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Abstract 19 

This paper evaluates the speciation and partitioning of mercury in two Spanish 20 

pulverized coal combustion power plants (PP1 and PP2), equipped with wet limestone-21 

based flue gas desulphurization facilities (FGD) operating with forced oxidation and re-22 

circulation of FGD water streams. These plants are fed with coal (PP1) and coal/pet-23 

coke blends (PP2) with different mercury contents. The behaviour, partitioning and 24 

speciation of Hg were found to be similar during the combustion processes but different 25 

in the FGD systems of the two power plants. A high proportion (86-88%) of Hg escaped 26 

the electrostatic precipitator in gaseous form, Hg2+ being the predominant mercury 27 

species (68-86%) to enter the FGD. At this point, a relatively high total Hg retention (72 28 

and 65%) was achieved in the PP1 and PP2 (2007) FGD facilities respectively. 29 

However, during the second sampling campaign for PP2 (2008), the mercury removal 30 

achieved by the FGD was much lower (26%). Lab-scale tests point to liquid/gas ratio as 31 

the main parameter affecting oxidised mercury capture in the scrubber. The partitioning 32 

of the gaseous mercury reaching the FGD system in the wastes and by-products 33 

differed. In the low mercury input power plant (PP1) most of the mercury (67%) was 34 

associated with the FGD gypsum. Moreover in PP2 a significant proportion of the 35 

gaseous mercury reaching the FGD system remained in the aqueous phase (45%) in the 36 

2007 sampling campaign while most of it escaped in 2008 (74%). This may be 37 

attributed to the scrubber operating conditions and the different composition and 38 

chemistry of the scrubber solution probably due to the use of an additive. 39 

 40 

Keywords: Mercury partitioning, speciation, wet FGD 41 

 42 

1. Introduction 43 
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Mercury is an element of special environmental concern because of its toxicity, 44 

persistence and bioaccumulation in the environment (US EPA, 2011). Today about 66% 45 

of total worldwide mercury emissions come from coal-fired power plants and future 46 

predictions point to an increase in this contribution due to the important role of coal 47 

combustion in electricity generation in developing countries (Pacyna et al., 2010). The 48 

major pathways for mercury release from coal combustion are via air and wastes. 49 

Unlike most other heavy metals, the majority of the mercury in the exhaust gas from 50 

combustion remains in gas phase (Meij, 1991; Clarke and Sloss., 1992; Sloss, 1995; 51 

Miller et al., 2002; Park et al., 2008). During combustion, most of the Hg bound in the 52 

coal is released as gaseous elemental mercury. Subsequent cooling of the combustion 53 

gas and interactions between the gaseous Hg0 and other combustion products convert 54 

Hg0 to gaseous oxidized mercury (Hg2+) and particle-bound mercury (Hgp) (Sloss, 1995; 55 

Park et al., 2008;). The extent of this transformation depends on the characteristics of 56 

the coal and combustion conditions (Park et al. 2008). Particle-bound mercury can be 57 

retained in particle control devices such as electrostatic precipitators (ESPs). However, 58 

gaseous elemental and oxidized mercury are emitted to the environment in different 59 

proportions. 60 

The 1990 Clean Air Act Amendments listed mercury compounds as hazardous 61 

air pollutants and required the Environmental Protection Agency (EPA) to establish 62 

technology-based standards for certain sources that emit these air toxics. In line with 63 

this requirement, EPA is developing air toxics emissions standards for power plants and 64 

intends to propose air toxics standards for coal- and oil-fired electric generating units by 65 

March 10, 2011 and finalize a rule by November 16, 2011 (US EPA, 2011). In Europe, 66 

the European Commission launched the EU Mercury strategy in 2005 (EC, 2005). In 67 

this document coal burning is identified as one of the largest sources of mercury release. 68 
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Coal burning in plants above 50 MWth is covered by the Integrated Pollution 69 

Prevention and Control and 2001/80/EC Directives. 70 

Among the different systems proposed for the reduction of mercury emissions in 71 

power stations, multi-pollutant gas cleaning systems are considered a valuable option in 72 

terms of efficiency and low investment (Niksa and Fujiwara, 2005; Álvarez-Ayuso et 73 

al., 2006; Meij and Te Winkel, 2006; Díaz-Somoano et al., 2007; Meij and Te Winkel, 74 

