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Abstract. Food processes are coupled systems that involve heat, mass and momentum
transfer together with kinetic processes related to quality and safety. This work is devoted
to illustrate how model-based techniques offer the possibility to rationally optimise pro-
cesses even in real time. The contribution is mainly based on our group experience and
illustrates concepts with several examples such as the refrigeration of fruits, the deep-fat
frying of potato chips, the freeze-drying of dairy products and the thermal processing of
packaged foods. Coupled Problems 2013 Conference.

1 INTRODUCTION

Computer-aided simulation and model-based optimisation offer a powerful and system-
atic way to design and operate food processes. However, current industrial applications
usually rely on simplified stationary models, the so called response surfaces, which are
insufficient to describe the dynamic and distributed nature of food processing.

As an alternative, in recent decades there has been a growing interest in the devel-
opment of rigorous models, based on first principles, that enable not only to perform
experiments in silico, but to design and to optimise operation policies.

However, several problems arise: i) the complexity of food processes that include phys-
ical, chemical and biological phenomena on a wide range of time and space scales calls
for advanced numerical methods; ii) the lack of information about specific processes and
food-related thermo-physical and kinetic constants requires the implementation of iden-
tification loops incorporating parameter estimation, identifiability analyses and optimal
experimental design; iii) the necessity of adapting the models to be used in real time
decision making, calls for the development of techniques to obtain accurate and efficient
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reduced order models and iv) the usual multimodality of the associated optimisation
problems demands the development of robust and efficient global optimisation methods.

This contribution presents and describes methods to face such problems. Concepts are
illustrated with the following examples: the refrigeration of fruits, the deep-fat frying of
potato chips, the freeze-drying of dairy products and the thermal processing of packaged
foods.

2 MODELING AND SIMULATION OF FOOD PROCESSING

2.1 Mathematical models

The mathematical modelling of food processing requires identifying and describing the
physical, chemical, and biological changes experienced by the product during processing
and storage. This means that, besides the heat, mass and momentum transfer mecha-
nisms, the kinetics of quality and safety have also to be considered. As a conclusion,
models of food processing typically consist of sets of coupled non-linear ordinary and
partial differential (PDEs) equations:

Ψ(z, zξ, zξξ, zt,u,θ, t) = 0 (1)

z(ξ, t0) = Ψ0(z(ξ, t0),u(t0),θ, t0) ; B(x,xξ,u,θ, ξ, t) = 0 (2)

where ξ ∈ Ω ⊂ <3 are the spatial variables, z(ξ, t) ∈ Z ⊂ <ν are the state variables
(temperature, water content, etc), zξ = ∂z/∂ξ, zξξ = ∂2z/∂ξ2, zt = ∂x/∂t, u ∈ U ⊂ <σ
are the control variables and θ ∈ Θ ⊂ <η, time independent parameters (thermo-physical
or kinetic related constants). Eqs. (2) represent the initial and boundary conditions.

2.2 Numerical simulation

The finite element method (FEM) in combination with a suitable implicit time inte-
gration scheme is possibly the standard to handle complex geometries, and non-linear sets
of PDEs in food processing simulation. In fact, commercial general purpose implementa-
tions, such as COMSOL c©, are the most popular choice [1].

These software tools allow testing “what-if” scenarios to predict food product char-
acteristics given particular operation conditions. However, the associated computational
cost may be unreasonable for the purpose of design, optimisation and control. This calls
for the development of methods to derive reduced order models (ROMs) which preserve
the predictive capabilities of the full model and can be solved very efficiently.

2.3 Reduced order models

Reduced order models based on the projection of the original PDE system over a
set of global spatial basis functions have emerged as efficient alternatives to classical
discretisation techniques. In particular, the proper orthogonal decomposition (POD) was
successfully applied in the context of food processing [2–4]. In this approach, each of the
state variables is approximated by a truncated series of the form:
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z(ξ, t) ' z̃(ξ, t) =

p∑
j=1

mj(t)φj(ξ) (3)

and the terms φj are obtained by solving the following eigenvalue problem:

λjφj(ξ) =

∫
V

K(ξ, ξ′)φj(ξ
′)dξ′; K =

1

k

k∑
n=1

ZnZ
T
n (4)

being {Zn}kn=1 a set of measurements (snapshots) representative of the system’s behavior.
POD basis functions can be different for each state variable (separate basis approach) or
can be unique for all state variables (joint basis approach) [4]. The joint basis approach
is particularly useful when the states are highly coupled.

