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The stability analysis of socioeconomic systems has been centered on1

answering whether perturbations in a given quantitative state will2

lead to permanent deviations from such state. However, this analy-3

sis cannot answer the question of how strong the conditions of the4

system itself can change before the system moves to a qualitatively5

different behavior. Yet, this is an important question about the6

stability of dynamical systems whose conditions are subject to con-7

stant change. We call this structural stability. Here, we introduce8

a framework to investigate the structural stability of socioeconomic9

systems formed by the network of interactions among agents com-10

peting for resources. To illustrate our framework, we investigate the11

range of conditions in a global socioeconomic system leading to a12

qualitative behavior, where all its constituent agents have a positive13

stable steady state. We demonstrate that the higher the level of14

competition for resources or the more heterogeneous the distribu-15

tion of resources is, the smaller the range of conditions compatible16

with a postive stable steady state for all agents. Additionally, we17

show that the observed global socioeconomic system is more sen-18

sitive to perturbations in the distribution than in the availability19

of resources. We believe this work provides a methodological basis20

that can be used as a staring point to answer how structurally stable21

global socioeconomic systems are.22
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1 Introduction23

The stability of socioeconomic systems is repeatedly challenged as a consequence of the24

rapidly varying environmental, socioeconomic, and technological conditions (1–3). Fi-25

nancial crisis, national bailouts, and job losses are just a few examples of instability in26

these systems (1, 3). The stability analysis of socioeconomic systems has been centered27

on understanding whether perturbations in a given quantitative state will lead to perma-28

nent deviations from such state (3–7). This analysis is known as dynamical stability (8).29

Importantly, dynamical stability has increased our understanding on the susceptibility of30

socioeconomic systems to propagate specific perturbations (3–7). However, as the quanti-31

tative state of socioeconomic systems is coevolving with the rapidly changing distribution32

and availability of resources, economists are not only interested in a particular steady33

state, but also in whether there is a familiy of quantitative states that can guarantee the34

sustainability of these systems (9–13). This indicates that a yet prevailing question about35

socioeconomic systems is how much variation can a system stand without being pushed36

out of a qualitative stable behavior (2,14,15).37

To address the above question, we aply the concept of structural stability to socioeco-38

nomic systems. We adopt a modified definition of structural stability (14, 16, 17), where39

a system is more structurally stable if it has a larger range of conditions compatible with40

a given qualitative stable state. Here, we explore the structural stability of a general41

resource-competition system by considering a qualitative behavior under which all its42

constituent agents have a positive and stable steady state. We choose a positive stable43

steady state as a potential indicator of an agent that can be self-sustained across time44

without the need of external inputs. Therefore, the question is: how big is the parameter45

space in the system compatible with this positive stable setady state? The larger the46
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range of parameter space compatible with a positive stable steady state of all agents, the47

larger the structural stability of the system will be.48

To illustrate our framework, we study the global socioeconomic system formed by the49

network of interactions among agents (countries) competing for resources such as invest-50

ment, technological innovations, and employment (represented by multinational compa-51

nies). We investigate the range of conditions compatible with the structural stability of52

such competition networks and the mechanisms modulating that range.53

2 Materials and Methods54

2.1 Competition Network55

Our global socioeconomic system is represented by the network of interactions among56

countries competing for resources. Following economic theory (9–13), we focus on three57

main resources for economic growth: private investment, technological innovations, and58

employment. We use the 50-richest multinational companies in the world as proxy for59

these resources. We acknowledge that there can be other representations of these re-60

sources that might be important or useful. The list of these companies is taken from the61

2013 Fortune Global 500 list. The total revenue of these companies is about 30% of the62

world’s gross domestic product (GDP). We consider that a country utilizes a resource63