2007; Senior, 2007; Cao et al, 2008; Hutson et al., 2008; Stergarsek et al., 2008; Tao et 75 

al., 2009). In this approach, the wet flue gas desulfurization (wet FGD) units installed in 76 

power plants for SO2 capture could be optimized for the co-capture of pollutants other 77 

than sulphur, including some mercury species. Unlike elemental mercury, which is not 78 

water-soluble, oxidized mercury compounds such as HgCl2 dissolve in water. 79 

Therefore, wet FGD technologies could be used for the co-removal of highly-soluble 80 

oxidized mercury (8-72%) (Niksa and Fujiwara, 2005; Meij and Te Winkel, 2006; Díaz-81 

Somoano et al., 2007; Senior, 2007; Hutson et al., 2008; Stergarsek et al., 2008; Tao et 82 

al., 2009), a portion of which could be retained in the FGD slurry and FGD gypsum 83 

end-product. Accordingly, FGD facilities should be regarded as potential systems for 84 

mercury reduction emissions. However, this fact makes that high amount of toxic 85 

species could be present in the produced gypsum. For these reasons, it is important to 86 

have a clear understanding of the speciation and partitioning of mercury in wet FGD 87 

facilities and to determine which parameters influence mercury behaviour in these 88 

facilities. It is known that the efficiency of FGD plants for mercury emission reductions 89 

may vary considerably even among similar units due to the wide range of operational 90 

parameters and to the different pollution control devices employed (ESP and De-NOX). 91 

The objective of this study was to evaluate the speciation and partitioning of 92 

mercury in two Spanish Pulverised Coal Combustion (PCC) power plants equipped with 93 
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wet limestone-based FGD facilities operating with forced oxidation and re-circulation of 94 

FGD water streams. These plants are fed with coal and coal/pet-coke blends that have 95 

different mercury contents. The results were obtained from the simultaneous sampling 96 

of solid, liquid and gaseous streams and their subsequent analysis in two separate 97 

laboratories to ensure the accuracy of the quantitative analysis. On the basis of the 98 

results mercury retention efficiency in wet FGD facilities operating with recirculation of 99 

FGD water streams was evaluated. 100 

 101 

2. Materials and methods 102 

2.1. Power stations and sampling procedures 103 

Three sampling campaigns were undertaken in two large (1050 and 1200 MW) 104 

Spanish PCC power stations (labelled PP1 and PP2, respectively) equipped with wet 105 

limestone-based with forced oxidation FGD systems (Ochoa et al., 2009). The PP1 106 

power plant was fed with a 100% coal blend (60:40 local sub-bituminous coal: 107 

bituminous coal), containing a relatively low mercury input (16 g h-1 per unit). The PP2 108 

power plant was fed with 82:18 and 84:16 coal:petroleum coke blends for the 2007 and 109 

2008 samplings respectively. These combustible blends provided a relatively high 110 

mercury input (30-31 g h-1). 111 

Both FGD systems use limestone as reagent and operate in forced oxidation 112 

mode in order to ensure the conversion of the captured SO2 to CaSO4·2H2O. The 113 

gypsum slurry was discharged over filters, previous separation of the liquid fraction by 114 

hydro-cyclones which was re-used in the scrubber. In PP1 the limestone slurry was 115 

prepared by mixing the pulverised limestone with the process water (taken from a 116 

nearby reservoir and subsequently treated to reduce the content of salts) and a fraction 117 

of the re-circulated water in the reagent tank. The remaining filtered water (45%) was 118 
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sent directly to the spray nozzles of the scrubber. In PP2 the filtered water was sent 119 

directly to the spray-nozzles and was not used in the preparation of the limestone slurry. 120 

In this plant the limestone slurry is prepared with process water also arising from a 121 

nearby reservoir. Furthermore, an aluminium additive was injected into the scrubber of 122 

PP2 plant in order to improve the sorption of SOx by Ca and to favour the reaction of F 123 

with the Al preventing the presence of F in the gypsum (Álvarez-Ayuso et al., 2008; 124 