The coefficients mj are computed as the solution of the ODE system resulting from
the projection of Eqs. (1)-(2) over the POD basis. Details on how the FEM structure can
be exploited to numerically compute projections can be found in [5].

3 MODEL IDENTIFICATION

Thermo-physical properties vary considerably among food products, within products
(anisotropic, heterogeneous,...) or even with the process itself. However thermo-physical
properties are only a part of the story. We also need to know the rates of reactions for
biochemical (nutrient, color, flavor, etc.) or microbial changes.

Even though some thermo-physical parameters may be found in the literature, most of
the model parameters are not known and can not be measured. In this regard, their values
must be estimated from experimental data in the so call parametric model identification
which comprises the following steps: parameter estimation, identifiability analysis and
optimal experimental design.

3.1 Parameter estimation

The parameter estimation problem is usually formulated as a nonlinear optimisation
problem where the objective is to find the parameters that minimise Jwlsq, i.e. the sum
of the weighted least squares of the residuals between the model predictions and the
experimental data. The weights can be related to experimental error.

The problem is particularly challenging due to the usual presence of multiple subopti-
mal solutions (multimodality), or multiple equivalent solutions (lack of or poor identifi-
ability) [6]. Multimodality may be overcome by the use of global optimisation methods.
Lack or poor practical identifiability may be reduced (or even eliminated) by model-based
optimal experimental design.
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3.2 Identifiability analysis

In order to asses the quality of the parameter estimates, several possibilities exist.
Bootstrap or jack-knife approaches allow to compute robust confidence intervals. How-
ever, the associated computational cost makes it difficult to use these methods for large
scale models. Alternatively, the confidence interval of θ∗i may be obtained through the
covariance matrix:

±tγα/2
√

Cii (5)

where tγα/2 is given by Students t-distribution, γ = Nd − η degrees of freedom and (1 −
α)100% is the confidence interval selected, typically 95%.

For non-linear models, there is no exact way to obtain C. Therefore, the use of approx-
imations has been suggested. Possibly the most widely used is based on the Crammèr-Rao
inequality which establishes, under certain assumptions on the number of data and non-
linear character of the model, that the covariance matrix may be approximated by the
inverse of the Fisher information matrix (FIM) which is formulated as follows:

F = E
ym|θ

∗

{[
∂Jwlsq(θ)

∂θ

] [
∂Jwlsq(θ)

∂θ

]T }
(6)

3.3 Optimal experimental design

In order to improve the quality of parameter estimates it is possible to use the model
to define new experiments. The idea is to formulate a dynamic optimisation problem
where the objective is to find those experimental conditions which result in maximum
information content as measured by, for example, the FIM, subject to the system dynamics
Eqs. (1-2) plus experimental constraints. The problem can be solved by a combination of
the control vector parameterisation (CVP) method and a suitable optimiser enabling the
simultaneous design of several dynamic experiments with optimal sampling times [7] and
optimal sensor locations [5].

AMIGO (Advanced Model Identification using Global optimisation) [8], a MATLAB
based toolbox that covers all model identification steps, was used in this work.

4 DYNAMIC optimisation

The dynamic optimisation (DO) problem can be formulated as: Find the controls
u(t) subject to the system dynamics Eqs. (1-2) so as to minimize (or maximize) a given
objective functional, that can be related to final product quality, energy consumption, etc.
State and control variables may be also subject to constraints which force the satisfaction
of safety or environmental regulations, proper operation conditions, etc. These constraints
may be point constraints, that must be satisfied at certain time points during process and
path constraints, that must be satisfied throughout the process.

The DO problem can be solved using the CVP method. The control variables are
discretised and approximated using low order polynomials. The coefficients of these poly-
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nomials become the decision variables in a non-linear optimisation problem whose solution
involves the simulation of the system dynamics and the assessment of the constraints.

5 ILLUSTRATIVE EXAMPLES

5.1 Reduced order modeling: fruit refrigeration

Refrigeration is probably the most critical process in fruit storage and transport. A
poor temperature/pressure control inside the storage chamber would imply a quality
loss of the fruit. In this context, model-based process design may help us to compute
optimal operation policies in real time. However rigorous models take into account several
processes, such as hydrolysis, cellular respiration or mass and heat transport, to name a
few. The result is a set of coupled nonlinear PDEs whose solution is computationally
demanding. Thus preventing, its application for real time purposes.

