
ar
X

iv
:1

20
5.

20
02

v1
  [

he
p-

ph
] 

 9
 M

ay
 2

01
2

FTUV-12-0501
IFIC/12-30

Confinement, the gluon propagator and the interquark
potential for heavy mesons

V. Vento

Departamento de F́ısica Teórica -IFIC
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Abstract

The interquark static potential for heavy mesons described by a massive One Gluon
Exchange interaction obtained from the propagator of the truncated Dyson-Schwinger
equations does not reproduced the expected Cornell potential. I show that no formula-
tion based on a finite propagator will lead to confinement of quenched QCD. I propose
a mechanism based on a singular nonperturbative coupling constant which has the
virtue of giving rise to a finite gluon propagator and (almost) linear confinement. The
mechanism can be slightly modified to produce the screened potentials of unquenched
QCD.
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1 Introduction

The resolution of Dyson-Schwinger equations leads to the freezing of the QCD running
coupling (effective charge) in the infrared, which is best understood as a dynamical
generation of a gluon mass function, giving rise to a momentum dependence which is
free from infrared divergences [1,2]. Recently, we have calculated the interquark static
potential for heavy mesons by assuming that it is given by a massive One Gluon Ex-
change (OGE) interaction which we have called DS potential [3]. To our surprise the
DS potential does not contain the physics of confinement in the quenched approxima-
tion to Quantum Chromodynamics, namely the linear rise at large distances. In Fig.
1 (right) the DS potential is shown for the parameters that fit the lattice propagator
of ref. [4], using the mass and coupling constant equations of ref. [3] as I will recall in
section 2, as seen in Fig. 1 (left). Note the finiteness of the gluon propagator.

It is well known that a propagator with a functional form 1/q4 leads to a linearly
rising potential [5], however this propagator is singular at the origin contrary to the
result of the lattice calculation of ref. [4]. Finite modifications of the confining Gribov
propagator, ∼ 1/(q2 + m2)2, have been proposed. These modifications lead to the
description of chiral symmetry breaking through confinement with a mass paramenter
∼ 200 MeV [6]. Does this modified Gribov (mG) propagator describe confinement
in the quenched approximation? It is clear that its funtional form in r space is a
decreasing exponential and therefore in some range behaves linearly. Is the parameter
space adequate to support linearity?

I proceed by adding the mG propagator to the DS propagator [8] and study there-
after the corresponding potential. I am able to fit the propagator data quite precisely
with this Ansatz. However, the corresponding potential produces almost no confine-
ment. The value obtained for the mass paramenter of the mG propagator is too large
and the behavior is exponentail even for small values of r. If , on the contrary, I fit
the Cornell potential, I get a Gribov type propagator, i.e. the mass parameter of the
mG propagator tends to zero, leading to a huge rise close to the origin in disagreement
with lattice QCD.

The corollary of my mathematical analysis of the propagator data and the Cornell
potential is that a good potential requires a singularity at the origin in momemtum
space, while the propagator is finite in the physical region. One way out of the impasse
is to introduce a singularity in the nonperturbative coupling constant. Redefining the
potential in terms of this singular coupling (∼ 1/q4 ), I will analyze in detail two
cases for which I am able to reproduce both the propagator and the potential: i)
Dyson-Schwinger OGE and ii) mG + Dyson-Schwinger OGE. Finally, by softening the
singularity I am able to fit a screened interquark heavy meson potential [3].

The results of this investigation will be presented as follows. In section 2, I introduce
the formalism and discuss the changes after incorporating the modified Gribov term
in the propagator. In section 3, I study the corresponding potential. In section 4, I
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Figure 1: Left: Fit to the lattice propagator data of ref. [4] using the logarithmic
mass equation and the following set of parameters for the Dyson-Schwinger propagator
(solid) Λ = 0.300 GeV, δ = 1/11, ρ = 2.0, m0 = 0.374 GeV, µ = 4.5 GeV, ρ1 = 20.0,
c = 0.27. Right: The “massive” One Gluon exchange potential for the same parameters
(long-dashed) [3] compared with the Cornell potential (dotted).

introduce, as a consequence of mathematical reasonings, a singularity in the coupling
constant and discuss its consequences. Section 5 is dedicated to the formulation of the
screened potentials and I finish in section 6 by drawing some conclusions.

