation of 

mixed disulfides between thiols and proteins (Rennenberg, 1995). These aspects of 

thiol catabolism in nodules, and in plants in general, remain virtually unexplored.   

 Another antioxidant, APX, is critical for the disposal of H2O2 in nodules. The 

APX protein was predominantly located to the parenchyma and infected zone, 

confirming a previous report in which APX protein and mRNA were shown to be 

enhanced in the parechyma and infected cells of alfalfa nodules (Dalton et al., 

1998). In the same study, APX protein was found also to be increased in the nodule 

parenchyma and infected zone of several determinate nodules (Dalton et al., 1998). 

Our EM studies corroborate the heterogeneous distribution of APX within nodules 

and indicate that the protein is very abundant in the cytosol of infected cells. The 

observation of occasional labeling of APX in the mitochondria would explain the 

detection of enzyme activity in purified mitochondria from soybean nodules (Dalton 

et al., 1993). The activity and content of APX protein largely decreased in senescent 

nodules. This may cause, in turn, a lowering in protection against H2O2 generated 

by the respiratory activity of the nodule parenchyma and infected cells.  

 Finally, we have conducted studies to localize ferritin in bean nodules and to 

determine the changes in ferritin content during senescence. Ferritin was hardly 

detectable in control nodules but accumulated in nodules treated with nitrate for 2 or 

4 d. The very low content of ferritin protein found in mature, untreated bean nodules 

is in agreement with the observation that ferritin accumulates in young soybean 

nodules but declines in mature nodules, when iron storage is apparently no longer 

required (Bergersen, 1963; Ragland and Theil, 1993). Ferritin was predominantly 

found in the plastids and amyloplasts of uninfected cells in the infected zone and in 

the parenchyma cells. The subcellular location of ferritin in bean nodules is fully 
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consistent with other reports showing ferritin particles in plastids and amyloplasts of 

soybean, alfalfa, and lupine nodules (Bergersen, 1963; Lucas et al., 1998), in 

amyloplasts of soybean cell cultures (Briat and Lobréaux, 1997), and in chloroplasts 

and other plastids of several plants (Seckback, 1982).  

 The scattered arrays and large deposits of ferritin particles observed after 2 or 4 

d with nitrate closely resemble, respectively, the F-2 and F-3 types described by 

Seckback (1982). The latter category is defined as paracrystalline ferritin 

arrangements (sometimes including small zones of crystalline structure), such as 

those observed in plastids of iron-treated Xanthium  without the assistance of gold 

labeling. Our finding that the paracrystalline deposits of ferritin-like material did not 

label as densely as would be expected with the soybean antibody requires further 

investigation, but similar ferritin structures, clearly immunolabeled, accumulate in 

the cortex of senescing soybean and lupine nodules (Lucas et al., 1998). 

 Ferritin synthesis in plants is regulated by iron and is induced by various 

adverse conditions, including iron overload, which lead to oxidative stress (Briat and 

Lobréaux, 1997). Recent experiments with de-rooted maize plantlets have shown 

that H2O2 induces ferritin mRNA accumulation in the presence of low iron 

concentrations and that this effect is prevented by pretreatment of plantlets with 

antioxidants, indicating that the induction of ferritin gene expression in this system 

requires an oxidative step (Briat and Lobréaux, 1997). Based on these 

observations, our results showing ferritin protein accumulation in senescent bean 

nodules may be interpreted as a response to oxidative stress. This oxidative stress 

is evidenced by the accumulation of damaged proteins in nitrate-treated bean 

nodules and is probably a consequence of the lowering of antioxidant activities and 

the release of catalytic iron from proteins (Becana et al., 1998).  Further work is 

needed to establish the mechanism for ferritin induction in nitrate-treated bean 

nodules and to determine whether a similar phenomenon occurs in other legume 

nodules under different types of stress.  
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Legends of Figures: 

 

Figure 1. Immunolocalization of N2ase in bean nodules using dark-field LM. A, 

Control (untreated) nodules. Bright spots in the infected zone of this section indicate 

the presence of N2ase. B, Nodule after 4 d with nitrate. Note the almost complete 

lack of staining in this section. NC, nodule cortex; NP, nodule parenchyma; INF, 

infected zone. Bars= 100 m. 

