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The status of quantum cosmologies as testable mod-

els of the early universe is assessed in the context of

inflation. While traditional Wheeler–DeWitt quantiza-

tion is unable to produce sizable effects in the cosmic

microwave background, the more recent loop quan-

tum cosmology can generate potentially detectable

departures from the standard cosmic spectrum. Thus,

present observations constrain the parameter space

of the model, which could be made falsifiable by near-

future experiments.

1 Introduction

During the last years, quantum gravity has been receiv-

ing a great amount of attention from the community

of theoreticians. The driving motivation, familiar to any-

one who has tried his or her fortune at least once in

this broad subject, is to realize a consistent, ultraviolet fi-

nite merging of general relativity with quantum mechan-

ics. The programme can be carried out in various forms,

from ambitious theories of everything (such as string the-

ory) where all forces are unified to more minimalistic ap-

proaches aiming to quantize gravity alone. In the latter

category there fall loop quantum gravity (LQG), asymp-

totic safety, spin-foams, causal dynamical triangulations

and many others [1].

A problem endemic to most of these scenarios is

their difficulty in making contact with observations. This

stems from the highly technical nature of the theoreti-

cal frameworks, where the notions of conventional geom-

etry and matter, continuum spacetime, general covari-

ance and physical observables are typically deformed,

modified, or disappear altogether. The lack of exper-

imental feedback makes it quite difficult to discrimi-

nate among different models and, chiefly, to characterize

them as falsifiable.

It is natural to turn to cosmology in an attempt

to bridge this gap and advance our knowledge [2, 3].

The early Universe is an ideal laboratory where extreme

regimes of high energy and high curvature are realized.

Under such conditions, it is expected that quantum grav-

itational effects become sizable. Also, the symmetry re-

duction entailed in cosmological settings decimates the

degrees of freedom of background-independent theories

and allows one to simplify the latter to a technically man-

ageable level. The resulting models retain some (or most)

of the main features of the full theory and can be better

manipulated to extract observables.

Canonical quantum gravity is a popular example of

this mechanism. The present review focusses on two of

its incarnations, namely, the traditional Wheeler–DeWitt

(WDW) model (e.g., [4,5]) and the more recent loop quan-

tization [6]. The most ancient phase about which we have

gathered experimental data is inflation, a period of accel-

erated expansion of the universe which left a relic in the

cosmic microwave background (CMB) radiation. A study

of the inflationary perturbations and the associated spec-

tra allows us to track down quantum corrections and con-

front them with the observed CMB power spectrum. Al-

though the outcome of this procedure is a constraint on

the free parameters of the models rather than an actual

prediction, time seems ripe for the very next generation

of experiments to exclude notable portions of parameter

space. As a minimal present-day achievement, we can at

least state that quantum cosmology models are compati-

ble with observations.

The stark contrast between the type of quantum cor-

rections arising in these scenarios highlights how sensi-

tive the physics is of the quantization scheme and vari-

ables. The typical energy scale during inflation is es-

timated to be about the grand-unification scale, H ∼
1015 GeV, corresponding to an energy density ρinfl ∼
H2/ℓ2

Pl
∼ 1068 GeV4. Here H := ȧ/a is the Hubble parame-

ter, a is the scale factor of the universe and a dot denotes
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differentiation with respect to synchronous time. In con-

trast, classical gravity is believed to break down at dis-

tances shorter than the Planck length ℓPl =
p

Għ, i.e., at

energies above 1019 GeV. The ratio between the inflation-

ary and Planck energy density is very small,

ρinfl

ρPl

∼ (ℓPlH)2 ∼ 10−8 , (1)

and quantum corrections are expected to be of the same

order of magnitude or lower. Thus, quantum-gravity ef-

fects would be, in fact, well below any reasonable experi-

mental sensitivity threshold, at least as far as inflation is

concerned. WDW quantum cosmology realizes precisely

this type of corrections and endorses the above naive ar-

gument.

On the other hand, the polymeric quantization of

loop quantum cosmology (LQC) [5,7,8] generates correc-

tions which are not of the form (1). To get a rough idea

of how these corrections arise, one begins by observing

that geometry operators representing areas and volumes

acquire a discrete spectrum in this context. This is be-

cause states of loop quantum gravity, spin networks, are

graphs whose edges e are labeled by quantum numbers

je . An area intersected by some of these edges is deter-

mined by these quantum numbers, giving the spectrum

A = γℓ2
Pl

∑

e

√

je ( je +1), where γ . O(1) is the Barbero–

Immirzi parameter. One single edge defines an “elemen-

tary plaquette” of area ∝ ℓ2
Pl

√

je ( je +1); the latter fea-

tures the Planck area but its actual value depends on

the spin quantum number. Since calculations on realistic

graphs are very hard in the full theory, it is convenient to

focus one’s attention on a simplified phenomenological

setting. In particular, a homogeneous quantum inflation-

ary universe with small inhomogeneous perturbations

may be represented by a quantum semi-classical state Ψ

characterized by a length scale L. This scale is thought

of as encoding the discreteness of the geometry. Any re-

gion of volume V = a3
V0 (arbitrary, if spatial slices are

non-compact) can be decomposes into discrete patches

of size ∼ L3. The inflationary scale is thus replaced by an

effective quantum-gravity scale

ρQG = 3

8πGL2
. (2)

In general, inverse powers of L cannot be quantized

to a densely defined operator because the spectrum

of the volume contains 0. Inverse volumes appear in

the Hamiltonian constraint (of both gravity and mat-

ter, as in kinetic matter terms) and hence in the dy-

namics, and are an unavoidable consequence of spatial

discreteness in loop quantum gravity. This requires to

reexpress their classical expressions via Poisson brack-

ets, which in turn feature derivatives by L. Quantum

discreteness then replaces classical continuous deriva-

tives by finite-difference quotients. For example, the ex-

pression (2
p

L)−1 = ∂
p

L/∂L would become (
√

L +ℓPl −
√

L −ℓPl)/(2ℓPl), strongly differing from (2
p

L)−1 when L

is as small as the Planck length, L ∼ ℓPl. For larger L, cor-

rections are perturbative and of the order ℓPl/L, so in gen-

eral the type of inverse-volume quantum corrections are

expressed by the ratio

ρQG

ρPl

∼
(

ℓPl

L

)2

. 1. (3)

In practice, the actual size of LQC effects will lie well be-

low the over-optimistic upper bound (3), but above the

naive estimate (1). It is known that the non-local nature

of loop quantum gravity effects prevents the formation of

singularities one would typically find classically [6, 9, 10].

This can be shown both at the kinematical level (via the

spectra of inverse area and volume operators) and at the

exact and effective dynamical level (by looking, respec-

tively, at the state-space spanned by the Hamiltonian

constraint acting on volume eigenstates and at the effec-

tive dynamics on semi-classical states). The physical in-

terpretation of inverse-volume corrections stems exactly

from the same mechanism: classically divergent quan-

tities such as inverse powers of volumes remain finite

due to intrinsically quantum effects. Loosely speaking,

quanta of geometry cannot be compressed too densely

and they determine the onset of a repulsive force at

Planck scale [10], which then determine the various cor-

rections to the dynamics.