2 The Gluon Propagator

Infrared finite solutions for the gluon propagator of quenched QCD are obtained from
the gauge-invariant non-linear Schwinger-Dyson equation formulated in the Landau
gauge of the background field method. These solutions may be fitted using a massive
propagator.

At the level of the Dyson-Schwinger equations (DSE) the generation of such a mass
is associated with the existence of infrared finite solutions for the gluon propagator,
∆(q2), i.e. solutions with ∆−1(0) > 0. Such solutions may be fitted by “massive”
euclidean propagator of the form

∆−1
DS(q

2) = m2(q2) + q2(1 + Π(q2, µ2)) (1)

where m2(q2) and Π[q2, µ2) depend non-trivially on the momentum transfer q2. One
physically motivated possibility, which we shall use in here, is the so called logarithmic
mass running, which is defined by

m2(q2) = m2
0

[

ln

(

q2 + ρm2
0

Λ2

)

/

ln

(

ρm2
0

Λ2

)]

−1−δ

, (2)
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Figure 2: Fit to the lattice propagator data of ref. [4] using the logarithmic mass
equation and the following set of parameters: a) Dyson-Schwinger propagator (dashed)
Λ = 0.300 GeV, δ = 1/11, ρ = 1.0, m0 = 0.50 GeV, µ = 4.5 GeV, ρ1 = 1.0, c = 0.20
; b) Confining propagator (dotted) s = 1.044 GeV2, mc = 0.390 GeV. The total
propagator is represented by a continuous line. The inset reproduces the behavior
close to the origin.

where m0, ρ and δ are parameters whose values are chosen to fit the lattice propagator
and Λ is the QCD scale.

In order to fit the lattice data at a specific scale µ2 the following functional form
has been proposed [8],

∆−1
DS(q

2) = m2(q2) + q2
[

1 + c ln

(

q2 + ρ1m
2(q2)

µ2

)]

. (3)

To this propagator I add an effective propagator of the form,

s∆−1
conf(q

2) = (q2 +m2
c)

2, (4)

where s is a dimensional constant and mc a mass determing the value of the full propa-
gator at the origin. This behavior has been proposed to describe how confinement leads
to chiral symmetry breaking through a gap equation [6, 7]. Thus our full propagator
becomes

∆µν(q2) = δµν∆(q2),

∆(q2) = ∆DS(q
2) + ∆conf(q

2). (5)

In Fig. 2, I show how the lattice data can be fitted with this new propagator and the
functional forms for the DS gluon propagator presented above 1.

1Note that in ref. [8] other functional forms have been used.
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3 The Modified Dyson-Schwinger Potential

Due to the presence of this dynamical gluon mass the strong effective charge extracted
from these solutions freezes at a finite value, giving rise to an infrared fixed point for
QCD. The non-perturbative generalization of α(q2) the QCD running coupling, comes
in the form

a(q2) =

[

β0 ln

(

q2 + ρm2(q2)

Λ2

)]

−1

, (6)

where a = α
4π

and we take β0 = 11 − 2nf/3 where nf is the number of flavors. The
m(q2) in the argument of the logarithm tames the Landau pole, and a(q2) freezes at a
finite value in the IR, namely a−1(0) = β0 ln(ρm

2(0)/Λ2) [1, 2].
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Figure 3: The dashed curve shows the potential calculated using Eq.8 with the pa-
rameters obtained by fitting the lattice propagator of ref. [4] using the full propagator
Eqs. 5 : Λ = 0.300 GeV, δ = 1/11, ρ = 1.0, m0 = 0.50 GeV, s = 1.044 GeV2,
mc = 0.390 GeV and particularizing for nf = 4, i.e. β0 = 25/3 in Eq.6. The dotted
curve represents the Cornell potential as given in ref. [3].

The potential between the heavy quarks is obtained from the One Gluon Exchange
potential defined from the following propagator, [3]

4πCFa(q
2)

q2 +m(q2)
, (7)

where CF is the Casimir eigenvalue of the fundamental representation of SU(3) [CF =
4/3]. To this term we add the modified Gribov propagator in Eq. 4.

