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A pronounced, widespread and persistent regime shift among marine eco-

systems is observable on temperate rocky reefs as a result of sea urchin

overgrazing. Here, we empirically define regime-shift dynamics for this

grazing system which transitions between productive macroalgal beds and

impoverished urchin barrens. Catastrophic in nature, urchin overgrazing

in a well-studied Australian system demonstrates a discontinuous regime

shift, which is of particular management concern as recovery of desirable

macroalgal beds requires reducing grazers to well below the initial threshold

of overgrazing. Generality of this regime-shift dynamic is explored across 13

rocky reef systems (spanning 11 different regions from both hemispheres) by

compiling available survey data (totalling 10 901 quadrats surveyed in situ)

plus experimental regime-shift responses (observed during a total of 57 in
situ manipulations). The emergent and globally coherent pattern shows

urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hys-

teresis effect of approximately one order of magnitude in urchin biomass

between critical thresholds of overgrazing and recovery. Different life-his-

tory traits appear to create asymmetry in the pace of overgrazing versus

recovery. Once shifted, strong feedback mechanisms provide resilience for

each alternative state thus defining the catastrophic nature of this regime

shift. Importantly, human-derived stressors can act to erode resilience of

desirable macroalgal beds while strengthening resilience of urchin barrens,

thus exacerbating the risk, spatial extent and irreversibility of an unwanted

regime shift for marine ecosystems.
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1. Introduction
Widespread collapse from kelp beds to sea urchin-dominated

barren grounds provides a clear example of an unwanted

regime (or phase) shift that has played out many times for

temperate reef ecosystems worldwide [1–3]. This transi-

tion from luxuriant and productive kelp bed habitats to

impoverished and persistent barrens caused by sea urchin

overgrazing [4–8] is one of the most distinctive ecosystem-

level shifts observable for rocky subtidal seascapes (electronic

supplementary material, figure S1). The collapse of kelp beds

has been widely publicized, and much research effort has

ensued following the realized effect of destructive sea urchin

grazing and formation of urchin barren grounds over thou-

sands of kilometres of subtidal rocky reefs worldwide, for

example in the NE Pacific in the 1960–1970s, Norwegian

coast in the 1970s, NWAtlantic in the 1970–1980s [2], and Tas-

mania in the 2000s where overgrazing and the threat of

widespread kelp collapse has only relatively recently emerged

[6,7,9–12].

While urchin barrens are frequently observed and pro-

cesses underlying fluctuations in sea urchin populations are

well known [2,13], as for most instances of marine ecosystem

regime shift [14], the general dynamics of collapse and recov-

ery of kelp beds remains poorly defined. Importantly, once sea

urchin grazing removes standing macroalgal biomass, the

urchin population does not collapse, but rather individual

growth rate decreases as urchins switch their feeding to less

nutritious encrusting or microalgal and invertebrate biota

growing on open rock surfaces [1,4,15,16]. Thus, once

formed, urchin barrens can be highly persistent features of

rocky reefs, lasting many decades (e.g. in Japan, the barrens

or ‘isoyake’ state has persisted for over 80 years [17]), with

individual urchins living up to 50 years on barren grounds

[16]. Therefore, the unwanted advent of sea urchin barrens

on rocky reefs is dramatic, can be spatially extensive and can

persist in the long-term across many generations of urchins.

The need to mitigate the threat of persistently degraded

reefs is exemplified in eastern Tasmania where the recent pole-

wards range extension of the sea urchin Centrostephanus
rodgersii, driven by warming ocean climate, has led to over-

grazing of kelp beds [6,7,9,10]. This new manifestation of

overgrazing has had clear negative impacts on commercial

reef-based fisheries and local biodiversity [6–8,18], motivating

the need to understand the dynamics of urchin grazing and

the resilience of kelp beds to this threat [9,19,20]. In Australia,

no other benthic herbivore has had as large a role as

C. rodgersii in determining the state of shallow reef communi-

ties [12,21], with thousands of kilometres of reef overgrazed

within the historical range of the urchin across the New

South Wales coast [22]. While widespread urchin barrens

(100 000s m2) are evident at several eastern Tasmanian reefs,

smaller ‘incipient barrens’ (10s m2) within otherwise intact

kelp beds are common and considered an early warning

sign of broader-scale kelp bed collapse along this coast [7,19].