(multinational company) only when the company has employees in that country. Note64

that we do not have quantitative data on the number of employees. This information is65

collected from each official company’s website in 2013. We focus on 150 countries with at66

least one million habitants. This dataset is provided in the Data Supplement.67

The competition dynamics of socioeconomic systems have been studied using either68

static equilibrium models (11,13) or exponential growth models (12,18,19) with no explicit69

interactions among agents. This has precluded the analysis of socioeconomic systems70
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as potential systems with nonlinear dynamics emerging from collective phenomena and71

regulated by the network of interactions among their individual agents (8, 20, 21). To72

incorporate these interactions, we propose to model the socioeconomic system as an inter-73

agent resource-competition network. To define our competition network, first we generate74

a resource-agent system composed of N agents (countries) and R resources (companies).75

This system is represented as a bipartite network made of two set of nodes, the agents76

and their resources. A binary link is drawn between an agent i and a resource k if the77

agent uses the given resource (See Fig. 1a for a graphical representation). Second, we78

transform the previously generated resource-agent system into an inter-agent resource-79

competition network. This competition network is characterized by a symmetric matrix80

β of size N ×N , called the competition matrix. The elements of the competition matrix81

βij are a function of the number of shared resources between agents (See Fig. 1b for a82

graphical representation).83

2.2 Dynamics of the competition network84

Formally, we describe the dynamics of our inter-agent resource-competition network by a85

general Lotka-Voltera model given by the following set of ordinary differential equations86

(22,23).87

dNi

dt
=

ri
Ki

Ni(Ki −
�

j

βijNj), (1)

where Ni ≥ 0 denotes the state of the agent i (e.g., the wealth of a country), ri > 0 is the88

growth rate of the agent i, and Ki > 0 is the carrying capacity of agent i. The elements89

βij are given by the values extracted from the competition matrix. By convention and90

without loss of generality, we set the intra-agent resource-competition to one (βii = 1).91

The off-diagonal elements are set to βij = µ · cij (i �= j), where cij is the number of92
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shared resources between agents i and j, and µ is the general level of global competition93

in the system (µ ≥ 0). This model description emulates current economic thinking on the94

existence of limited resources and nonlinear dynamics of socioeconomic systems (20,21).95

In the simple scenario where agents do not compete among them, i.e., when the inter-96

agent competition is set to zero (βij = 0 for i �= j), the carrying capacity alone dictates97

the steady state of the system N∗
i = Ki. Moreover, under the condition that Ki > 0,98

it can be mathematically proven that this steady state is globally stable, and that the99

growth rate of agents only modulates the velocity at which each agent reaches its own100

carrying capacity. This means that the qualitative behavior under which all agents have a101

positive and constant abundance (N∗
i > 0)—what we refer to as the positive stable steady102

state—can only be possible if the carrying capacity of all agents is also positive (Ki > 0).103

See Appendix A for mathematical details.104

In the more complex scenario where agents do compete among them for resources, the105

steady state of the system is function of both the carrying capacity and the competition106

matrix. It can be mathematically proven that if all eigenvalues of the competition ma-107

trix β are positive (they are real because this matrix is symmetric) and if there exists a108

positive steady state for all agents (N∗
i > 0), then this positive steady state is a global109

attractor in the strictly positive quadrant of the state space (24). Moreover, it can also110

be mathematically proven that for any vector of carrying capacity Ki > 0 (keeping the111

positive eigenvalue condition on the competition matrix), the dynamical system will con-112

verge to a unique equilibrium point N∗
i ≥ 0, where the state of either all or only a few of113

the agents is positive. See Appendix A for mathematical details.114

The condition of global stability (i.e., eigenvalues of the competition matrix β are all115

positive) only holds when µ is below a critical value µ̂ at which one eigenvalue of the116

competition matrix is equal to zero (see Appendix A for further details). A limitation of117
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the level of global competition µ is that it has the same units as the competition elements118