After introducing the theoretical frameworks in sec-

tions 2.1 and 3.1, CMB observations will be used to

pin down these effects (sections 2.2 and 3.2). For the

Wheeler–DeWitt model, we shall do so in considerably

more detail than can be found in the present literature;

section 2.2 contains original material. Holonomy correc-

tions in LQC are briefly discussed in section 3.3 The

scantly touched topic of non-Gaussianity in quantum

cosmology will be also discussed (section 4). In the fol-

lowing, ħ= 1= c .

Before starting, we stress once again the scope of the

present review. Although there are many “minimalistic”

theories of quantum gravity on the market, at present it

is still difficult to do some cosmology with them. Among

the scenarios allowing for some phenomenology are

asymptotic safety [11] and causal dynamical triangula-

tions [12]. These models do admit a cosmological limit,

but either inflationary observables have not been com-

puted yet or there is no unique determination of an effec-

tive inflationary gravitational action. Here, on the other

hand, we are interested in pitching models based upon

canonical quantization (which conventionally go under

324 Copyright line will be provided by the publisher
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the umbrella term “quantum cosmology”) against obser-

vations. We will leave out string cosmology from the dis-

cussion [13, 14], which is based on altogether different

techniques. The reader can find the details of various and

often interconnected settings in the dedicated literature,

such as KKLT and moduli inflation [15,16], cosmic strings

networks [17, 18], brane and DBI inflation [13, 14], string

gas cosmology [19,20], braneworld cosmology [21], ekpy-

rotic universe [22, 23], non-local cosmology, and others.

2 Wheeler–DeWitt cosmology and
observations

2.1 The model

2.1.1 Homogeneous background

In canonical formalism, symmetry and dynamics are en-

coded in a set of constraint equations valid on dynam-

ical trajectories. For gravity and matter, the total Dirac

Hamiltonian [24] obtained after imposing second-class

constraints and skimming out Lagrange multipliers is

HD =
∫

d3x
(

Nα
Hα+NH

)

, (4)

where Nα (α = 1,2,3) is the shift vector, N is the lapse

function, Hα is the super-momentum constraint and H

is the super-Hamiltonian constraint (often the prefix “su-

per” is omitted). The super-momentum, corresponding

to the 0α components of Einstein’s equations, encodes

invariance under spacetime diffeomorphisms within the

three-dimensional spatial surfaces on which one inte-

grates. The super-Hamiltonian (the 00 component of Ein-

stein’s equations) both encodes invariance under time

reparametrizations and generates the dynamics (time

evolution) of the system. Symmetry and dynamics are

thus entangled. Canonical quantization follows by pro-

moting the first-class constraints Hα and H to oper-

ators acting on a Hilbert space of wave-functionals Ψ.

Quantum dynamics is then fully specified by the equa-

tions ĤαΨ= 0 and the Wheeler–DeWitt equation

Ĥ Ψ= 0. (5)

In a fully background-independent theory, both Ĥα

and Ĥ are written in terms of the canonical variables as-

sociated with the fundamental degrees of freedom (met-

ric and matter) of the system. These expressions are non-

linear and, in practice, it is extremely difficult to solve the

constraint equations and construct the physical Hilbert

space. Symmetry reduction (at the classical level) to the

flat, homogeneous and isotropic Friedmann–Lemaître–

Robertson–Walker (FLRW) metric gµν = (−1, a2(t ), a2(t ),

a2(t )) greatly simplifies the problem. The momentum

constraint is composed only of spatial derivatives and

it vanishes identically. After integrating over the spatial

volume (formally divergent but regularizable), the super-

Hamiltonian in the presence of a matter scalar field φ

with potential V reads

H = 1

2a3

[

−
a2p2

(a)

6κ2
+Π

2
φ

]

+a3

[

V (φ)− 3

κ2

K

a2

]

, (6)

where p(a) =−6aȧ/N and Πφ = a3φ̇/N are the momenta

conjugate to a and φ, respecively,κ2 = 8πG, and K = 0,±1

is the curvature of spatial slices. The constraint H = 0 is

nothing but the first Friedmann equation

H2 = κ2

3

[

φ̇2

2
+V (φ)

]

− K

a2
. (7)

The other classical equation of motion is that for the

scalar field,

φ̈+3Hφ̇+V,φ(φ) = 0. (8)

Quantizing expression (6) and promoting a and φ

to multiplicative operators and the momenta to deriva-

tive operators p̂(a) := −i∂a and Π̂φ := −i∂φ, one obtains

Ĥ Ψ[N ,φ]= 0, where

Ĥ = e−3N

2

[

κ2

6

∂2

∂N 2
− ∂2

∂φ2
+2e6N V (φ)− 6K

κ2
e4N

]

(9)

and N = ln a is the number of e-foldings. This equation

may not necessarily be regarded as fundamental.1 How-

ever, it gives the correct result in the semi-classical limit,

and one can assume it as an effective description of the

quantum universe in this regime.

During inflation, the scalar field varies very slowly

and its kinetic term is negligible with respect to the po-

tential (slow-roll regime); at the quantum level, it corre-

sponds to dropping the ∂2
φ term in Eq. (9). Assuming a

1 Apart from the issue of symmetry reduction, the actual quan-

tization of the putative full theory can lead to an altogether

different expression; LQG is an example. Also, canonical quan-

tum gravity may be embedded in a more general field-theory

approach such as group field theory [1]. The wave-function Ψ

is promoted to a field and the Wheeler–DeWitt equation (5)

receives non-linear corrections. Linearizing, one gets an effec-

tive Hamiltonian which can be considered also at the level of

mini-superspace [25].
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quadratic potential V (φ) = 1
2

m2φ2, from the Friedmann

equation (7) it follows that

6H2

κ2
≈ m2φ2 . (10)

Thus, the energy scale of inflation sets what shall later

play the role of quantum correction.

2.1.2 Perturbations

When inhomogeneities are switched on, the FLRW mini-

superspace framework breaks down and one should con-

sider the full Dirac Hamiltonian (4). Since the super-

momentum and super-Hamiltonian constraints are non-

linear in the canonical variables, the problem quickly be-

comes intractable unless one resorts to some approxima-

tions. Inflationary inhomogeneous fluctuations are very

small, so linear perturbation theory is sufficient to ob-

tain the spectra. The matter scalar is decomposed into a

homogeneous background (representing the vacuum ex-

pectation value of the field) and a fluctuation, φ(t ,x) =
φ(t )+δφ(t ,x). In this section we ignore the metric back-

reaction δgµν, in which case the scalar is regarded as a

“test” field. In the standard cosmological model, backre-

action does not affect the power spectrum at lowest or-

der in perturbation theory and in the slow-roll trunca-

tion. This suffices for our purposes also in WDW quan-

tum cosmology. (However, we shall include backreaction

in the LQC case.) The scalar perturbation is decomposed

into Fourier modes,

δφ(t ,x)=
∑

k

δφk (t )ei k·x, (11)

where we assumed spatial slices to be compact (K = 1)

and the Fourier mode depends only on the modulus k =
|k|. Replacing φ(t ) with φ(t ,x) in the WDW equation (9),

the mini-superspace is extended to include also the in-

finity of modes δφk . The wave-function Ψ[N ,φ, {δφk }k ]

can be actually factorized as a background part times the

rest, Ψ[N ,φ, {δφk }k ] =Ψ0[N ,φ]
∏

k>0Ψk [N ,φ,δφk ]. In

doing so, one drops self-interaction terms which are

consistently negligible in first-order perturbation theory.