Font et al., 2008). It should be pointed out that the amount of additive dosed to the 125 

scrubber was in 2007 twice the amount added in 2008. 126 

The sampling campaigns were carried out at 100% maximum capacity and 100% 127 

desulphurisation over two consecutive days. Solid, liquid and gaseous streams were 128 

collected simultaneously from each power plant in order to calculate the mass balance 129 

of mercury. The solid samples were mixed, crushed, milled and rafted and 130 

representative samples of each sampling day were analysed. The water streams and gas 131 

trapping solution samples were filtered in situ. K2Cr2O7 was employed to stabilize the 132 

mercury in the solutions. All the samples were divided into two groups for analysis in 133 

two separate laboratories [a] and [b]. 134 

The concentration of mercury in the gas was measured at two different sampling 135 

points, upstream, (IN)-FGD, and downstream, (OUT)-FGD, in the FGD unit. The 136 

speciation of mercury emissions were determined according Ontario-Hydro method 137 

(ASTM D6784-02, 2008). In such a method a sample of 1 m3 (or higher) was 138 

withdrawn from the flue gas stream through a filter system. Due to the high solubility in 139 

water of oxidised mercury, it was trapped in bottles containing a chilled aqueous 140 

solution of KCl. Elemental Hg is collected in the subsequent bottles containing chilled 141 

solutions of 5% HNO3 in 10% H2O2 and 4% KMnO4 in 10% H2SO4. 142 

2.2. Mercury analysis 143 
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The mercury content of the solid, liquid, gaseous and particulate matter (PM) 144 

samples was measured by means of an Automatic Mercury Analyser (AMA-254) in two 145 

separate laboratories, [a] and [b], following the ASTM Standard D 6722-01 method 146 

(ASTM, 2006). The solid samples were previously acid digested following the method 147 

devised by Querol et al. (1995) whereas the particulate Hg contents were determined 148 

directly from the quartz filter samples. 149 

2.3. Lab-scale tests 150 

In order to investigate the different mercury behaviour observed during the two 151 

sampling campaigns carried out in PP2, a lab-scale device was built (Fig. 1). The 152 

apparatus consists of a closed glass vessel in a thermostat system to ensure a constant 153 

temperature. A calibration gas generator system (HOVACAL, IAS GmbH) coupled 154 

with an evaporator was used to generate oxidised mercury in gas phase. 155 

Limestone slurry was prepared using sulphuric acid and the limestone collected 156 

during the sampling campaign in PP2. A simulated flue gas containing nitrogen, oxygen 157 

and a known amount of mercury was passed through the slurry solution. When sulfite 158 

ions were added to the reaction vessel flue gas only contained mercury and nitrogen in 159 

order to favour Hg0 formation. A continuous mercury emission monitors (VM3000) was 160 

used to follow elemental mercury concentration in gas phase. The continuous mercury 161 

analyser was replaced by Ontario-Hydro sampling train when mercury speciation at the 162 

gas outlet was necessary. 163 

 164 

3. Results and discussion 165 

3.1. Mercury analysis  166 

The results of the mercury analysis obtained by the two laboratories [a] and [b] 167 

were in good agreement. The differences between the mercury concentrations obtained 168 
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in the two laboratories are calculated, as well as the reproducibility value (R) both in 169 

accordance with the ASTM, D-6722-01 standard method (ASTM, 2006). The 170 

differences between results obtained for mercury concentrations in both laboratories 171 

were lower than 0.01 ppm except for gypsum samples in which the values ranged 172 

between 0.02 and 0.04 ppm. The R value provides an indication of the deviations 173 

between the results from the two laboratories but it is based only on the mercury content 174 

range between 0.017 and 0.586 µg g-1 in accordance with ASTM rules. Due to the high 175 

correlation between the results obtained in both laboratories the results of all the 176 

mercury analyses are reported as mean values. 177 

3.2. Mercury mass balances 178 

In order to validate the design of the sampling campaign and to assure the 179 

reliability of the results, the following mass balance calculations were performed: i) 180 

through the entire installation (total) ii) around the Boiler + ESP and iii) around the 181 

FGD system. The different stream flows are based on information provided by the 182 

power plant. 183 

Table 1 shows all the inputs an outputs considered for the mass balance 184 

calculations therefore the achieved mass balance closure. In general good mass balance 185 

closures were achieved, with Out/In ratios ranging from 0.8 to 1.0 (Table 1). Mercury 186 

flows of the different sampled streams are shown in Fig. 2. As expected, the feed fuel 187 

blend is the main source of mercury in the combustion process. In PP1 this input was 16 188 

g h-1 of mercury and it was higher in PP2, close to 30 g h-1 (Table 1). An additional 189 

contribution to mercury input in PP2 came from the re-circulated water (45 to 50 g h-1), 190 