 

Figure 2. Immunolocalization of APX in nodules of bean (A and B, bright field 

immunogold detection) and pea (C and D, immunofluorescent Cy3 detection). A and 

C, Control (untreated) nodules showing strong labeling in the infected zone and a 

prominent band in the nodule parenchyma. B, Nodules after 4 d with nitrate. D, 

Nodules after 4 d of dark stress. B and D show a marked decrease in labeling in 

both the infected zone and nodule parenchyma. V, vascular bundle. Other symbols 

are as in Figure 2. Bars= 100 m. 

 

Figure 3. Immunogold localization of APX in control (untreated) nodules. A and B, 

Negative controls (normal rabbit antiserum in place of APX antibody) of bean and 

pea nodules, respectively, showing no label in the cytosol or organelles of infected 

cells. C and D, Bean and pea nodule sections, respectively, showing APX label over 

the cytosol of  infected cells. b, bacteroid; w, cell wall; m, mitochondrion; p, plastid. 

The bar indicated in panel A equals 0.2 m for all panels.  

 

Figure 4. Ultrastructural changes and APX localization in bean nodules after nitrate 

and dark treatments. A, Negative control showing no label in the cytosol, organelles, 

or symbiosome of a control (untreated) nodule. B and C, Control  nodules showing 

APX localization in uninfected and infected cells. Label is seen frequently in the 

cytosol of both uninfected (B, arrowhead) and infected (C, arrowhead) cells, over 
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the symbiosome and, occasionally, over mitochondria (C, double arrowhead) and 

bacteroids (C, asterisk). D, Detail of infected cell of nodule after 2 d of nitrate 

treatment. Cells and bacteroids are similar in appearance to controls. E, Detail of 

infected cell of nodule after 4 d with nitrate showing the absence of symbiosome 

membrane, but little change in bacteroids or in poly-hydroxybutyrate granules. F, 

Detail of infected cells of nodule after 1 d of dark stress showing disruption of the 

cytoplasm (arrowhead). Symbiosome membranes are disrupted in both of the cells 

shown. G, Infected cells of nodule after 2 d of dark stress showing lesions in the 

symbiosome membrane and the cytoplasmic disruption observed throughout the 

nodule. H, Nodule following 4 d of dark stress showing general disruption of infected 

and uninfected cells. However, most bacteroids remain intact. m, mitochondrion; p, 

plastid; px, peroxisome; and u, uninfected cell. Bars= 0.4 m. 

 

Figure 5. Ultrastructural changes and APX localization in pea nodules after nitrate 

and dark treatments. A, Negative control showing no label in the cytosol, wall, or 

symbiosome of an untreated nodule. B, Infected cell of untreated nodule showing 

distribution of APX label over the cytosol and symbiosome. Label was also 

observed in uninfected cells and, occasionally, over mitochondria. C, Infected cell of 

nodule after 1 d of dark stress showing only minor disruption of symbiosome 

membrane (arrowhead). D, Low magnification micrograph of cell after 2 d of dark 

stress showing the extent of cytoplasmic disruption and bacteroids with various 

degrees of breakdown. E, Infected cell of nodule after 4 d of dark stress showing 

disruption of symbiosome membranes and misshapen, disrupted bacteroids. F-G, 

Infected cells of nodules after 2 d with nitrate showing some cell plasmolysis (F, 

arrowhead), discontinuity in the symbiosome membrane, and misshapen bacteroids 

(G, arrowhead). H, Infected cell of nodule after 4 d with nitrate showing the 

extensive cytoplasmic and bacteroid degeneration characteristic of this stage. A, B, 

C, E, F and H, bars= 0.4 m. D and G, bars= 2 m. 
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Figure 6. Western analysis of ferritin in bean nodules using chemiluminiscence 

detection. Lanes 0, 1, 2, and 4 were loaded with soluble extracts (20 g protein) 

from nodules treated with nitrate for 0, 1, 2 and 4 d. Two extracts obtained 

independently were loaded for each treatment. Lane T was loaded with a soluble 

extract (20 g protein) of transgenic tobacco leaves overexpressing soybean ferritin 

(Van Wuytswinkel et al., 1998), which served as a positive control. In all lanes a 

single band at 28 kD, characteristic of ferritin subunits, was observed. 