Recent synthesis by Ling et al. [9] defined the transition

from kelp beds to C. rodgersii barrens in eastern Australia as

a nonlinear regime shift, whereby a critical threshold in sea

urchin abundance triggers overgrazing of kelp beds. This

threshold behaviour typifies the ‘sudden’ nature of collapse

documented for many ecosystems [23,24]. More importantly,

the threshold of urchin abundance triggering destructive

overgrazing of kelp beds (forward shift, F ) is markedly
greater than the threshold in urchin abundance at which

kelp beds can begin to recover (reverse shift, R), demonstrat-

ing discontinuous regime-shift dynamics with hysteresis

(figure 1a). Given that some kelp beds have locally collapsed

and small incipient-barrens patches formed by C. rodgersii are

common along the eastern Tasmanian coast (figure 1b), the

widespread collapse to barrens, as in New South Wales

(figure 1c), is currently of major socioecological concern [6,7].

While significant advances have been made in understand-

ing regime shifts driven by sea urchin grazing in Australian

[9,20] and Nova Scotian kelp-bed systems [3,25,26], the

threshold dynamics (for both forward and reverse shifts)

have not been well characterized for urchin-grazing systems

generally. Here, we ask whether available evidence indicates

a globally coherent pattern of discontinuous regime-shift

dynamics for urchin overgrazing.

To explore global dynamics, we compile available empiri-

cal data for a wide range of rocky reef systems prone to high

sea urchin abundances and overgrazing impacts. Impor-

tantly, while sea urchin grazing can occur at broad coastal

scales, it is interactions between grazing sea urchins and

their macroalgal food at local scales (100–101 m2) that leads

to the emergent and widespread collapse of standing algal

beds [26–28]. Thus, to understand regime-shift dynamics at

this scale, for each discrete rocky reef system, we examine

(i) frequency distributions of reef state (i.e. percentage macro-

algal cover) across a range of reef conditions (i.e. urchin

biomass) where both macroalgal cover and sea urchin abun-

dance has been co-recorded in situ in the same quadrat

spaces, and (ii) responses of macroalgal beds to natural or

manipulated changes in urchin abundance. Finally, we exam-

ine the existence of state-dependent feedbacks and stressors

implicated in triggering and maintaining regime shifts

between macroalgal beds and urchin barrens.
2. Methods
(a) Frequency distributions of reef state across changing

reef conditions
To inform regime-shift dynamics between beds of canopy-forming

macroalgae and sea urchin barrens within particular reef systems,

we acquired data within the depth range of occurrence of both

reef states—i.e. from the shallow wave-determined limit of urchin

grazing on algal beds to the deep light-limited margin of these

beds, excluding reef areas heavily laden with sand. We adopted

a landscape ecology approach to determine whether reefs exist as

a vegetated, unvegetated or some mosaic between alternative

macroalgal and urchin barren states. To enable direct comparison

of systems supporting different sizes of canopy-forming seaweeds,

reef state was described by the planar percentage cover of macroal-

gae. While algal cover can exceed 100% for multi-layered kelp

beds, planar cover is capped at 100%. This allows comparison of

habitat-forming seaweeds of varying morphology, ranging from

laminarian kelp forests to low-lying algal canopies of the Canary

Islands and the Mediterranean (electronic supplementary material,

figure S1). Percentage cover is the most frequently reported metric

of macroalgal abundance across rocky reef systems; where it was

not measured directly conversion factors were used to generate

cover estimates from counts of individual macroalgae within quad-

rats. Conversions to percentage cover were performed using

(i) previously defined species-specific relationships between indi-

vidual counts and percentage cover; (ii) morphometric scaling, in

http://rstb.royalsocietypublishing.org/
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Figure 1. Catastrophic regime shift between kelp beds and sea urchin barrens. (a) Conceptual schematic of catastrophic ‘discontinuous’ regime-shift dynamic
(redrawn from Ling et al. [9], after Scheffer et al. [24]). If the reef system occurs in the kelp state on the upper path (red) but close to the threshold F, a
slight increase in sea urchin density may induce a catastrophic forward shift to the alternative and stable sea urchin barrens state. Once barrens have formed,
reverting back to the kelp state is difficult, because the system demonstrates hysteresis, and the reverse shift (blue path) occurs only if sea urchin density is reduced
below the return threshold at R. The broken grey line indicates an unstable equilibrium between the alternative stable states. (b,c) Scatter plots of kelp bed cover
(%) across a range of sea urchin density (individuals m22) for (b) recently established Centrostephanus rodgersii in eastern Tasmania (n ¼ 5135; 5 � 1 m quadrats
sampled in 2001 – 2002 and 2008) and (c) historical range of grazing impacts in New South Wales (NSW; n ¼ 129, 5 � 1 m quadrats sampled in 2004 – 2006).
Scatter plots are defined by semi-transparent bubbles, where increasing bubble size indicates increasing frequency of particular combinations of urchin density and
macroalgal cover: darker shading indicates increased overlap between neighbouring bubbles. Overlaid arrows indicate magnitude and direction of ecosystem response
to removals and additions of C. rodgersii in respective systems (after electronic supplementary material, table S2).
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which average planar canopy area of individual adult stages was

determined (see electronic supplementary material, table S1).