Eventually, one obtains [26, 27]

e−3N

2

[

κ2

6

∂2

∂N 2
−

∂2

∂δφ2
k

+e6N
6H2

κ2

+
(

e6N m2 +e4N k2
)

δφ2
k

]

ψk [N ,δφk ]≈ 0, (12)

where ψk [N ,δφk ] = Ψ0[N ,φ]Ψk [N ,φ,δφk ] and the φ

dependence is omitted because we used the slow-roll ap-

proximation (10) to express the background potential in

terms of the Hubble parameter.

Noting that N and δφk correspond, respectively, to

slow- and fast-evolving variables, at this point one can

make a Born–Oppenheimer approximation on the solu-

tion [2, 28]. The latter is written as

ψk [N ,δφk ]= exp[i S(N ,δφk )] (13)

and the functional S is expanded in m2
Pl

= 3/(2πℓ2
Pl

) =
12/κ2: S = m2

Pl
S0 +S1 +m−2

Pl
S2 + . . . . Plugging the Ansatz

(13) into Eq. (12) and expanding, the O(m4
Pl

) and O(m2
Pl

)

terms imply S0 =±e3N H/6, while at the next two orders

one finds two equations for the wave-functions

ψ(0)
k

[N ,δφk ] := A(N )ei S1(N ,δφk ) , (14)

ψ(1)
k

[N ,δφk ] := B(N )ψ(0)
k

[N ,δφk ]ei m−2
Pl

S2(N ,δφk ), (15)

where A and B are chosen to match the amplitudes in the

WKB approximation.

2.1.3 Observables

The wave-functions ψ(0)
k

and ψ(1)
k

have been computed

semi-analytically in [29, 30], to which we refer the reader

for details. From the explicit solutions, one can calculate

the two-point correlation function

P (n)
φ (k) := 〈ψ(n)

k
||δφk |2|ψ(n)

k
〉 (16)

of the scalar perturbation order by order. This quantity

is directly related to the imprint of inhomogeneous fluc-

tuations in the cosmic microwave background. However,

only perturbations which left the comoving Hubble hori-

zon (aH)−1 =: k−1
∗ and later reentered it can be observed

in the sky. Therefore, the actual cosmological observable

is Eq. (16) in the long wave-length limit k ≪ k∗, then eval-

uated at k = k∗. This is the n-th order power spectrum

P
(n)
s (k) := k3

2π2
P (n)
φ

(k ≪ k∗)
∣

∣

k=k∗
. (17)

The lowest-order result coincides with the standard one,

P
(0)
s = κ2

2

1

ǫ

(

H

2π

)2

, (18)

where

ǫ :=− Ḣ

H2
= κ2

2

φ̇2

H2
(19)

is the first slow-roll parameter. Since both H and ǫ are

approximately constant during inflation, the spectrum

(which we sometimes call “classical” because of the ab-

sence of quantum-gravity corrections) is almost scale in-

variant.
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The next-to-lowest-order expression is the standard

one times a quantum correction [29]:

Ps(k) ≈P
(1)
s (k) =P

(0)
s (k)C 2

k , (20)

where

C 2
k ≈

(

1− 43.56

k3

H2

m2
Pl

)−3 (

1− 189.18

k3

H2

m2
Pl

)2

(21a)

= 1− 247.68

k3

H2

m2
Pl

+ 1

k6
O

(

H4

m4
Pl

)

≈ 1−δWDW(k)+O(δ2
WDW) , (21b)

and we dubbed the leading Wheeler–DeWitt quantum

correction

δWDW(k) := 103

k3
(ℓPlH)2 . (22)

Ck → 1 in the small-scale limit (k → ∞), while at large

scales (k ≪ k∗) the quantum-corrected power spectrum

acquires a mild scale dependence which makes the sig-

nal suppressed with respect to the standard result. A

similar suppression of the spectrum happens also in

other models where geometry is quantized, such as non-

commutative and string inflation [31–34]. At first, it might

seem counter-intuitive that quantum gravity affects large

scales more than small scales. However, large-scale per-

turbations left the horizon before (and hence reentered

after) smaller-scale fluctuations, and they were longer

exposed to high-energy and high-curvature effects. The

approximation scheme used to derive Eq. (21a) breaks

down in the limit Ck → 0 and the critical k at which that

happens should not be taken as a physical threshold.

From the power spectrum, one can compute the

scalar spectral index

ns −1 := d lnPs

d lnk
, (23)

which generalizes the definition of an exactly power-

law-type spectrum Ps ∼ kns−1. To calculate this, we no-

tice that (from aH = k at horizon crossing) d/d ln k ≈
d/(Hd t ) and we recall the background relations, stem-

ming from the equations of motion,

ǫ̇= 2Hǫ(ǫ−η) , η̇= H(ǫη−ξ2) , (24)

where

η :=− φ̈

Hφ̇
, ξ2 := 1

H2

(

φ̈

φ̇

).

=
...
φ

H2φ̇
−η2 , (25)

are the second and third slow-roll parameter, respec-

tively. Since H ≈ const, one gets

dδWDW

d lnk
≈−3δWDW (26)

and

ns −1 ≈ 2η−4ǫ+3δWDW , (27)

where we have dropped higher-order terms in the com-

bined δWDW/slow-roll expansion. Positivity of the quan-

tum correction in Eq. (27) ensures suppression of power

at low wavenumbers.

The next slow-roll observable is the running of the

spectral index:

αs := dns

d lnk
. (28)

Combined with Eqs. (26) and (27), it leads to

αs ≈ 2
(

5ǫη−4ǫ2 −ξ2
)

−9δWDW . (29)

The scalar power spectrum expanded to all orders in

the perturbation wavenumber about a pivot scale k0 is

lnPs(k) = lnPs(k0)+ [ns(k0)−1]x + αs(k0)

2
x2

+
∞
∑

m=3

α(m)
s (k0)

m!
xm , (30)

where x := ln(k/k0). As the order of the observables

α(m)
s := dm−2αs

(d lnk)m−2
≈O(ǫm )− (−3)mδWDW (31)

increases, the classical part becomes smaller and smaller

but the leading-order quantum correction survives. At

some order m, the quantum correction will dominate

over the standard part. Taking (31) into account, Eq. (30)

can be recast as

lnPs(k) ≈ lnP
(0)
s (k)+δWDW(k0)

[

1−
(

k0

k

)3]

. (32)

2.2 Experimental bounds

Equation (1) is written in units where k is dimensionless.