The potential between static charges is related to the Fourier transform of the time-
time component of the full gluon propagator which after some trivial algebra becomes.
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V (r) = −
1

|r|

∫

∞

0
d|q| |q|

(

8CF

a(q2)

q2 +m(q2)
+

s

(q2 +mc)2

)

sin(|q||r|). (8)

For constant mass parameter the mG propagator has an exact Fourier transform leading
to

Vconf(r) = − σ
e−r mc

2mc

, (9)

where σ = s/4π.
This potential for sufficiently small mc the potential behaves as linearly rising

Vconf(r) ∼σ(− 1
2mc

+ r
2
+ . . .). Do the data support a small enough mass parameter

to define a (almost)-liner behavior for the values of r required to fit the spectrum?
In order to compare with the Cornell potential we have to implement the Sommer
substraction as described in ref. [3, 9].

In Fig. 3, I compare the potential obtained from the fit to the lattice propagator
of the previous section to the Cornell potential [10–13]. I note that the confining mass
is too large to produce a linear rise at the relevant r values. Therefore the mechanism
described above does not provide the required dynamics to describe quenched QCD
confinement [14].

Let me now proceed in the opposite way. I fit the Cornell potential using Eq. 8
and construct the corresponding propagator. It is clear from the fit that the Cornell
potential requires mc very close to zero. What happens then to the propagator?
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Figure 4: Left: Modified Dyson Schwinger potential (dashed) defined by the fllowing
parameters: Λ = 0.300 GeV, δ = 1/11, ρ = 2.0, m0 = 0.37 GeV, s = 4.316 GeV2,
mc = 0.0 GeV and β0 = 25/3. The dotted curve represents the Cornell potential as
given in ref. [3]. Right: The dotted curve represents the propagator obtained by using
the parameters which fitted the Cornell potential. The continuous curve, which is
almost indistinguishable from the data corresponds to the same fit without mG term,
i.e. taking s = 0.
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In Fig. 4, I show the fit to the Cornell potential and the corresponding propagator
together with the lattice data. It is clear that the fitting of the Cornell potential
requires a svery mall mass and a large coupling s, while the propagator requires a
small coupling s if we choose a small mass. I show in the figure also the extreme case
with s = 0, i.e. only with OGE propagator, which turns out to give a very precise
fit to the propagator. Thus, one can fit the propagator with only the DS term as was
done in ref. [8]. The corresponding parameters are those given in the figure caption.

I am arriving to a impasse. The parameters which fit the propagator do not fit the
potential and viceversa. The potential requires a confinement term à la Gribov while
the propagator is finite at the origin. I therefore conclude from the analysis that it is
impossible to fit the propagator and the potential simultaneously, since the potential
requires a Gribov singularity for quenched QCD.

4 Confinement Coupling Constant

How can we solve this puzzle? The way I forsee is dynamical. I need a singularity at
the origin either in the confining mG or in the DS propagators in order to reproduce
the Gribov behavior. However, the lattice data seem to imply that there is no singular
behavior near the origin. One could still aim mathematically at a “hidden” singularity
below the first data points. This solution does not make sense because a very narrow
singularities in momentum space, becomes a fast flattening in coordinate space and
therefore no linear rise will appear from such mechanism. My proposal here is to
change the coupling constant and incorporate there the singularity.

I have studied two mechanisms

i) The Dyson-Schwinger scheme: the coupling constant changes as,

atotal(q
2) = aconf(q

2) + aDS(q
2),

aconf(q
2) = aconf(0)

Λ4

q4
,

aDS(q
2) =

[

β0 ln

(

q2 + ρm2(q2)

Λ2

)]

−1

.

(10)

This scheme has no mG term and the additional contribution could arise from a
nonperturbative vertex correction.

ii) The Gribov scheme: the potential acquires an additional nonperturbative cou-
pling multiplying the modified Gribov propagator,
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∆conf(q
2) = aconf(q

2)
s

(q2 +m2
c)

2
,

aconf(q
2) = aconf(0)

Λ4

q4
,

(11)
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Figure 5: Left: Fit to the lattice propagator data of ref. [4] using the logarithmic mass
equation and the following set of parameters: Dyson-Schwinger propagator (dashed)
Λ = 0.300 GeV, δ = 1/11, ρ = 2.0, m0 = 0.37 GeV, µ = 4.5 GeV, ρ1 = 20.0,
c = 0.27. Right: The dashed curve shows the potential calculated using Eq.13 with the
parameters obtained by fitting the lattice propagator, particularizing for nf = 4, i.e.
β0 = 25/3 in Eq.6 and using aconf(0) = 0.5. The dotted curve represents the Cornell
potential as given in ref. [3].