Rocky reef ‘condition’ was defined as sea urchin biomass (wet

weight, g m22) because numerical density alone does not allow

standardization across reef systems supporting urchins of different

individual size and mass. Even within species, density-dependent

processes can result in areas of few large or many small sea urch-

ins, with similar biomass per unit area [16]. Because sea urchin

biomass was rarely measured directly within individual quadrats,
it was estimated using two approaches: (i) where test diameter

(TD) was recorded for individuals, wet weight was estimated by

allometric conversion and summed across individuals in a quad-

rat (electronic supplementary material, table S1), and (ii) where

individual TD was not recorded, mean wet weight per individual

sea urchin was estimated from species-specific allometric conver-

sion of the average TD from a sample of the population, which

was then multiplied by the total count of sea urchins in a quadrat

(electronic supplementary material, table S1).
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(b) Responses of reef state to altered reef conditions
Defining the envelope of possible combinations between reef state

(macroalgal cover) and reef conditions (urchin biomass), the

frequency distribution approach above provides an instantaneous

snapshot of possible relationships from which alternative reef

states may be inferred. Overlaying such distributions with

observed shifts in reef state, in both magnitude and direction, to

changes in ‘reef conditions’ informs the nature of regime-shift

dynamics. Responses in macroalgal cover observed following

natural or manipulated changes in sea urchin abundance were

compiled by sourcing data from published and unpublished

experimental and observational field studies. These studies docu-

mented macroalgal cover and sea urchin abundance both before

and after a regime shift occurred. Where neither macroalgal

cover nor sea urchin biomass was measured directly, conversions

were performed as per the generation of frequency distributions

described above. The frequency distributions of sea urchin bio-

mass resulting in forward and reverse shifts were compared

statistically using the non-parametric Kolmogorov–Smirnoff test

and means were compared using 1-way ANOVA.
20130269
3. Results
Observed frequency distributions of macroalgal cover across

sea urchin biomass were compiled for 13 globally representa-

tive rocky reef systems that are known to occur as algal bed

or urchin barrens states (see map, electronic supplementary

material, figure S2). Across reef systems, survey data showed

clear separation of these alternative reef states and an abrupt

collapse of macroalgal habitat to urchin barrens at high

urchin biomass (figure 2a–m). Urchin barrens are maintained

across a large range of urchin biomass and can occur at

levels of urchin biomass less than those observed on macroal-

gal-dominated reefs. Observed magnitudes and directions of

change within particular systems are indicative of hysteresis,

as barrens formation (forward shift) typically occurs at much

higher levels of urchin biomass than that for which macroalgal

recovery (reverse shift) is observed to occur (cf. red and blue

arrows, figure 2).

Pooling correlative data for all systems globally, the

observed ceiling of macroalgal cover against increasing sea

urchin biomass is consistent with expectations of a nonlinear

threshold defining urchin barrens formation (cf. figures 1a
and 3a). Compilation of a total of 57 observed regime-shift

responses from rocky reefs studies worldwide (electronic

supplementary material, table S2) shows that urchin barrens

are created under conditions of moderate to high sea urchin

biomass (red ‘forward shift’ arrows compiled from 17

observed shifts; figure 3b), whereas recovery of macroalgal

habitat, once sea urchin barrens have formed, generally

occurs at much lower levels of urchin biomass (blue ‘reverse

shift’ arrows compiled from 40 observed shifts; figure 3b).

Considering all studies reporting urchin barrens formation,

the mean (+s.e.) urchin biomass for which macroalgal habi-

tats are collapsed by overgrazing is 2640+824 g m22

(electronic supplementary material, table S2). Excluding

high urchin biomass (more than 1500 g m22; figure 3b,c), a

mean urchin biomass of 668 (+115 g m22) can be considered

to represent the minimum threshold for which overgrazing is

observed for rocky reef systems globally (electronic sup-

plementary material, table S2).