Eight state variables were considered: temperature (T ), concentration of starch (CS),
middle lamella (CL), hexose (CH), water (CW ), oxygen (CO2), carbon dioxide (CCO2) and
nitrogen (CN2). The complete set of equations reads as follows [9]:

∂Ci
∂t

= rCi
; i ∈ {S, L,H} (7)

αCi

∂Ci
∂t

+∇(ūCi) = ∇(DCi
∇Ci) + rCi

; i ∈ {O2, CO2, N2} (8)

∂CW
∂t

= ∇(DW∇CW ) + rW ; ρcT
∂T

∂t
= ∇(KT∇T ) (9)

where rCi
denotes the reaction terms which are in general highly nonlinear on the corre-

sponding states (for a detailed description see [4]).
For the solution with the FEM, linear Lagrange elements were considered and a spatial

mesh of 1818 points (see Figure 1a) was used. Note that since the model consists of eight
state variables, around 14500 ODEs need to be solved with this scheme.

The snapshots required for the computation of PODs in Eq. (4) were obtained by
running 27 simulations of the PDE model (7)-(9) in different conditions (chamber tem-
perature, humidity and air composition). For validation purposes a new experiment, not
included in the 27 simulations, was performed. As shown in the Figures 1b&c, results
obtained with ROMs are in good agreement with the ones obtained by FEM, with two
orders of magnitude reduction in computational cost.

It should be also mentioned that the joint basis approach, which consists of 18 ODEs,
is more efficient than the separated basis approach (31 ODEs). The solution of the ROM
requires around 2 min in a PC Intel R CoreTM i7 PC, being therefore suitable for real
time applications.
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Figure 1: a) 3D geometry and FEM mesh; b) & c) Comparison of solutions achieved by FEM (continuous
lines) and ROM for the validation experiment at three different spatial points.

5.2 Dynamic optimisation: freeze-drying of dairy products

Freeze-drying is an attractive dehydration process for preserving nutritional and organo-
leptic properties of valuable food goods since it helps to maintain the biological activity of
their thermosensitive components. Unfortunately, it is also known to be a high demanding
process in terms of time and energy, which calls for efficient tools capable of minimizing
costs while attaining market quality requirements.

Classical models for freeze-drying processes are usually large-scale and computationally
involved, thus unsuitable for real time applications. In order to lighten the computational
efforts involved, an accurate yet simplified distributed model has been recently developed
[3]. After performing a time-scale analysis of process dynamics, modelling tasks have
been focused on the leading scale (the one related to the temperature within the porous
matrix). The resulting 1D model for a dairy product sample describing primary and
secondary drying reads:

∂TI
∂t

(x, t) = αI
∂2TI
∂x2

(x, t) ;
∂TII
∂t

(x, t) = αII
∂2TII
∂x2

(x, t) (10)

∂

∂x

(
−ρv(x, t)

K

µ

∂Pv
∂x

(x, t)

)
= 0, ∀x ∈ (0, S(t)) (11)

with the following boundary conditions:

kI
∂TI
∂x

(0, t) = σef
(
T 4
c − T 4

I (0, t)
)

; kII
∂TII
∂x

(L, t) = hL (TL − TII(L, t)) (12)

TIs = TIIs = Ts(Pv(S(t)) ; kII
∂TII
∂x

(S(t), t)− kI
∂TI
∂x

(S(t), t) = ∆Hs(ρII − ρI)
∂S(t)

∂t
(13)
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Pv(0, t) = Pc ; −ρv(S(t), t)
K

µ

∂Pv
∂x

(S(t), t) =
∂S(t)

∂t
(ρII − ρI) (14)

where, T regards temperature, P the pressure, L the sample length, S(t) the moving front
position, Cb the water content and Tg the glass transition temperature. The subscript I
refers to the dried region, II to the frozen region, c to the chamber, L to the shelf, v to
the vapour and s to sublimation. The secondary drying is only governed by the Fourier
equation in the dried region, while boundary conditions are defined by fluxes in Eq. (12).
For a complete description of the time-scale analysis and the derivation of this simplified
model (including the definitions of model parameters and the GAB-based desorption
model) readers are referred to [3]. The system of Eqs.(10-14) was solved by FEM with an
Arbitrary Lagrangian-Eulerian method so as to track the moving front [11]. An adaptive
mesh of 73 nodes was used and the simulation takes around 20 s in COMSOL c©.