βij, and it is not possible to compare this level across different competition matrices. To119

address this problem, we recast this level by a unit-free indicator of the level of global120

competition (ρ). It is defined as ρ = λ1−1
N−1 , where N is the number of agents, and λ1 is121

the dominant eigenvalue of the competition matrix β.122

To find a positive and globally stable steady state of our system, we have to solve the123

following linear equation K = β ·N∗ under the constraint of N∗
i > 0. Importantly, not124

all vectors K lead to a positive steady state. However, if we set the vector K∗ equal to125

the leading eigenvector of the competition matrix β—what we call the structural vector126

of carrying capacity—we obtain a non-trivial solution. Indeed, following the Perron-127

Frobenius theorem, the corresponding equilibrium point of the structural vector is non-128

trivial and given by N∗
i = 1

λ1
K∗

i > 0, where λ1 is the leading eigenvalue of β.129

2.3 Structural stability of the competition network130

Following previous work looking at the structural stability of nonlinear systems (17), we131

study the structural stability of our global socioeconomic system by measuring how much132

variation the resource-competition system can stand without being pushed out of the133

positive stable steady state. We explore the range in the parameter space of carrying134

capacities that leads the system to the global stable equilibrium point of equation (1)135

under which all agents have a positive steady state (N∗
i > 0). To quantify this rage, we136

measure how big the deviations are from the structural vector compatible with a positive137

stable steady state of all agents. These deviations are quantified by η = 1−cos2(θ)
cos2(θ) , where138

θ is the angle between the structural vector K∗ and any other parameterization—vector139

K—that can be used as proxy for different conditions in the system, such as different140

availability of resources.141
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Indeed, the range of conditions compatible with our definition of positive stable steady142

state is centered on the structural vector K∗. This is demonstrated by the following143

derivation. To find a non-trivial equilibrium point N∗
i > 0, we can link the deviation η144

with the indicator of global competition ρ by satisfying the inequality η < 1−ρ
(N−1)ρ+1 (25).145

From this inequality, we can see that the lower the level of global competition ρ, the lower146

the collinearity between the structural vector and any other vector and, in turn, the wider147

the conditions for having the solution N∗
i > 0. This confirms that the structural vector148

defines the symmetry axis of the hypervolume of the range where the stable solution149

N∗
i > 0 is positive.150

3 Results151

3.1 Validation of model parameterization152

To validate our model parameterization, we investigate whether the positive and glob-153

ally stable steady state N∗
i > 0 given by the structural vector of carrying capacities is154

aligned with the competition network and whether both capture information about key155

macroeconomic indicators. Recall that the steady state defined by the structural vector156

is computed as N∗
i = 1

λ1
K∗

i > 0, where λ1 is the leading eigenvalue of β. Interestingly,157

we find a strong and positive Spearman rank correlation (r = 0.88, p < 0.001) between158

the equilibrium point and countries’ GDP (Fig. 2a). The same positive correlation is159

observed between the number of resources and the GDP of a country, suggesting that160

wealth is strongly associated with the distribution of resources in our system.161

We further test the alignment between the observed resource-competition network162

and model parameterization by generating new equilibrium points calculated using the163

structural vector of alternative competition networks extracted from randomly generated164

resource-agent systems (Appendix B). If these alternative resource-agent systems preserve,165
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in expectation, the observed distribution of resources per agent, the positive correlation166

between GDP and new equilibrium points is also preserved. In contrast, if the alternative167

resource-agent systems do not preserve the observed distribution of resources, there are168

negligible correlations between GDP and the new equilibrium points (for an example see169

Fig. 2b). These results reveal that both our competition network and parameterization170

of carrying capacities are indeed aligned and capturing important characteristics of the171

distribution and the availability of resources, respectively.172

3.2 Structural stability173

To study whether inter-agent competition increases or decreases the structural stability of174

the system, we study the effect of the global competition on the range of parameter space175

of carrying capacities leading to the positive stable steady state of all agents. We quantify176

this effect by the extent to which the deviations from the structural vector—given by the177

observed competition network—affect the fraction of agents that remain under a positive178

stable steady state (N∗
i > 0), and whether these deviations are modulated by the level of179

global competition. The larger the range of parameter space compatible with a positive180

stable steady state of all agents, the larger the structural stability of the system will be.181