In fact, one should make the replacement k → k/kmin,

where kmin ∼ 1.4× 10−4 Mpc−1 is the largest observable

scale. Here we used the fact that comoving wavenum-

bers and multipoles are approximately related by k ≈
ℓ/τ0, where τ0 ≈ 14.4Gpc is the comoving particle hori-

zon today, and that the lowest early-universe contribu-

tion to the CMB spectrum is the quadrupole ℓ = 2. One

can reexpress δWDW in terms of spherical multipoles, and

k/kmin = ℓ/ℓmin = ℓ/2. A more generous estimate for

the quantum correction will stem by replacing kmin by

the pivot scale k0 ≫ kmin, which we adopt from now on:

k → k/k0.
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The WMAP7 mean for the scalar amplitude in the ab-

sence of tensor signal is Ps(k0) = (2.43± 0.11)× 10−9 at

k0 = 0.002Mpc−1 and 68% confidence level (C.L.) [35],

where the pivot scale k0 corresponds to a CMB multi-

pole ℓ0 ≈ 29. Equation (18) and the inflationary condi-

tion ǫ< 1 yield the upper bound

(ℓPlH) < 9×10−5 , (33)

as anticipated in Eq. (1). The bound can be recast for

the Hubble parameter alone, H < 3.2 × 1015 GeV, or,

via the classical equation of motion (7) in the slow-roll

approximation, for the inflaton potential, V 1/4 < 6.8 ×
1016 GeV. In particular, the WDW quantum correction is

constrained to be

δWDW(k0) < 7.9×10−6 . (34)

With kmin instead of k0 the quantum correction is further

suppressed, δWDW(k0) < 2.6×10−9.

Even taking the upper bound ℓPlH = 10−4, δWDW =
10−5, quantum corrections are too small to be detected.

Their dependence on the inflationary energy scale is cru-

cial for this result. Another reason is that at large scales

cosmic variance is the leading source of error. The latter

is a manifestation of the failure of the ergodic theorem

for the discrete CMB multipole spectrum. For the power

spectrum Ps(ℓ), cosmic variance is given by [36, 37]

VarPs
(ℓ) = 2

2ℓ+1
P

2
s (ℓ) . (35)

Quantum-gravity corrections should be compared with

the error bars due to cosmic variance with respect to the

classical spectrum P
(0)
s (ℓ). The latter, Eq. (30), is deter-

mined up to the normalization Ps(ℓ0), so that the region

in the (ℓ,Ps(ℓ)/Ps(ℓ0)) plane affected by cosmic vari-

ance is roughly delimited by the two curves

P
(0)
s (ℓ)±

√

Var
P

(0)
s

(ℓ)

P
(0)
s (ℓ0)

=
(

1±
√

2

2ℓ+1

)

P
(0)
s (ℓ)

P
(0)
s (ℓ0)

, (36)

where we take the classical spectrum as reference. The

WDW-corrected spectrum is given by Eq. (32). In the ab-

sence of tensor modes and running, the WMAP+BAO+H0

dataset (combination of WMAP7 data and observations

of baryon acoustic oscillations and the Hubble expan-

sion) yields a scalar spectral index ns(k0) = 0.963±0.012

at k0 = 0.002Mpc−1 and 68% C.L. [38]. This number can

change depending on the priors, but not much. Classi-

cally, this corresponds to slow-roll parameters at most of

order ǫ ∼ O(10−2). Therefore, the standard spectrum in

Eq. (32) can be approximated by lnP
(0)
s (k) ≈ lnPs(k0)+

[ns(k0)−1]x + 1
2
αs(k0)x2. To plot the WDW spectrum, we
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Figure 1 Log-linear plot of the Wheeler–DeWitt primordial
scalar spectrum Ps(ℓ) for a quadratic inflaton potential,
with ǫV (k0) = 0.009 and for the pivot wavenumber k0 =
0.002 Mpc−1, corresponding to ℓ0 = 29. The shaded region,
delimited by the two curves (36), is affected by cosmic vari-
ance. The inset shows the negligible difference between the
standard “classical” spectrum (dashed line) and the spec-
trum with Wheeler–DeWitt quantum corrections (solid line), at
2< ℓ< 2.5.

only need to plug in values for the scalar index and its

running. First, we recast the observables in terms of a set

of slow-roll parameters dependent on the field potential

(e.g., [5]):

ǫV := 1

2κ2

(

V,φ

V

)2

, ηV := 1

κ2

V,φφ

V
, ξ2

V :=
V,φV,φφφ

κ4V 2
.

(37)

The scalar index (27) and its running (29) become

ns −1 = −6ǫV +2ηV +3δWDW , (38)

αs = −24ǫ2
V +16ǫV ηV −2ξ2

V −9δWDW . (39)

For a quadratic potential V (φ) ∝φ2,

ǫV = 2

κ2φ2
, ηV = ǫV , ξ2

V = 0. (40)

This allows one to reduce the slow-roll parameters to just

one. A realistic theoretical value for ǫV at the pivot scale

is ǫV (k0) = 0.009.

As shown in Fig. 1, WDW quantum corrections are ex-

tremely small even in the most generous estimate, and

they are completely drowned by cosmic variance.
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3 Loop quantum cosmology and
observations

3.1 The model with inverse-volume corrections

3.1.1 Homogeneous background

Loop quantum gravity is based upon a first-order for-

mulation of gravitational degrees of freedom in terms of

the spatial densitized triad field Eα
i

and the Ashtekar–

Barbero connection Ai
α, where i = 1,2,3 is an internal

index in the su(2) algebra. While the connection is not

quantized into a well-defined operator, its SU (2)-valued

holonomy along an edge (with representation defined

by the edge spin label je ) is a sensible operator. Thus,

the basic quantities to be quantized are fluxes (integrals

of the triad on spatial surfaces) and holonomies. In a

(quasi-)FLRW universe, the densitized triad and connec-

tion both reduce to one non-trivial component, Eα
i

=
pδα

i
and Ai

α = cδi
α, where p = a2, c = γȧ, and ele-

mentary edge lengths are all equal to some common

value L = al0. Then, fluxes reduce to F = l 2
0 p = L2 and

holonomies along an edge e of comoving length l0 are

he = exp(l0τi c) = cos(l0c/2) + 2τi sin(l0c/2), where τi =
iσi /2 are Pauli matrices.

We point out that in an exactly FLRW background the

universe is perfectly homogeneous and there is no mean-

ingful way to subdivide it into small cells of proper size

L. Thus, the comoving scale l0 is actually arbitrary and

corresponds to the size V
1/3

0 of the fiducial volume in

which the Hamiltonian constraint is defined. In this con-

text, inverse-volume corrections depend on an unphysi-

cal quantity and should be removed, for instance regard-

ing V0 as a regulator and taking the limit V0 → ∞. This

situation, however, is only a mathematical artifact of the

purely homogeneous background, which is not a realis-

tic model of Nature. The full theory does include these

corrections.

On the other hand, in the presence of inhomogeneities

the lattice picture makes sense (because sub-volumes

can be distinguished from one another) and fluxes and

holonomies can be defined on each individual cell, not

on the overall fiducial volume. The linear scale L is re-

lated to the quantum state via its labels je and, depend-

ing on what spin numbers are realized, it does not need

to be exactly the Planck length. Instead of using the je

and their complicated dynamics (presently not under

full control) it is more convenient to adopt L as a phe-

nomenological parameter. Effective quantum dynamics

is then expected to have the cells vary with time. The free-

dom to choose a global clock in a quasi-homogeneous

scenario allows us to pick, e.g., the scale factor a as the

time variable, and to regard L = L(a) as time dependent.

This is the so-called lattice-refinement picture [8, 39, 40].