The model was used to compute the temperature in the shelf (223K ≤ TL ≤ 323K)
and the pressure in the chamber (10 Pa ≤ Pc ≤ 60 Pa) that minimise the freeze-drying
cycle time tf , while satisfying process dynamics in Eqs. (10)-(14) simultaneously with the
product stability specifications (Cave

b (tf ) = 0.02, T (x, t) ≤ Tg).
Different configurations in the equipment were considered, leading to different opera-

tional scenarios. The CVP approach was used in combination with a scatter search based
global optimiser [10] to solve the associated problems. Optimal profiles (Figure 2a)&b))
resulted in a 25% reduction of the cycle time: from tf = 38.4 h to tf = 28.6 h achieved
with constant and dynamic Pc and TL optimal profiles, respectively.
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5.3 Identification and dynamic optimisation: frying of potato chips

In deep-fat frying foodstuff is immersed into oil at high (constant) temperature. This
induces water evaporation and the formation of a thin crust. As the temperature increases
and moisture is lost, the typical deep-frying sensory characteristics (colour, flavour, tex-
ture) are developed. However, the use of high temperatures results in the production of
acrylamide, a carcinogen compound. Thus model-based optimisation may assist in the
design of those operating conditions that provide the best compromise between quality
and safety.

A multiphase porous media based model was formulated to describe heat, mass and
momentum transfer and acrylamide kinetics within a potato chip [12]. The model consists
of a set of coupled nonlinear PDEs describing the evolution of the saturation of water,
oil and vapor (Sw,So, Sg), product temperature (T ), moisture content (M), pressure (P ),
water vapour mass fraction (ωv) and acrylamide content (cAA). The potato chip is assumed
to be cylindrical and heated from outside therefore axi-symmetry can be assumed.

The model was solved in COMSOL c©. The Convection and Diffusion module was used
to solve for water, oil and acrylamide mass conservation while Maxwell-Stefan Diffusion
and Convection was used to gas mass fraction and Darcy’s Law and Convection and
Conduction were used to solve for pressure and temperature respectively. The selected
mesh consists of 20 × 10 rectangular elements. The simulation of 1.5 min frying takes
around 40 s in a standard PC 3.25GB RAM and 2.83GHz.

Unknown parameters, the heat transfer coefficient (h) and the surface oil saturation
So,surf , were identified from experimental data using AMIGO [8]. The final model exhibits
good predictive capabilities enabling the possibility to analyse alternative operating con-
ditions.

The objective was then to compute the oil temperature profile (Toilmin
≤ Toil ≤ Toilmax)

that guaranties the desired moisture content (M(tf ) ≤ 2) while minimizing final acry-
lamide content subject to the process dynamics. The problem was solved by means of a
combination of the CVP approach and a scatter search based global optimiser [10].

Results show that using two heating zones significantly reduces the final acrylamide
content with respect to typical constant operating profiles (Figure 3a). Under constant
optimally designed Toil, the minimum acrylamide content would correspond to a longer
process at a lower temperature. However, a longer process leads to an increase of oil
uptake as well as to a reduction of the production rates. The optimal profile corresponds
to the use of a higher temperature at the beginning of the process, this helping to satisfy
the constraint on the moisture content, followed by a lower temperature to minimise the
final acrylamide content (Figure 3b).

5.4 Real time optimisation: thermal sterilisation of packaged foods

The thermal processing of packaged foods is intended to inactivate possible spores,
microorganisms or enzymes present in the foodstuff which may have a negative impact
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Figure 3: a) Acrylamide content versus process duration for optimally designed 1 and 2 heating zones.
b) Optimal operation profiles (oil temperatures) using different numbers of heating zones (tfinal = 95 s).

on consumer’s health or product quality. To that purpose, the product is introduced
in a steam retort where it is subjected to a given heating-cooling cycle so as to get a
pre-specified degree of inactivation indicated by the microbiological lethality. However,
some organoleptic properties or nutrients can be negatively affected by the heat action.
The objective is, therefore, to optimise operation conditions to maximise quality while
guaranteeing safety. In this example, we go a step further, and propose a real time
optimisation (RTO) architecture to handle the optimisation during processing and in the
presence of uncertainty or sudden disturbances. The performance of the proposed RTO
architecture was experimentally validated for tuna paté at the pilot plant in the IIM-CSIC.