The idea behind these Ansätze is that the strength of the 1/q4 singularity, needed
at the origin to achieve a linearly rising potential, cannot come from the propagator,
which is finite, and therefore must come from the vertex.

The potentials become now

i)

V (r) = −
1

|r|

∫

∞

0
d|q| |q|

(

8CF

atotal(q
2)

q2 +m(q2)

)

sin(|q||r|). (12)

ii)

V (r) = −
1

|r|

∫

∞

0
d|q| |q|

(

8CF

a(q2)

q2 +m(q2)
+

aconf(q
2) σ

(q2 +mc)2

)

sin(|q||r|). (13)
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Figure 6: Left: Fit to the lattice propagator data of ref. [4] using the logarithmic mass
equation and the following set of parameters: a) Dyson-Schwinger propagator (dashed)
Λ = 0.300 GeV, δ = 1/11, ρ = 2.0, m0 = 0.37 GeV, µ = 4.5 GeV, ρ1 = 1.0, c = 0.2; b)
Confining propagator (dotted) s = 0.094 GeV2, mc = 0.390 GeV. Right: The dashed
curve shows the potential calculated using Eq.13 with the parameters obtained by
fitting the lattice propagator, particularizing for nf = 4, i.e. β0 = 25/3 in Eq.6 and
using aconf(0)s = 18.2 GeV2. The dotted curve represents the Cornell potential as given
in ref. [3].

In Figs. 5 and 6, I show the result of the above procedure for the two cases.
The fits in the two cases are very good. In particular, for the DS case, the fit is

almost perfect. I conclude that, as far as the propagator is finite, one way to achieve the
dynamics of quenched QCD confinement in the scheme is by a singularities appearing
in the vertex.

5 Screened Potentials

It is well known that in real QCD the coupling constant is finite [15]. In my scheme
this can be achieved avoiding the singularity by introducing a cutoff mass into the
coupling constant, i.e. q2 → q2 +m2

a. From the point of view of interquark dynamics
it is known that once the theory is unquenched, the linearly rising potential flattens
at large r leading to the so called Aachen potential [3, 16, 17]. By using this cutoff
mechanism I show the resulting potentials in Fig. 7. Recall that the propagator fits
are the same as before since the Gribov mechanism does not affect them. Again the
fit is excellent in both cases, almost perfect in the DS case.
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Figure 7: The dotted curve represents the Aachen potential as given in ref. [3]. Left:
Modified Dyson Schwinger with soft confinement potential (dashed) defined by the
fllowing parameters: Λ = 0.300 GeV, δ = 1/11, ρ = 2.0, m0 = 0.37 GeV, mc = 0.390
GeV, aconf(0) = 0.5,ma = 0.105 GeV and β0 = 25/3. Right: Modified Gribov with
soft confinement potential (dashed) defined by the fllowing parameters: Λ = 0.300
GeV, δ = 1/11, ρ = 2.0, m0 = 0.378 GeV, aconf(0)s = 18.2 GeV2, mc = 0.390 GeV,
ma = 0.090 GeV and β0 = 25/3.

6 Concluding Remarks

The gluon propagator in the Landau gauge in quenched lattice QCD is finite. This
has been shown to be the case also for the resolution of truncated Dyson-Schwinger
equations. This finiteness implies a limiting value for the corresponing interquark
potential which does not correspond to the potential obtained from quenched QCD
which is linearly rising. I simplest solution I forsee is to implemant a Gribov singular-
ity in the nonperturbative coupling constant. In my calculations all the parameters,
except those related to the singularity, have been fixed to the lattice propagator and
the correct potential arises from adjusting the singularity. In this way I am able to
reproduce the Cornell potential with great precision. The screened potential, corre-
sponding to unquenched QCD, arises naturally by modifying the Gribov singularity
with an additional mass parameter. At this point we are not able to adscribe physical
meaning to the parameters since they arise not from fundamental equations but from
parametrizations.

The conclusion of this study is that one is able to reproduce the gluon propagator
and the heavy interquark potential if one is able to associate an interesting dynamical
content to the nonperturbative coupling constant. A more fundamental study of this
element from the point of view of nonperturbative QCD studies will shed some light
in the confinement mechanism.
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