However unsatisfactory this picture may be (L still con-

tains a high degree of arbitrariness), it allows one to do

some phenomenology, with the hope to connect it with

the full theory when time is ripe.

A crucial consequence of lattice refinement is that

inverse-volume corrections are now phenomenologically

meaningful. These quantum corrections arise due to the

presence of inverse-volume expressions in the super-

Hamiltonian constraint, both in the gravity and matter

sector. Inverse volumes (i.e., inverse powers of the deter-

minant of the densitized triad) are not densely defined

operators and they must be rexpressed by the so-called

“Thiemann’s trick” in terms of holonomies and positive

volume powers, at the classical level before quantizing.

Therefore, contrary to the WDW model, also the back-

ground equations of motion (and the slow-roll parame-

ters as well) are deformed by quantum corrections. For a

matter scalar field, one has

H2 = κ2

3
α

[

φ̇2

2ν
+V (φ)

]

, (41a)

φ̈+3H

(

1−
d lnν

d ln p

)

φ̇+νV,φ = 0, (41b)

where α(a) and ν(a) are inverse-volume corrections in

the gravity and matter sector, respectively. Later we shall

be interested in the semi-classical limit where quantum

corrections are small, in which case

α(a) = 1+α0δinv(a) , ν(a)= 1+ν0δinv(a) , (42)

where α0 and ν0 are positive constants (calculable in a

pure FLRW case, arbitrary in the lattice refinement pic-

ture) and

δinv :=
[

ℓPl

L(a)

]m

∝ a−σ . (43)

Here m is an O(1) constant dependent on the quanti-

zation scheme (e.g., [40, 41]) and σ is determined by a

power-law Ansatz for the function L(a). While a natural

value is σ= 6 in pure FLRW, in lattice refinement the only

constraint is σ ≥ 0. In general, however, the background

inflates only if σ.O(1) [40].

3.1.2 Perturbations

To obtain the dynamics of inhomogeneities, we follow

the effective constraints method (see [42–47] for other ap-

proaches). The strategy of applying perturbation theory
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in the classical constraints differs from the one employed

in standard cosmology (where the action or the Einstein

equations are perturbed), although it was considered in

the past [48]. Perturbing the Ashtekar–Barbero variables,

Eα
i
= pδα

i
+δEα

i
, Ai

α = cδi
α+δAi

α, and imposing commuta-

tion relations among the perturbation components, one

works out the perturbed form of the seven first-class con-

straints: the super-Hamiltonian, the three components

of the diffeomorphism constraint, and the three com-

ponents of the Gauß constraint generating infinitesimal

su(2) gauge transformations in the internal space. To

capture loop quantum gravity effects, however, one con-

siders effective constraints Ca encoding inverse-volume

and/or holonomy corrections. For instance, the effective

Hamiltonian constraint with inverse-volume corrections

is assumed to be

C [N ] ∼
∫

d3xN [α(E)Hg +ν(E)Hπ+̺(E)H∇+HV ] ,

(44)

where N is the lapse function, Hg , Hπ, H∇ and HV

are the contributions of, respectively, gravity, the scalar

field momentum, spatial Laplacian and potential, and α,

ν and ̺ are correction functions (which depend only on

the densitized triad [41]). These functions can be taken

to be of the form 1+O(δinv) in the semi-classical limit.

Closure of the effective constraint algebra must be

imposed for consistency, {Ca ,Cb } = f c
ab

(A,E)Cc . The ab-

sence of anomalies is guaranteed by introducing coun-

terterms in the algebra (and, hence, in the perturbed

equations of motion). After some early works based on

toy models where the constraint algebra was not closed

explicitly [49–55], the full set of constraints with small

inverse-volume corrections was derived for vector [56],

tensor [57], and scalar modes [58, 59]. The gravitational

wave spectrum has been studied in [60, 61], while the

scalar spectrum and the full set of linear-order cosmo-

logical observables were found in [40]. The observability

of and experimental constraints on the quantum correc-

tions were finally considered in [41, 62, 63].

In the presence of small inverse-volume corrections,

after anomaly cancellation the system of perturbed equa-

tions for scalar and tensor modes (vector modes are

damped during inflation) reduces exactly to two equa-

tions:

u′′−
(

s2
inv∆+

z ′′
inv

zinv

)

u = 0, (45a)

w ′′−
(

α2
∆+

ã′′
inv

ãinv

)

w = 0, (45b)

where primes denote derivatives with respect to confor-

mal time (′ = ∂τ = a∂t ), u = zR is the Mukhanov–Sasaki

variable encoding scalar perturbations,

zinv := φ′

H

[

1+
(α0

2
−ν0

)

δinv

]

(45c)

is a background function (quantum corrected as well), R

is the gauge-invariant comoving curvature perturbation

(its LQC expression can be found in [40, 59]),

s2
inv := 1+χ(α0,ν0,σ)δinv , (45d)

χ := σν0

3

(σ

6
+1

)

+ α0

2

(

5− σ

3

)

(45e)

is the square propagation speed of the perturbation (dis-

cussed in [40] and positive in all reasonable scenarios), ∆

is the spatial Laplacian, w = ãinvh is the gauge-invariant

variable associated with both tensor modes, and

ãinv := a
(

1− α0

2
δinv

)

. (45f)

The parameter space is extended to include the coef-

ficients appearing in Eqs. (42) and (43). However, self-

consistency of the constraint algebra imposes a condi-

tion among α0, ν0 and σ, thus making one of them de-

pendent [40]:

α0

(σ

6
−1

)

−ν0

(σ

6
+1

)(σ

3
−1

)

= 0. (46)

The fact that scalar perturbations reduce to just one de-

gree of freedom u obeying a closed equation is related

to conservation of R at large scales [40]. Failure of clos-

ing the algebra exactly would immediately spoil also this

property.

The somewhat unexpected possibility that LQC quan-

tum corrections be large even during inflation is a reflec-

tion of the way these corrections enter the physics: The

structure of spacetime itself is deformed by quantum ef-

fects, via the effective constraints. The theory is diffeo-

morphism invariant, but not with respect to the stan-

dard classical transformations. Gauge transformations

belonging to a deformed algebra no longer correspond

to ordinary coordinate transformations on a manifold.

Thus, in order to take the new gauge structure into ac-

count one should rely only on gauge-invariant perturba-

tions. This philosophy (first quantize the classical system,

then cast it in gauge-invariant variables) is embodied in

the Mukhanov equations (45).

One might wonder whether one would get the same

results by fixing the gauge before quantizing. However,

gauge fixing and quantization do not commute because

the latter deeply affects the very notion of gauge in-

variance. Whenever gauge-ready variables can be con-

structed after quantizing, the gauge-invariant approach

must be preferred. The price to pay in doing otherwise is,
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in the least conservative interpretation, to produce un-

physical perturbative modes (this may happen also in

standard cosmology, due to an illegal choice of gauge

[64]) or, more conservatively, to obtain an incomplete

version of the perturbed quantum equations which, at

best, can be interpreted as a physically different quan-

tum system. Also ignoring backreaction of the metric and

considering just a perturbed test scalar is undesirable,

contrary to the WDW case, because backreaction con-

tributes to the actual form of quantum gauge transforma-

tions and hence of the gauge-invariant variables. Again,

this can lead to an incomplete treatment in partial dis-

agreement with the full gauge-invariant equations.