but this was compensated for by the mercury output from the scrubber, the gypsum 191 

slurry (water + solid gypsum), 60 and 53 g h-1 in PP2 (2007) and PP2 (2008), 192 

respectively (Table 1). The high concentration of mercury in the water is a consequence 193 
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of its accumulation as it dissolves over consecutive cycles. If all the inputs are added up, 194 

the total mercury input to FGD amounted to 16 and almost 80 g h-1 in the PP1 and PP2 195 

plants respectively though it should be remembered that in PP2 a 45% of the water is 196 

returned to the plant. 197 

Mercury behaviour during combustion was similar in the two power plants. A 198 

very low proportion of the incoming mercury was retained in the slag (< 0.1%), whereas 199 

in the pulverised fly ash only 10% was captured. Due to the high volatility of mercury, 200 

most of this element (86 at PP1 and 78-89% at PP2) escapes the ESP in gas phase. As a 201 

result 11 and 25-27 g h-1 of mercury reached the FGD system in gas phase in PP1 and 202 

PP2, respectively (Table 2). 203 

3.3. Mercury removal in FGD systems 204 

Significant differences were observed for mercury behaviour in the FGD plants 205 

and as a consequence, after passing through the FGD system (OUT-FGD) different 206 

mercury concentrations were emitted in gas phase, 3.6, 9.3 and 21 g h-1 in PP1, PP2-207 

2007 and PP2-2008, respectively (Table 2). The concentrations of Hg in the gaseous 208 

streams IN and OUT-FGD in the three samplings are summarised in Table 2. As 209 

previously mentioned most of the mercury escapes the ESP in gas phase, 7.8 and 210 

approximately 20 µg m-3 of mercury input in the gas phase to the FGD system in PP1 211 

and PP2, respectively (Table 2). These concentrations represent a flow of 11 and 212 

approximately 25-27 g h-1 of gaseous mercury input to the FGD in PP1 and PP2, 213 

respectively. Most of this gaseous mercury was found to be in oxidised form. In PP1, 214 

74% of the incoming mercury was Hg2+ whereas in PP2 it was 85 and 88% for each 215 

sampling campaign. These results agree with the generally held view that HgCl2 can be 216 

expected to be the predominant species under the typical operating conditions of ESP 217 

prior to entry into the FGD plant (Meij and Te Winkel, 2006). 218 
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A relatively high total mercury removal was achieved in the scrubber of PP1 219 

(72%) and PP2 (2007) (65%). However a lower total mercury abatement was attained 220 

during the second sampling campaign in PP2 (26%) (Table 3). As was expected, due to 221 

the different solubility of Hg species, elemental mercury passed through the FGD 222 

systems being emitted in gaseous form. The emission of elemental mercury represents 223 

3-5% of the total mercury input. The fact that the quantity of elemental mercury at the 224 

FGD outlet and inlet was found to be similar implies that oxidised mercury reduction 225 

and re-emission as elemental mercury that take place in some FGD plants (Meij and Te 226 

Winkel, 2006; Díaz-Somoano et al., 2007; Senior, 2007; Hutson et al., 2008; Stergasek 227 

et al., 2008) did not occur in the plants evaluated in this study. The main mercury 228 

species retained in the FGD was oxidised mercury with retention efficiencies ranging 229 

from 67 to 62% in PP1 and PP2 (2007) respectively, although it was found to be notably 230 

lower (23%) in PP2 (2008). These different mercury abatements could be due to the 231 

different mercury concentrations in the scrubber. The highest oxidised mercury 232 

abatement occurred in PP1 where the mercury concentration input in gas phase was low. 233 

However, this variation in mercury concentration cannot explain the different mercury 234 

behaviour in the FGD plant in the two sampling campaigns of PP2. In order to explain 235 

this fact, a thorough investigation on mercury behaviour in FGD systems has been 236 

carried out using a lab-scale device (Fig. 1). As a first approach it was considered that in 237 

these Spanish power plants an important flow of water coming from the scrubber is re-238 

circulated. As a consequence, a high concentration of mercury can be reached in the 239 