The frequency of observed forward-shift (urchin barrens

formation) events shows a distinctly different distribution

across the range of sea urchin biomass (right skewed red
distribution; figure 3c) compared with that of reverse-shift

(macroalgal recovery) events (left skewed blue distribution;

figure 3c). In contrast to the threshold for barrens formation,

the mean threshold biomass of sea urchins that allows for

macroalgal recovery is 34+ 11 g m22 (electronic supplemen-

tary material, table S2). While it is clear that a complete

absence of sea urchins will enable kelp beds to recover, by

excluding studies reporting macroalgal recovery at zero

urchin biomass, the mean urchin biomass threshold allowing

macroalgal recovery is estimated at 71+20 g m22 (electronic

supplementary material, table S2). Upon reaching critical

regime-shift thresholds, the mean (+s.e.) time observed for

barrens formation and macroalgal recovery was 6.35+ 1.2

and 18.5+2.0 months, respectively (electronic supplementary

material, table S2).
4. Discussion
(a) A globally coherent discontinuous regime shift
Our global compilation of empirical patterns across rocky reef

systems prone to urchin grazing is consistent with expectations

of discontinuous ‘catastrophic’ regime-shift dynamics. Results

show that sea urchins become incapable of maintaining sea

urchin barrens at a biomass below approximately 70 g m22,

whereas the biomass of sea urchins required to form barrens

in the first instance is approximately 700 g m22. Thus, by

definition, the hysteresis evident for this regime shift is

approximately one order of magnitude of sea urchin biomass.

Simply put, the available empirical evidence for rocky reef sys-

tems worldwide reveals that the abundance of sea urchins

required to form barrens is greater than that required to main-

tain a barren and that recovery of productive macroalgal beds

requires virtually all urchins to be removed.

Notably, while macroalgal bed recovery occurs consisten-

tly when urchins are absent or at low biomass, overgrazing

of macroalgal beds occurs over a much wider range of

urchin biomass (figure 3b,c). This probably reflects the more

heterogeneous structure of kelp bed habitats across the globe

and passive versus active modes of urchin grazing which

occur within macroalgal beds [29] relative to the homogeneous

barrens state, which shows much greater structural consistency

(see electronic supplementary material, figure S1) and is

maintained by a more consistent biomass and grazing behav-

iour of urchins (figure 3b,c). In addition, while the catastrophic

regime-shift dynamic appears generally applicable across

urchin-grazing systems, there is a dearth of information on

forward and reverse shift dynamics within particular rocky

reef systems (figure 2 and electronic supplementary material,

table S2). Thus, while general dynamics and threshold

values are reported here, further experimental manipulations

and modelling studies [20] are clearly warranted to quantify

dynamics and identify thresholds and options for reef

management within particular urchin-grazing systems.

While sea urchin grazing dynamics are evidently cata-

strophic in nature, with macroalgal beds and urchin barrens

representing the alternative stable states of rocky reef ecosys-

tems (see also [3]), there is high variability across different

urchin-grazing systems, particularly with respect to the

range of urchin biomass and the degree of transitory

dynamics in macroalgal cover (figure 2). Therefore, further

exploration of the rates of macroalgal primary production,

urchin grazing, and predation on sea urchins is warranted

http://rstb.royalsocietypublishing.org/
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to identify processes operating across systems that result in

either a build-up of urchin biomass towards a forward-shift

threshold, or a decline in biomass to below a reverse-shift

threshold, that determine the dynamics of regime shift [30].

For example, although urchin populations can reach high bio-

mass in South Africa and the general dynamic of overgrazing

applies across this productive kelp system (figure 2j ), urchin-

dominated patches are observed to remain as highly localized

features (100–101 m) devoid of the negative ecological

impacts reported for extensive urchin barrens elsewhere [31].
(b) Time asymmetry in discontinuous dynamics?
Once critical tipping points in sea urchin biomass are

reached, barrens formation occurs in one third of the time

(forward shift approx. six months) that is required for recov-

ery of kelp bed habitats (reverse-shift approx. 18 months;

electronic supplementary material, table S2). But while over-

grazing of kelp beds is a relatively abrupt event, many years

may be required for urchin populations to build towards this

critical biomass threshold. For example, the sea urchin C. rod-
gersii has a planktotrophic larvae that develops over three

months (see [10]) before settling to the reef, after which
another 5–7 years elapse before the urchins emerge from

crypsis to graze macroalgae on the reef surface [10,12,16].