3.1.3 Observables

The scalar spectrum is the expectation value of R over a

momentum ensemble at large scales, evaluated at hori-

zon crossing:

Ps ≡
k3

2π2z2
inv

〈

|uk≪k∗ |
2
〉

∣

∣

∣

k=k∗
. (47)

Solving the Mukhanov equation (45a) asymptotically and

plugging the solution in the above formula, one obtains

the LQC version of Eq. (20) with

C 2
k ≈ 1+γsδinv , γs := ν0

(σ

6
+1

)

+ σα0

2ǫ
− χ

σ+1
. (48)

In the limit case σ → 0, the quantum correction is con-

stant and the only change with respect to the classical

case is the normalization of the spectrum. Then, γs =
ν0 − 5α0/2 could be of either sign. If σ 6= 0, there is a

large-scale enhancement of power because δinv ∼ k−σ at

horizon crossing and γs > 0 due to the dominating term

∝ ǫ−1. Similarly, the scalar index is

ns−1 ≈ 2η−4ǫ+σγnsδinv , γns :=α0−2ν0+
χ

σ+1
, (49)

while the scalar running reads

αs ≈ 2(5ǫη−4ǫ2 −ξ2)+σ(4ǫ̃−σγns )δinv , (50)

where ǫ̃ :=α0(σ/2+2ǫ−η)+ν0(σ/6−1)ǫ.

Due to the possibly large size of the quantum correc-

tions, it will be useful to complete the set of first-order

observables and include also the tensor sector. The grav-

itational spectrum is

P t := 32G

π

k3

ã2
inv

〈

|wk≪k∗ |
2
〉∣

∣

k=k∗
, (51)

leading to [40, 61]

P t ≈ 64πG

(

H

2π

)2
(

1+γtδinv

)

, γt := σ−1

σ+1
α0 . (52)

The tensor index is

nt := d lnP t

d lnk
≈−2ǫ−σγtδinv . (53)

Finally, the tensor-to-scalar ratio is

r := P t

Ps
≈ 16ǫ[1+ (γt −γs)δinv] , (54)

which yields the consistency relation

r =−8{nt + [nt(γt −γs)+σγt]δinv} , (55)

to be plugged into numerical codes in the place of the

classical one r =−8nt.

3.2 Experimental bounds

Because of the delicate interplay between quantum cor-

rections and the requirement of intersecting the allowed

windows in the parameter space in a common consis-

tent region, the possibility clearly arises that this model

of loop quantum cosmology be falsifiable by near-future

observations. The present status at least provides strin-

gent bounds on quantum corrections.

As in section 2.2, one rewrites the observables in

terms of the potential-dependent slow-roll parameters

(37); the resulting lengthy expressions can be found in

[41]. Since

α(m)
s (k0) ≈ (−1)mσm−1 fsδinv(k0) , (56)

where

fs := σ[3α0(13σ−3)+ν0σ(6+11σ)]

18(σ+1)
, (57)

the scalar spectrum (30) becomes

Ps(k) ≈ Ps(k0)exp

{

[ns(k0)−1]x + αs(k0)

2
x2

+ fsδinv(k0)

[

x

(

1− 1

2
σx

)

+ 1

σ
(e−σx −1)

]}

. (58)

This is the expression to be used in numerical analyses

and when comparing the LQC signal with cosmic vari-

ance.

Before doing so, we notice the existence of a theo-

retical upper bound on the quantum correction δLQC :=
α0δinv. (Equation (46) allows to remove ν0 from parame-

ter space, except in the case σ = 3 which can be treated
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separately.) For the validity of the linear expansion of the

perturbation formulæ where the O(δinv) truncation has

been systematically implemented, we require that

δLQC(k) = δLQC(k0)

(

k0

k

)σ

= δLQC(k0)

(

ℓ0

ℓ

)σ

< 1 (59)

for all wavenumbers relevant to the CMB anisotropies.

For the pivot scale ℓ0 = 29, the quadrupole ℓ = 2 gives

the bound δLQC(k0) < δmax
LQC = 14.5−σ, shown in Table 1 for

some choices of σ.

To illustrate some of the possibilities CMB data ma-

nipulations can offer to constrain quantum gravity mod-

els with free parameters, we recall the likelihood analysis

carried out in [41, 62] for the quadratic potential (among

others). The Cosmological Monte Carlo (COSMOMC) code

[65] was run with the data of WMAP7 [38] combined with

large-scale structure (LSS) [66] (including BAO), HST [67],

Supernovae type Ia (SN Ia) [68], and Big Bang Nucleosyn-

thesis (BBN) [69], assuming a ΛCDM model. Figure 2

shows an example of likelihood profile for σ = 3/2 in

the plane (ǫV ,δLQC). Both parameters are evaluated at

the pivot scale k0 = 0.002 Mpc−1. Obviously, negligible

or exactly vanishing quantum corrections are compati-

ble with observations. On the other hand, from the 95%

confidence-level contour one sees that quantum correc-

tions above δLQC(k0) & 1.7× 10−3 can be excluded. This

and the upper bounds for various σ’s are reported in Ta-

ble 1. Except for extreme values σ≪ 1, the observational

upper bounds are consistent with the theoretical prior,

thus verifying an important internal check of the model.

Comparing the table entries with the upper bound for

the WDW quantum correction, Eq. (34), we see that LQC

inverse-volume corrections can be orders of magnitude

larger when σ . 2. The scalar power spectrum for vari-

ous values of σ is shown in Fig. 3 against cosmic variance.

When σ . 1, quantum corrections are strong enough to

overcome the error from cosmic variance. Whether these

parameter values are realistic in a more complete theory

remains, however, to be seen.

3.3 The model with holonomy corrections

Another type of quantum effect in the dynamics, holon-

omy corrections, is realized in a highly non-linear fash-

ion (by construction, from the exponentiation he of cur-

vature components) and it becomes important when the

Hubble radius is about the size of the lattice scale, H−1 ∼
L. From the classical Friedmann equation H2 = 8πGρ/3,

this regime heuristically defines the critical energy den-

ε
V
 (k

0
)

δ 
(k

0)
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Figure 2 Two-dimensional marginalized distribution for the
inverse-volume LQC quantum correction δLQC (k0) and the
slow-roll parameter ǫV (k0) with the pivot k0 = 0.002 Mpc−1

for σ = 1.5 and a quadratic potential, constrained by the joint
data analysis of WMAP7, LSS (including BAO), HST, SN Ia,
and BBN. The internal and external lines correspond to the
68% and 95% confidence level, respectively [41].
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Figure 3 Log-linear plot of the LQC primordial scalar spec-
trum Ps(ℓ) with inverse-volume quantum corrections for a
quadratic inflaton potential, with ǫV (k0) = 0.009 and for the
pivot wavenumber k0 = 0.002 Mpc−1, corresponding to ℓ0 =
29. The classical case is represented by the dotted line, while
solid curves correspond to σ= 1,1.5,2 (decreasing thickness).
The shaded region is affected by cosmic variance.
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Table 1 Theoretical priors on the upper bound δmax
LQC and 95% C.L. upper

limits of δLQC = α0δinv constrained by observations for a quadratic poten-
tial with different values of σ and at the pivot scale k0 = 0.002Mpc−1 [41].
The likelihood analysis is omitted for σ = 6 since the signal is below the
cosmic variance threshold already when σ = 2. For σ = 3, the parameter
δLQC = ν0δinv has been used.