 

Figure 7. Electron micrographs of bean nodules showing ferritin localization. A, 

Control (untreated) nodule section showing scant deposition of gold label over 

infected and uninfected cells. B, Detail of parenchyma cell after 2 d with nitrate 

showing ferritin localization in plastids and amyloplasts. A linear array of ferritin 

particles (arrowhead) is visible in the amyloplast. C, Detail of parenchyma cell after 

2 d with nitrate showing large ferritin deposits not labeled with gold (arrowhead) as 

well as disperse labeling of ferritin  particles (double arrowhead) in the amyloplast. 

D, Amyloplast from parenchyma cell after 4 d with nitrate. A large aggregate of 

ferritin (arrowhead) is present, but did not label with gold. b, bacteroid; p, plastid; ps, 

peribacteroid space; s, starch grain; v, vacuole; w, cell wall. Bars= 0.4 m.  

 



Table I. Some general markers of  metabolic activity in senescing legume nodules  

___________________________________________________________________________________________ 

 Bean nodules (days of nitrate)  Pea nodules (days of darkness) 

Parametera            ____________________________           ______________________________ 

 0 1 2 4 0 1 2 4 

___________________________________________________________________________________________ 

N2ase activityb 1.66  a 0.45  b 0.29  b 0.20  b 0.76  a 0.03  b 0.00  b 0.00  b 

N2ase activity in O2c 1.36  a 0.95  b 0.43  c 0.26  c 0.56  a 0.04  b 0.00  b 0.00  b 

Total root respiration 5.24  a 4.76  a 5.33  a 5.59  a 3.23  a 1.03  b 0.63  bc 0.46  c 

ODB resistance  0.67  a 1.98  b 1.87  b 1.90  b 1.47  a 15.01  b NDd ND   

Carbon cost of N2ase 1.90  a 2.10  ab 3.30  bc 4.56  c 2.02  a 2.36  a ND   ND   

Lb  221  a 260  b 205  a 102  c 121  a 86  b 32  c 22  c 

Soluble protein  12.4  a 16.0  b 12.1  a 8.6  c 14.2  a 12.2  b 12.2  b 12.9  ab 

___________________________________________________________________________________________ 
 aMeans (n=  4-8) were compared by one-way analysis of variance and the Duncan's range test. For each parameter 
and legume species, means denoted by the same letter do not differ significantly at P<0.05. Units: N2ase (mol H2 min-1 

plant-1); respiration (mol CO2 min-1 plant-1); carbon cost (mol CO2 mol-1 H2); ODB resistance (s cm-1 x10-6 ); Lb (nmol 

g-1 fresh wt); and protein (mg g-1 fresh wt). bMaximum H2 production under Ar/21% O2. cMaximum H2 production at 

increased O2 concentrations following the Ar-induced decline. dND=not determined.  
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Table II. Carbohydrate content in senescing legume nodules  

_______________________________________________________________________________ 

 Bean nodules (days of nitrate)  Pea nodules (days of darkness) 

Metabolitea               _____________________________           _____________________________ 

 0 1 2 4 0 1 2 4 

_______________________________________________________________________________ 

  g g-1 fresh wt 

Glc 173  a 104 b 92  b 51 c 348  a 109  b 125  b 94  b 

Fru 89  a 120 b 53  c 52 c 70  a 33  b 11  c 10  c 

Suc 4445  a 3087 b 1902  c 1111 d 8946  a 313  b 207  b 34  c 

Starch 1095  a 652 b 466  b 521 b 8002  a 2084  b 1526  b 1235  b 

_______________________________________________________________________________ 
 aStatistical analysis of means (n= 3) was performed as for Table I.  
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Table III. Antioxidant enzyme activities in senescing legume nodules  

____________________________________________________________________________________________ 

                                              Bean nodules (days of nitrate)                           Pea nodules (days of darkness) 

Enzymea                                       ______________________________        _______________________________ 

