Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

© Wiley-VCH 2006
69451 Weinheim, Germany

Molecular recognition of a three-way DNA junction by a metallo-supramolecular helicate

Aneta Oleksi, Alexandre G. Blanco, Roeland Boer, Isabel Usón, Joan Aymamí, Alison Rodger, Michael J. Hannon* and Miquel Coll*

Fig. S1: Supermimposition of the free (blue; F. Tuna, M.J. Hannon and G.J. Clarkson, unpublished) and DNA-bound (red) structures of the supramolecular helicate $\left[\mathrm{Fe}_{2} \mathrm{~L}_{3}\right]^{4+}$ ($\mathrm{L}=\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4}$).

Table S1. Data collection, phasing and refinement statistics

Data collection:

Data collection:
Data set
$\lambda(\AA)^{\mathrm{a}}$
Space group
Unit cell parameters
Resolution range (\AA)
Number of reflections:
\quad total
unique
Completeness (\%)
$<\mathrm{I} / \sigma(\mathrm{I})>^{\mathrm{b}}$
Average multiplicity
$\mathrm{R}_{\text {sigma }}{ }^{\text {c,b }}$

Peak	Inflexion	Remote	High resolution
1.739	1.741	1.627	0.933
P4,32			
$\mathrm{a}=\mathrm{b}=\mathrm{c}=71.20 \AA, \alpha=\beta=\gamma=90^{\circ}$			
30-2.6	30-2.6	30-2.8	22.5-1.7 (1.8-1.7)
73,467	54,690	42,532	91,621
3399	3407	2865	7,134
99.3 (97.8)	99.5 (98.3)	99.7 (100)	99.2 (99.7)
53.0 (11.4)	48.52 (9.3)	26.1 (5.5)	29.1 (8.8)
21.61	16.1	14.8	12.8
4.7 (24.3)	3.9 (26.6)	9.8 (55.1)	2.4 (11.8)

Phasing:

Connectivity ${ }^{\text {d }} 0.90$
Contrast ${ }^{\text {e }} 0.35$
Pseudo free CC ${ }^{\text {f }} \quad 62.9$
Map CC ${ }^{\text {g }} 94$

Refinement:

$\mathrm{R}_{\text {factor }}$ (free $\mathrm{R}_{\text {factor }}{ }^{\text {h }}$	24.9 (29.1)
r.m.s.deviation from target values	
Bond lengths (\AA)	0.008
Bond angle distances (\AA)	0.023
Average B-factors (\AA^{2})	
Fe^{2+}	17.1
Drug	18.0
DNA	22.6
Solvent	41.5
Number of $\mathrm{Fe}^{2+\mathrm{i}}$	2
Number of Drug atoms ${ }^{\text {i }}$	87
Number of DNA atoms ${ }^{\text {i }}$	180
Number of solvent molecules ${ }^{\text {i }}$	45

${ }^{\text {a }}$ The absorption peak dataset was taken as a reference.
${ }^{\mathrm{b}}$ Outermost resolution shell values in parenthesis.
${ }^{\mathrm{c}} \mathrm{R}_{\text {sigma }}=\left(\Sigma\left[\sigma\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)\right] / \Sigma\left[\mathrm{F}_{\mathrm{o}}{ }^{2}\right]\right) \times 100$.
${ }^{\mathrm{d}}$ The variance V of density on a spherical surface of radius $2.42 \AA$ is calculated for each pixel in the map, and the pixels with the highest variances (V) are considered more likely to be atom positions. The connectivity is the fraction of adjacent pixels that are either both in the solvent or both in the macromolecular region(22).
${ }^{\mathrm{e}}$ Contrast $=$ The variance of V over all pixels(22).
${ }^{\mathrm{f}}$ Pseudo free CC: CC (see g) calculated with 10% of the reflections omitted at random after performing one cycle of density modification(22).
${ }^{\mathrm{g}}$ Map CC $=\left[\mathrm{N} \Sigma\left|\mathrm{E}_{\mathrm{H}}\right|\left|\mathrm{E}_{\mathrm{A}}\right|-\Sigma\left|\mathrm{E}_{\mathrm{H}}\right| \Sigma\left|\mathrm{E}_{\mathrm{A}}\right|\right] /\left\{\left[\mathrm{N} \Sigma\left|\mathrm{E}_{\mathrm{H}}\right|^{2}-\left(\Sigma\left|\mathrm{E}_{\mathrm{H}}\right|\right)^{2}\right]\left[\mathrm{N} \Sigma\left|\mathrm{E}_{\mathrm{A}}\right|^{2}-\left(\Sigma\left|\mathrm{E}_{\mathrm{A}}\right|\right)^{2}\right]\right\}^{1 / 2} \times 100$ with E_{H} normalized structure factors derived from the calculated iron atom positions and E_{A} from the observed MAD F A_{A} data(22).
${ }^{\mathrm{h}} \mathrm{R}_{\text {factor }}=\left\{\Sigma_{\mathrm{hkl}}| | \mathrm{F}_{\mathrm{o}}|-\mathrm{k}| \mathrm{F}_{\mathrm{c}} \| / \Sigma_{\mathrm{hkl} \mid}\left|\mathrm{F}_{\mathrm{o}}\right|\right\} \times 100$, with F_{o} and F_{c} as the observed and calculated structure factor amplitudes; free $\mathrm{R}_{\text {factor }}$, same for a test set of reflections not used during refinement.
${ }^{i}$ Per asymmetric unit.

Fig. S2: Stereo plot of a σ_{A}-weighted Fourier map calculated with coefficients $2 \mathrm{Fo}-\mathrm{Fc}$ and contoured at the 1σ level showing part of the refined DNA and drug molecules fitted in the electron density. The two Fe^{2+} ions are represented as spheres; pyridine rings: A, D; phenyl rings: B, C.