σ 0.5 1 1.5 2 3 6

δmax
LQC 0.26 6.9×10−2 1.8×10−2 4.7×10−3 3.2×10−4 1.0×10−7

δLQC 0.27 3.5×10−2 1.7×10−3 6.8×10−5 4.3×10−7 –

sity (2) and the holonomy correction

δhol := ρ

ρQG

. (60)

The homogeneous background is modified accordingly.

While Eq. (41b) remains the same, the Friedmann equa-

tion (41a) is further corrected as

H2 = κ2

3
ρ(α−δhol) . (61)

Crucially, the Hubble parameter is not simply H = ȧ/a

but the “polymeric” expression

H =
sin[2γL(ȧ/a)]

2γL
. (62)

Even in a perfectly homogeneous background, ρQG is

not constant except for a specific choice of quantum

ambiguity parameters, such that the elementary closed-

holonomy area coincides with the Planck area L2 ∝ ℓ2
Pl

(“improved dynamics” [5,7,8]). For this choice, and ignor-

ing or removing inverse-volume corrections (α = 1), the

right-hand side of Eq. (61) vanishes at ρ = ρQG, where the

Hubble parameter H → 0 and the big-bang singularity of

classical cosmology is replaced by a bounce.

There are indications that holonomy corrections are

not significant in the energy regime of inflation, but

only at near-Planckian densities [70]. This is suggested

by effective equations for certain matter contents with a

dominating kinetic energy [71, 72]. Another argument is

the following [41]. Inverse-volume and holonomy correc-

tions are related to each other by

δinv =
(

8πG

3
ρQGℓ

2
Pl

) m
2

∝
(

ρQG

ρPl

) m
2

=
(

ρ

ρPl

δ−1
hol

) m
2

. (63)

Inverse-volume corrections are sizable when the quan-

tum-gravity density (not the inflationary one) is close

to the Planck density. They can be still large at small

energy densities, where however holonomy corrections

are small. Thus, as the energy density decreases in an

expanding universe there is a competition of the rela-

tive size of inverse-volume and holonomy corrections,

the latter falling to small values when the former can

be still large. For instance, in the inflationary regime (1)

and for the typical value m = 4 Eq. (63) yields δhol ∼
10−8/

√

δinv, and having small holonomy corrections of

size δhol < 10−6 would require inverse-volume correc-

tions larger than δinv > 10−4.

This argument is only heuristic and a full cosmolog-

ical analysis is required to settle the issue. This is now

at hand because perturbation theory has been worked

out already. In fact, the closure of the constraint alge-

bra has been verified also in the presence of holonomy

corrections for vector and tensor modes [56, 57, 73], as

well as in the scalar sector [74–76]. Just as in the case

of inverse-volume corrections, the constraint algebra is

deformed by quantum effects and gauge transforma-

tions do not correspond to standard diffeomorphisms.

Notice that the lattice refinement interpretation also af-

fects holonomy corrections, since they feature the same

phenomenological parameter L as inverse-volume cor-

rections. The Mukhanov equations for scalar and tensor

modes are [57, 74, 76]

u′′−
(

s2
hol∆+

z ′′
hol

zhol

)

u = 0, (64a)

w ′′−
(

s2
hol∆+

ã′′
hol

ãhol

)

w = 0, (64b)

where the effective propagation speed and background

funcion zhol and ãhol read

s2
hol := cos[2γL(ȧ/a)] = 1−2δhol , (64c)

zhol := φ′

H
, ãhol := a

|shol|
, (64d)

and H is given by Eq. (62). These expressions should be

compared with their inverse-volume counterparts (45).
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The propagation speed is never super-luminal (|s2
hol

| ≤ 1),

but it does change sign near the bounce. This marks a

possible instability, or even a change of effective space-

time signature at near-Planckian scales [77], in a super-

inflationary early era. The physical significance of these

features is still under inspection.

Cosmological observational signatures of holonomy

effects have been studied for the tensor sector alone

[60, 78–81]. For this reason, we do not yet have a de-

tailed comparison with experiments as in the WDW and

inverse-volume LQC cases. With respect to the inverse-

volume case, the analysis of the spectra is complicated

by the analytic form of holonomy corrections. In general,

tensor modes are amplified during the bounce. However,

after the bounce these modes are enhanced by inflation-

ary expansion later than in the classical case, and the

spectrum is thus suppressed at low multipoles, as [80, 81]

P t ∝ k2 k → 0, (65)

on a de Sitter background. It also shows an oscilla-

tory pattern, progressively damped towards small scales.

The gravitational spectrum is notoriously difficult to

detect by itself, and information from the scalar spec-

trum (which, from Eq. (64a), is expected to behave sim-

ilarly to the tensor one) will be needed, also to deter-

mine whether the large-scale suppression is beyond the

cosmic-variance noise and therefore observable.

4 Non-Gaussianity

The effect of quantum corrections goes beyond linear

perturbation theory and higher-order observables can

be calculated. As the perturbative level increases, the

statistics of inhomogeneous fluctuations deviates from

the Gaussian one and odd-order correlation functions ac-

quire non-vanishing values. In particular, the bispectrum

(three-point correlation function of the curvature pertur-

bation) can be constrained by observations.

To the best of our knowledge, there is only one work

on inflationary non-Gaussianity in loop quantum cos-

mology with inverse-volume corrections [82], and none

in the WDW case. A detailed calculation of the momentum-

dependent bispectrum shows that no appreciable LQC

signal can be detected. We can in fact reach the same

conclusion here by a model-independent shortcut, valid

only in the so-called squeezed limit (constant non-linear

parameter) but beyond perturbation theory and both for

LQC and WDW quantum cosmology.

Let ζ be the curvature perturbation on uniform den-

sity hypersurfaces. The latter is a gauge-invariant quan-

tity proportional to the comoving curvature perturbation

R in standard inflation; their relation in the presence of

inverse-volume corrections has not been studied yet, but

what follows is fairly independent on this detail. In mo-

mentum space, the three-point correlation function of ζ

is

〈

ζk1
ζk2

ζk3

〉

=: (2π)3δ(k1 +k2 +k3)Bζ(k1,k2,k3) , (66)

where Bζ, called bispectrum, is defined by

Bζ(k1,k2,k3) = 6

5
fNL(k1,k2,k3)

∑

α<β
Pζ(kα)Pζ(kβ) , (67)

where α,β = 1,2,3, fNL is called non-linear parameter

and is momentum dependent in general, and Pζ is the

spectrum of ζ. The form of the non-linear parameter de-

pends on the model of primordial perturbations. In the

simplest case [83–85], one decomposes the non-linear

curvature perturbation ζNL(x) into a Gaussian linear part

ζ and a non-linear part:

ζNL = ζ+ζN = ζ+ 3

5
f local

NL

(

ζ2 −〈ζ2〉
)

, (68)

where the non-linear parameter f local
NL

is constant. By def-

inition, 〈ζNL〉 = 〈ζ〉 = 0. Then, a direct calculation of the

bispectrum shows that

fNL(k1,k2,k3) = f local
NL . (69)

In fact, the Fourier transform of the non-linear part is

ζN
k = 3

5
f local

NL

[

−(2π)3δ(k)〈ζ2〉+
∫

d3p

(2π)3
ζpζp−k

]

. (70)

The first term stems from the fact that the auto-correlat-

ion function is x independent. Since all momenta must

not vanish at the same time, this piece can be thrown

away. The second term enters into the three-point func-

tion, which at lowest order is (e.g., [5])

〈ζNL
k1

ζNL
k2

ζNL
k3

〉 ≈ 〈ζk1
ζk2

ζN
k3
〉+ (k3 ↔ k2)+ (k3 ↔ k1)

= (2π)3δ(k1 +k2 −k3)
3

5
f local

NL 2Pζ(k1)Pζ(k2)

+(k3 ↔ k2)+ (k3 ↔ k1) , (71)

which yields Eq. (69) after comparing Eqs. (66) and (67).