The dynamic representation of the plant couples the description of the temperature
and pressure inside the retort, the temperature distribution inside the food product and
the corresponding distribution of nutrients and microorganisms:

Retort dynamics

dz

dt
= f(z;θ) + g(z,u;θ), (15)

here f and g are nonlinear vector fields of appropriate dimensions; z denotes the tempera-
ture and pressure in the retort [TR, PR]; u stands for the control variables: valve positions
for input and output streams. Finally, θ denotes the vector of unknown parameters.

Temperature distribution inside the food product

∂Tprod
∂t

= α∆Tprod , n(k∆Tprod) = h(TR − Tprod) (16)

where Tprod is the temperature of the food stuff and h, k, α stand for the heat transfer
coefficient of the package and the food thermal conductivity and diffusivity, respectively.

Quality and safety models

dCi(t)

dt
= −(

ln 10

Di,ref

)Ci(t) exp(
Tprod(ξ, t)− Tξ,ref

zi,ref
) (17)
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where subindex Ci refers to the concentration of either microorganisms or nutrients.
The unknown parameters of the model, the functional dependencies of fluxes on valves

openings and the valves related constants were identified by means of parameter esti-
mation, identifiability analysis and multi-experimental optimal design, using AMIGO
toolbox [8].

For the case of the evolution of temperature inside the retort, the resulting model
presents excellent predictive capabilities taking into account that a maximum error of
around 3% is observed in fast transitions.

Figure 4: Geometry of
the food package.

The product was packed in glass containers with metal top.
The corresponding geometry and the FEM mesh used for simu-
lation purposes are depicted in Figure 4. Selected mesh consists of
184 nodes which translates into 553 ODEs. Three model parame-
ters were estimated from the temperature measurements, namely,
the product thermal conductivity, and the glass/steam and the
metal/steam heat transfer coefficients. After the model identifica-
tion, the differences between model predictions and experimental
data are lower than 1%.

Once a satisfactory model became available, a POD-based ROM
model was developed to be used within the RTO scheme, it should
be noted that each simulation of the ROM takes less than 1 s. In
addition, the optimal operating conditions were computed off-line
using the CVP and scatter search [10] methods.

Real time implementation of the optimal control needs to con-
sider the effect of unmeasured disturbances not being part of the
prediction model. To that purpose, feedback was implemented by
regularly measuring the current retort variables and observing the
relevant variables of the packaged product to compute efficient
on-line optimisation. Optimal operation conditions are then re-

computed any time a difference between predicted value and off-line optimal solution is
detected. A combination of a local optimiser and SSm was designed so as to guarantee
feasibility and optimality of the solution even in the presence of significant perturbations
or plant/model mismatch (see details in [14]).

Figures 5 illustrate the performance of the RTO architecture in an experimental case
were large perturbations occur. The implementation of the optimal off-line heating profile
leads to a product that does not fulfil the lethality requirement (Fc = 8min). The RTO
architecture proposed in the work was able to drive the system to feasibility and optimality
by means of re-computing optimal profiles on-line and slightly extending the duration of
the heating phase.
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Figure 5: a)Comparison of off-line and on-line optimal profiles under large perturbations in the retort
at the pilot plant (IIM-CSIC). b)Comparison of off-line and on-line optimal profiles surface nutrient
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6 CONCLUSIONS

This work presented an overview of recent developments of our group in the context
of food process modeling, model identification and reduction and real time dynamic op-
timisation through a number of cases of interest such as food refrigeration, freeze-drying,
deep-fat frying and packaged food thermal processing.

Mechanistic models of the processes were identified for specific food products and
simulated via the finite element method; reduced order versions were obtained by means
of the proper orthogonal decomposition approach; quality and safety optimal operation
conditions were computed using advanced global optimisation techniques and, for some
cases, a real time optimisation architecture was designed and tested in pilot-plant.

Results revealed that the use of model-based process design largely improves process
performance in terms of final quality and reductions on process time and energy consump-
tion with respect to traditional operations. Proposed methodologies are general therefore
opening new venues for the design of emergent or minimal food processing techniques.
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