Furthermore, in situations where sea urchins from adjacent

deep-living populations aggregate at the lower margin of

kelp beds (e.g. Strongylocentrotus droebachiensis in the NW

Atlantic), typically it is the larger size-classes that dominate

urchin biomass at mobile grazing ‘fronts’ [28]. So while the

time taken for overgrazing may be relatively sudden, the

time necessary to build urchin populations towards a critical

threshold in abundance can be protracted.

In contrast, providing urchin grazing pressure is sufficiently

relaxed and connectivity to local spore sources exists, macroal-

gal life-history strategies enable a more immediate local

response in recruitment and growth through to mature stands

within the estimated approximately 18 months required for

the system-wide reverse shift (see electronic supplementary

material, table S2). The age structure of populations of C. rodger-
sii across eastern Tasmania [10] provides evidence of gradual

building towards a critical transition in the rate of herbivory,

as urchin populations approach the average age (approx. 20

years old) at which overgrazing occurs [12,20]. This protracted

onset is evident in comparing size–frequency distributions of

populations in Tasmania with those in New South Wales,

http://rstb.royalsocietypublishing.org/
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where long-established urchin populations appear to have

driven down kelp abundance to a greater extent. It suggests

that the time required for urchin populations to build to

threshold levels for overgrazing, in addition to the time

course of transition from kelp to barrens itself, is much longer

than commonly perceived (see ‘Living on borrowed-time con-

cept’ [32]). Once a trajectory of rapid population growth and

accumulation of urchin biomass on rocky reefs is initiated, over-

grazing is likely to ensue unless urchin abundance is somehow

held below the threshold for barrens formation. Thus, the current

state of the ecosystem and its resilience to external stressors,

including influx of settling urchins, are key determinants of the

likelihood of regime shift.
(c) Reinforcing feedbacks and stressors eroding
resilience

Rocky reef systems are influenced by myriad complex inter-

actions between physical and biological processes acting

across a wide spectrum of spatial and temporal scales (reviewed

by [2,3,11]). For systems that exhibit discontinuous ‘cata-

strophic’ regime-shift dynamics between alternative states,

understanding the self-maintaining positive-feedback mechan-

isms that confer resilience (i.e. persistence stability [33]) of a state

to external stressors is critically important [9,20]. Various posi-

tive feedback mechanisms maintain the stability of macroalgal

and urchin barrens states (table 1a; see also [3]), and the stressors

http://rstb.royalsocietypublishing.org/


Table 1. Feedbacks and stressors of alternative macroalgal-dominated and urchin barren rocky reef states. (a) State-dependent mechanisms creating positive
feedbacks reinforcing resilience of each alternative reef state (see also review by Filbee-Dexter & Scheibling [3]). (b) State-dependent processes that erode
resilience of each alternative reef state. Panels shaded in blue indicate feedbacks and processes favouring maintenance and recovery of desirable macroalgal
beds; red shading indicates unfavourable regime shift and maintenance of the unwanted urchin barrens state. Note that human-derived stressors are indicated
by asterisks and that multiple stressors, both human-derived and natural processes, may interact to either maintain or erode resilience in additive, synergistic or
antagonistic manners (e.g. asterisks within parentheses indicate physical processes influenced by anthropogenic-forcing on global climate).

(a) state-dependent feedbacks reinforcing resilience (b) state-dependent stressors decreasing resilience

macroalgal beds reference macroalgal beds to urchin barrens    reference

reference

presence of functional urchin predators
—macro-predators [4,9,34–38]
—micro-predators [39]

*overharvesting of urchin predators [4,9,34–36,38] 

multi-trophic consequences of prey-switching
    by natural predators [62] 

*presence of human urchin harvest/urchin culling [40] 

(*)presence of urchin disease [28] 

high macroalgal productivity
—local standing macroalgae [29] 
—distant allocthonous inputs [41,42]

large macroalgal bed biomass (patch-size dynamics) [16,19,43]

propagule supply (connectivity) [4,44]

natural barriers to urchin movement
—high swell/ current exposure [45]
—macroalgal whiplash [16,46] 

*kelp disease/overgrowth by inva sive algae/epiphytes [28,61] 

*direct removal of kelp
—human harvest [63]

(*)acute physical change
—storms/ extreme weather [63]
—warm periods promoting sea urchin larval survival [64]
—cool periods promoting sea urchin recruitment [65] 