The decomposition (68) is pointwise in configuration

space and for this reason it is called local model. For a

power-law scalar spectrum Ps ∝ kns−1, the local bispec-

trum reads

B local
ζ (k1,k2,k3) = 6

5
f local

NL A2
ζ

∑

α<β

1

(kαkβ)4−ns
, (72)
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where Aζ is a constant amplitude. This expression can be

converted into one with spherical multipoles.

The expression (72) peaks at the squeezed limit where

one of the edges of the triangle (k1,k2,k3) collapses [86,

87]:

k1 ≈ k2 ≫ k3 , k3 ≈ 0. (73)

Sending, e.g., k3 → 0, by conservation of momenta one

has k1 ∼−k2 and

B local
ζ (k1,k1,k3 → 0) = 12

5
f local

NL Pζ(k1)Pζ(k3) . (74)

Measuring the bispectrum in this configuration, one can

obtain an estimate of f local
NL

. In the local bispectrum,

small- and large-scale modes are coupled together.

The squeezed limit can be understood in a fairly intu-

itive way in all models where the curvature perturbation

ζ is constant at large scales [86, 88]. Split ζ into a corse-

grained and a fine-grained perturbation,

ζ(τ,x) =
∫

k<k∗

d3k

(2π)3
ζk(τ)ei k·x+

∫

k>k∗

d3k

(2π)3
ζk(τ)ei k·x

=: ζc(τ,x)+ζq(τ,x) . (75)

In the limit (73), ζk3
is larger than the Hubble horizon and

can be treated as constant in time. Then ζ(x3) ∼ ζc(x3) de-

fines a new coordinate background x′ ≈ [1+ ζc(x3)]x in-

side the horizon. In the new coordinates and up to linear

order,

ζq(x′) ≈ ζq(x)+ (x′−x) · d

dx
ζq(x)

≈ ζq(x)+ζc(x3)x · d

dx
ζq(x) . (76)

If the linear perturbation ζq(x) is Gaussian, in the squeezed

limit we have

〈ζ(x1)ζ(x2)ζ(x3)〉 ∼
〈

ζq(x′1)ζq(x′1)ζc(x3)
〉

≈
〈

ζ2
c(x3)x1 ·

d

dx1

[

ζq(x1)ζq(x2)
]

〉

≈
〈

ζ2
c(x3)

〉

c x1 ·
d

dx1

〈

ζq(x1)ζq(x2)
〉

q

= ξ
(ζ)
2 (0)

d

d ln̺
ξ

(ζ)
2 (̺) , (77)

where in the second line we exploited translation invari-

ance, in the last line we used ̺ = |x1 − x2| and ∂̺/∂x1 =
x1/̺, and we denoted with ξ

(ζ)
2 the two-point correlation

functions of ζ. Since the latter goes as ξ
(ζ)
2 ∝̺−(ns−1), one

gets

〈ζ(x1)ζ(x2)ζ(x3)〉 ≈−(ns −1)ξ
(ζ)
2 (0)ξ

(ζ)
2 (̺) . (78)

Comparing this expression with Eq. (74), we finally ob-

tain

f local
NL ≈ 5

12
(1−ns) . (79)

For spectra which are almost scale-invariant (ns − 1

small) at large scales, the level of non-Gaussianity is very

low, fNL ≪ 1. Tensor modes produce an even lower signal.

This result [86,88] is general enough to be applied both to

WDW and loop quantum cosmology, which we have seen

to be compatible with almost scale invariance. Therefore,

considering the current 95% C.L. bound on the local non-

linear parameter coming from combined CMB and large-

scale structure [89] observations, −5 < f local
NL

< 59 [38],

the non-linear parameter in the squeezed limit is small

and the quantum corrections considered here have no

appreciable impact on the bispectrum.

5 Outlook

Quantum gravitational effects modify the spectra of cos-

mological perturbations and their imprint in the cos-

mic microwave background. In this paper, we compared

two canonical approaches, the one based on the usual

Wheeler–DeWitt quantization and loop quantum cos-

mology. Wheeler–DeWitt quantum corrections are too

small to be detected, even in the most optimistic upper

bound, Eq. (34). The model therefore is not falsifiable, at

least under the assumptions made in the derivation of

the results, but at least it is compatible with what we ob-

serve.

In contrast, LQC inverse-volume corrections can be of

much greater size and produce an enhancement, rather

than suppression, of the large-scale spectra. While in

the WDW case quantum corrections change the inhomo-

geneous dynamics but leave homogeneous background

equations unmodified, in LQC the latter are deformed,

too. However, this is not the reason why LQC effects are

potentially several orders of magnitude larger than the

WDW quantization. Rather, the key ingredient is the scale

compared with the Planck energy density ρPl in the ratio

defining the quantum correction: for WDW it is the in-

flationary scale ρinfl, for LQC it is determined by the char-

acteristic discreteness scale of the semi-classical state de-

scribing the quantum universe. This effective energy den-

sity can be as large as the Planck density, ρinfl ≪ ρQG .

ρPl.

This also highlights the different origin of the obser-

vational bounds presented above. While the WDW quan-

tum correction (34) is constrained somewhat indirectly

via the usual bounds on the inflationary energy scale,
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in LQC we have some free parameters on which we

have little control theoretically, due to the formidable

(and yet unsurmounted) difficulties in explicit construc-

tions of cosmological semi-classical states in the full

theory. LQC inverse-volume corrections depend on a

phenomenological quantum-gravity scale as well as on

partly heuristic, partly quantitative arguments indicating

how to implement discrete quantum geometry in a quasi-

homogeneous cosmological setting. A multi-variate like-

lihood analysis involving all the cosmological parame-

ters, including LQC ones, is thus more adequate to the

task.

Observations constrain LQC inverse-volume quan-

tum corrections below their theoretical upper bound, but

in some instances the signal is above the threshold of cos-

mic variance. Experiments such as PLANCK or of the next

generations should then be able to reach the sensitivity

to detect a quantum gravity signal or, in its absence, place

yet more stringent constraints. In turn, pressure from ac-

tual data will stimulate the quest for a better understand-

ing of the fundamental properties of the states of the full

theory, and a greater control over parameters which, as

the discreteness scale L, are presently phenomenologi-

cal.
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