 0 1 2 4 0 1 2 4 

____________________________________________________________________________________________ 

        mol min-1 g-1 fresh wt 

APX 8.67  a 8.62  a 6.17  b 3.20  c 8.91  a 7.49  b 6.59  b 4.49  c 

DR 0.67  a 0.77  b 0.70  ab 0.55  c 0.17  a 0.13  ab 0.09  b 0.03  c 

GR  0.41  a 0.58  b 0.48  a 0.33  c 0.62  a 0.60  a 0.42  b 0.36  b 

MR   3.20  a 3.30  a 2.62  ab 1.83  b 1.65  a 1.52  a 1.42  a 1.00  b 

Catalase 1340   a 1390  a 1340  a 640  b 160  a 160  a 210  b 230  c 

____________________________________________________________________________________________ 
aStatistical analysis of means (n=   6-8) was performed as for Table I.   
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Table IV. Antioxidant  metabolites and nucleotides in senescing legume nodules  

_______________________________________________________________________________ 

 Bean nodules (days of nitrate)  Pea nodules (days of darkness) 

Metabolitea                     ___________________________            ____________________________ 

 0 1 2 4 0 1 2 4 

_______________________________________________________________________________ 

 nmol g-1 fresh wt 

Ascorbate 840  a 1010  b 950  b 840  a 460  a 340  b 300  b 210  c 

GSHb 103  a 65  b 75  b 37  c 698  a 570  a 378  b 58  c 

hGSHb 262  a 224  ab 187  b 40  c 90  a 106  a 110  a 36  b 

Oxidized thiolsc 2  a 1  a 2  a 5  b 16  a 14  a 20  b 19  b 

NAD+   32.3  a 29.4  ab 26.1  b 17.8  c 29.2  a 18.8  b 13.6  bc 10.2  c 

NADH  3.6  a 2.9  b 2.5  bc 2.2  c 11.3  a 7.1  b 4.3  bc 3.3  c 

NADP+ 9.3  a 7.6  b 6.7  b 4.1  c 4.7  a 4.6  a 2.9  b 2.5  b 

NADPH 5.0  a 4.6  a 4.6  a 4.9  a 4.9  a 3.9  ab 3.7  b 3.3  b 

_______________________________________________________________________________ 
 aStatistical analysis of means (n= 4-12) was performed as for Table I. bDetermined by the HPLC 

method. cThe percentage of thiol tripeptides in the disulfide form was determined by the enzymatic 

method.  
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Table V. Activities of enzymes involved  in GSH and hGSH synthesis in senescing legume nodules  

_______________________________________________________________________________ 

 Bean nodules (days of nitrate)  Pea nodules (days of darkness) 

Enzymea                   __________________________            _________________________________ 

 0 2 4 0 2 4 

_______________________________________________________________________________ 

 nmol min-1 g-1 fresh wt 

ECS 5.5  a 3.3  b 2.3  c 4.9  a 5.5 a 7.6  b 

GSHS 1.0  a 0.4  b            0.4  b 18.0  a 11.1 b   9.3  c 

hGSHS 9.8  a 9.6  a 5.0  b 12.0  a 7.1 b 4.5  c 

_______________________________________________________________________________ 
 aStatistical analysis of means (n= 3-4) was performed as for Table I.  
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Table VI. Oxidant damage of lipids and proteins in senescing legume nodules  

____________________________________________________________________________________________ 

               Bean nodules (days of nitrate)  Pea nodules (days of darkness) 

Parametera   ____________________________             _______________________________ 

 0 1 2 4 0 1 2 4 

____________________________________________________________________________________________ 

Lipid peroxides 0.27  a 0.27  a 0.16  b 0.14  b 1.66  a 1.16  b 0.88  b 1.02  b 

Oxidized proteins  16.6  a 16.4  a 18.6  a 22.3  b 12.8  a 15.3  ab 17.3  b 16.7  b 

____________________________________________________________________________________________ 
 aStatistical analysis of means (n= 4-8) was performed as for Table I. Lipid peroxides are expressed in nmol 

malondialdehyde mg-1 lipid and oxidized proteins in nmol carbonyl groups mg-1 protein. 

 

 

 