(*)chronic physical change
—declining algal productivity due change in

oceanography/ catchment processes [63,66]
—declining algal productivity of allochthonous

     macroalgal ‘drift’ supply [67]
—range-extension of urchins [10,68] 

other mesograzers [60,69] 

urchin barrens reference urchin barrens to macroalgal beds

diet switching from large macroalgae to
  encrusting/ filamentous forms [4] 

*continued harvesting of urchin predators

increased urchin foraging rates causing high
  mortality of juvenile kelp

[35,47] 

[4,48–51] 

reduced urchin dislodgement due to absence
  of kelp whiplash [16,46] 

increased urchin recruitment in absence
  of macroalgae [10,16,52,53]

reduced predation in absence of kelp:
—increased spine length [16] 
—decreased palatability for human harvest
      and/or natural predators [16,52,54,55]

facilitation of juvenile survival by adults:
—reducing micro-predator abundance by
       eliminating macroalgae [39] 
—offering refugia under adult urchin spine canopy [56–59] 

increasing barren size (patch-size dynamic) [43] 

reduced macroalgal propagule supply [44] 

increased abundance of mesograzing invertebrates [60] 

*local presence of invasive algae/ ephemeral algae
     and epiphytes restricting kelp re-growth [61] 

presence of functional urchin predators [9,34–36,38,70,71]

*human urchin harvest/urchin culling [40,72]

(*)increasing macroalgal productivity due to
   strengthening wave conditions [48,73] 

urchin disease [74,75]

(*)acute physical change
—hurricane events leading to increased urchin disease [76] 
—freshwater flood events [77] 

(*)chronic physical change
—increasing temperature increasing urchin disease [78] 
—increasing temperature reducing urchin settlement [79] 
— increasing temperature causing range-extension of
        urchin predators [80] 
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capable of eroding resilience are also state-dependent (table 1b).

While state-dependent stressors can be identified separately,

they rarely act in isolation. Therefore, predicting interactions

among multiple stressors, including anthropogenic climate

change [81] and overfishing [9,18], is fundamental for managing

systems prone to catastrophic regime-shift dynamics (table 1).

The ability of sea urchin predators to control sea urchin

abundance, and to effect trophic cascades, underscores the

importance of state-dependent feedbacks and hysteresis in

the urchin-grazing system (table 1). That is, hysteresis in this

system means that approximately one order of magnitude

more urchin biomass must be consumed by predators to
revert barrens to macroalgal beds compared with that required

to maintain the macroalgal-dominated state by keeping urchin

density just below the critical forward-shift threshold. Further-

more, this hysteresis is compounded as urchins are less

vulnerable to predation when occurring on barrens owing to

longer protective spines, a greater abundance of individuals

for a given biomass, decreased palatability and an overall

reduction in predator abundance on rocky reefs in the absence

of macroalgal habitat (table 1). Thus, while the role of preda-

tors in controlling the abundance of sea urchins features

extensively in the literature [2,13], this pivotal hysteresis

has not been considered. Our global synthesis indicates that

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing

8

 on May 25, 2016http://rstb.royalsocietypublishing.org/Downloaded from 
management of urchin grazing, including attempts to remedy

urchin grazing by facilitating recovery of urchin predators,

must be squarely underpinned by this hysteresis effect. Imple-

menting such management can be achieved by employing

a ‘resilience-based approach’ focused not only on building

resilience of the desirable macroalgal bed state, but also com-

mitting to the more difficult task of eroding resilience of the

unwanted urchin barrens state once it has formed (table 1;

see also [82,83]).
.org
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5. Conclusion
Globally, the occurrence of urchin barrens on rocky reef rep-

resents an unwanted regime shift from the desirable kelp

bed state, which proves difficult to reverse. Hence, onus

must be squarely placed on understanding when this type of

system is approaching its tipping point, so that collapse of

desirable ecosystem states may be avoided. For ecosystems

displaying such discontinuous ‘catastrophic’ regime-shift

dynamics, increasing resilience of desirable ecosystem states

before a shift occurs will be much more effective than attempts

to break resilience of unwanted ecosystem states once the

system has moved to a new self-reinforcing regime (table 1).

That is, the herein defined globally coherent catastrophic

regime shift supports a general rule that small amounts of

prevention will be far more effective than large amounts of
cure for collapsed ecosystems. Defining such regime-shift

dynamics and the potential state-dependent feedback mechan-

isms at play is therefore crucial for any attempt to manage

this type of system for maximum social and ecological benefit

[83]. Such practical understandings are urgent in an era of

increasing human-derived stressors, many of which interact

(table 1) to accelerate the frequency, extent and irreversibility

of ecosystem change from local to global scales.
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