FGD water stream, representing a serious drawback because equilibrium between the 240 

aqueous and gas phases would lead to the formation of the gaseous form of mercury 241 

according to the Henry´s Law. So a sequence of tests has been carried using different 242 

mercury concentration in the scrubber solution. The results (Fig. 3a) show that in the 243 
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experimental conditions an increase in mercury concentration in flue gas favours 244 

mercury reduction and re-emission. However no correlation with the amount of Hg2+ in 245 

gas phase was observed. Consequently the variation in mercury concentration cannot 246 

explain the different mercury behaviour in the FGD plant in the two sampling 247 

campaigns of PP2. 248 

In addition to mercury content, variations in the concentration of other 249 

components in the gas and aqueous phases may play an important role. The content of 250 

halogen in both the gases and water is also known to modify mercury behaviour and 251 

mercury oxidation (Senior, 2007). Although the proportion of mercury species and 252 

chloro input in the FGD were similar in the 2 samplings at PP2, the fluorine content 253 

differed (Table 2). In PP2 2008 sampling the amount of gaseous fluorine that reached 254 

the scrubber was 28.6 mg m-3, while in PP2 2007 it amounted to 14.4 mg m-3, as a 255 

consequence of the different F contents in the fuel blend (378 and 182 ppm, 256 

respectively). However, lab-tests show that no effect on oxidised mercury removal 257 

should be expected due to fluorine concentration in the scrubbing liquor. Experiments 258 

with fluorine concentrations of 0-4000 ppm have been carried out. However, no 259 

differences between oxidised mercury in the gas coming from the scrubber were 260 

detected. 261 

Finally the influence of the liquid/gas ratio (L/G) has been tested. For the lab-262 

scale tests the amount of liquid remained constant while the amount of gas passing 263 

through the system was increased. This parameter is directly related to residence time of 264 

the gases in the scrubber. Results show that oxidised mercury capture decreases when 265 

gas flow through the FGD increases (Fig. 3b). Most of the oxidised mercury is captured 266 

in the scrubber until a gas flow value in which the oxidised mercury capture decreased 267 

notably, probably due to the low residence time of the gas in the scrubber. This fact 268 
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reveals that the low oxidised mercury removal in PP2 (2008) is probably due to L/G 269 

ratio. Although the flow of the limestone slurry was quite similar in both sampling 270 

campaigns in PP2, the gas flow through the scrubber was a 16% higher in 2008 than in 271 

2007 producing a decrease in the residence time of the gases in the scrubber and a lower 272 

oxidised mercury removal. The oxidised mercury that is not dissolve in the aqueous 273 

phase goes out to the FGD. 274 

3.4. Mercury partitioning in the FGD by-products  275 

Mercury partitioning in the FGD by-products was also observed to differ during 276 

the three sampling campaigns (Fig. 4). In PP1 most of the outgoing mercury was 277 

associated with the FGD gypsum (67%) while a low proportion was trapped by the 278 

gypsum slurry water (5%). The rest of the gaseous mercury input remained in gas phase 279 

(28%). The high retention of Hg in the gypsum by wet FGD plant in PP1 suggests that 280 

an insoluble Hg species, such as Hg-sulphate (Cao et al., 2008), may have been present 281 

in the scrubber. In the wet FGD plant of PP2 the partitioning was different from that of 282 

PP1 as most of the mercury was retained in the FGD water streams. In 2007 sampling 283 

45% of the gaseous mercury that reached the FGD system was collected with the 284 

gypsum slurry water, while 20% was associated with the gypsum. A relatively high 285 

proportion of mercury remained in gas phase (35%). In the PP2 2008 sampling 286 

campaign, the mercury in the aqueous solution amounted to 16% against 10% for 287 

gypsum. 288 

The difference observed between PP1 and PP2 is probably related with the use 289 

of Al-sulphate in PP2. This compound could favour the formation of soluble mercury 290 

species (HgO) instead of HgSO4 which is commonly associated with calcium sulphate 291 

particles. Although more research is necessary, the different partitioning of mercury in 292 

PP1 and PP2 is probably related to the use of Al-sulphate. 293 
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 294 

4. Conclusions 295 

The amount of mercury removed in a FGD unit is highly influenced by the 296 

mercury concentration entering the scrubber. This parameter is clearly related to the 297 

amount of mercury fed to the boiler and to the efficiency of the particle control device. 298 

However, it should be remarked that a high amount of mercury and other species such 299 

as halogens, are being introduced to the scrubber due to the recirculation of the water. 300 

Moreover, the results discussed in this work underline the importance of carrying out a 301 

thorough control of the working conditions in the scrubber, being the L/G ratio an 302 

important parameter related to the oxidised mercury removal due to mass transfer and 303 

the gas residence time in the scrubber.  304 

The use of an additive in PP2 favours the presence of mercury in the aqueous 305 

phase avoiding its association with the resulting gypsum. However some precaution 306 

should be taken because this water can be partially re-circulated to the scrubber. 307 

 308 
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Table 1. Mass balances around the boiler and ESP (PCC system); FGD (FGD) and the 389 

whole installation (Total); Hg (g h-1). 390 

Stream PP1 PP2 (2007) PP2 (2008) 
TOTAL  

Fuel Blend  15.5 30.0 30.8 
Limestone  0.09 0.00 0.02 
Process Water  0.17 0.00 0.00 
Recirculated water 

IN 

0.14 49.3 44.8 
Fly ash 1.58 3.11 3.07 
Slag 0.02 0.04 0.01 
Slag Water 0.00 0.05 0.05 
Gypsum 6.90 3.95 3.62 
Gypsum slurry Water 0.60 56.0 49.3 
PM-OUT 0.01 0.01 0.00 
Gas-OUT 

OUT 

3.57 9.31 21.1 
∑OUT/∑IN 0.8 0.9 1.0 

PCC 
Fuel Blend  IN 15.5 30.0 30.8 
Fly ash 1.58 3.11 3.07 
Slag 0.02 0.04 0.01 
Slag Water 0.00 0.05 0.05 
PM-IN 0.00 0.00 0.01 
Gas-IN 

OUT 

10.9 24.9 26.6 
∑OUT/∑IN 0.8 1.0 1.0 

FGD 
Limestone  0.09 0.00 0.02 
Process Water  0.17 0.00 0.00 
Recirculated water 0.14 49.3 44.8 
PM-IN 0.00 0.00 0.01 
Gas-IN 

IN 

10.9 24.9 26.6 
Gypsum 6.90 3.95 3.62 
Gypsum slurry Water 0.60 56.0 49.3 
PM-OUT 0.01 0.01 0.00 
Gas-OUT 

OUT 

3.57 9.31 21.1 
∑OUT/∑IN 1.0 0.9 1.0 

 391 
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Table 2. Concentrations of main gaseous pollutants and mercury in the gas stream 392 

flowing IN and OUT of the FGD. 393 

IN-FGD OUT-FGD µg m-3 

(g h-1) PP1 PP2 2007 PP2 2008 PP1 PP2 2007 PP2 2008 

Hgtotal 
7.8 

(11) 

20.5 

(25) 

19.0 

(27) 

2.2 

(3.6) 

7.1 

(9.3) 

14.0 

(21) 

Hg2+ 
5.8 

(8.1) 

17.5 

(21) 

16.8 

(24) 

0.6 

(1.0) 

4.7 

(6.2) 

12.3 

(18) 

Hg0 
2.0 

(2.8) 

3.0 

(3.6) 

2.2 

(3.1) 

1.6 

(2.6) 

2.4 

(3.1) 

1.7 

(2.6) 

HgPM
(1) 1.3 7.3 0.7 8.8 9.4 1.8 

F- 23.0(2) 14.4(2) 28.6(2) 370 78 147 

Cl- 6188 7191 6148 233 51 93 

SO2
(2) 14.6(2) 4319 4746 988 779 555 

(1)ng m-3; (2) mg m-3 394 

 395 
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Table 3. Mercury retention in the FGD systems of the PP1 and PP2 power stations. 396 

Hg removal (%) Total Hg (%) Hg2+ (%) Hg0 (%) 

PP1 72 67 5 

PP2 (2007) 65 62 3 

PP2 (2008) 26 23 3 

 397 
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Figure captions 398 

 399 

Figure 1. Schematic diagram of lab-scale scrubber used for the experimental tests. 400 

 401 

Figure 2. Schematic diagrams of the mercury flows in the sampled power plants in (a) 402 

PP1; (b) PP2 (2007) and (c) PP2 (2008) sampling campaigns. 403 

 404 

Figure 3. Lab-scale test results. (a) Influence of mercury concentration in elemental 405 

mercury emission and (b) influence of gas flow through the scrubber solution on 406 

oxidised mercury emission. 407 

 408 

Figure 4. Mercury distribution in the FGD by-products. 409 



 21

 410 

Fig. 1 411 
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Fig. 2 414 
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Fig. 3 416 

 417 

 418 

Fig. 4 419 