We generate the deviations (range of parameters) by introducing random proportional182

perturbations to the structural vector K∗, and quantify the deviation between the struc-183

tural and the perturbed vectors of carrying capacity using the previously defined measure184

of deviation η. To find the corresponding fraction of agents that remain under a posi-185

tive stable steady state, we simulate our dynamical model using the perturbed vectors186

as initial parameters K. Simulations to find the equilibrium points are performed by187

integrating the system of ordinary differential equations using the Runge-Kutta method188

of Matlab routline ode45.189
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Figure 3 shows that when the deviation η from the structural vector is small (negative190

on a log scale), all agents remain under a positive stable steady state (yellow/light region).191

However, the larger the deviation, the lower the fraction of agents that remain under192

this steady state. This confirms numerically that the structural vector is the center193

of the range of parameter space compatible with the positive stable steady state of all194

agents. Importantly, Figure 3 also reveals that the closer the system is to the boundary of195

maximum global competition (ρ̂), the narrower the parameter space leading to a positive196

stable steady state of all agents, and in turn the lower the structural stability of the197

system. This reveals that the structural stability of the system decreases as the level of198

global competition among agents increases.199

Since the level of global competition (ρ) is a function of the resources shared among200

agents, it is important then to know whether a redistribution of resources may increase201

or decrease the level of global competition and, in turn, affect the structural stability of202

the system. To capture these effects, we quantify the level of global competition (ρ) in203

alternative inter-agent resource-competition networks—extracted from randomly gener-204

ated resource-agent systems (see Appendix B for further details)—relative to the level205

of global competition computed from the observed inter-agent competition network (ρ∗).206

This means that an alternative competition network increases the level of competition207

when ρ/ρ∗ > 1, and vice versa when ρ/ρ∗ < 1.208

In the case when alternative competition networks preserve in expectation the observed209

distribution of resources per agent, we find that the level of global competition increases210

relative to the observed network (see black symbols in Figure 4). These findings support211

standard macroeconomic theory (10, 12, 13) that suggests that the observed character-212

istics of socioeconomic systems should be optimizing the present economic constraints.213

However, in the case when the distribution of resources per agent is not preserved, we214
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find that the lower the heterogeneity among agents (measured by the standard deviation215

of resources per agent), the lower the level of competition ρ/ρ∗ < 1 and, in turn, the216

higher the structural stability of the system (see Fig. 4). These results reveal that the217

inter-agent resource-competition network is a significant factor modulating the range of218

conditions compatible with the positive stable steady state of all agents in the system.219

Moreover, our findings reveal that the higher the level of competition for resources or the220

more heterogeneous the utilization of resources is, the smaller the structural stability of221

the system.222

3.3 Risk assessment223

To provide further insights into the factors shaping the structural stability of the observed224

global socioeconomic system, we explore the risk associated with individual agents under225

rapid changes in the distribution and availability of resources. Following economic theory226

(10, 12, 13), we refer to rapid changes as the perturbations that can occur faster than227

the adaptation of the system to the new socioeconomic conditions. Specifically, we use a228

Monte Carlo approach to quantify the probability that an agent remains under a positive229

stable steady state (N∗
i > 0) when the system is subject to random deviations from the230

structural vector of carrying capacities, different levels of global competition, and changes231

in the inter-agent resource-competition network.232

To explore the risk associated with rapid changes in the availability of resources, we in-233

troduce proportional random perturbations to the structural vector of carrying capacities,234

simulate the dynamical model on the observed competition network using the perturbed235

vectors as initial parameters K, and investigate the fraction of times an agent remains236

under a positive stable steady state as function of their number of resources. Interestingly,237

Figure 5a shows that the probability of remaining under a positive stable steady state238

11



is almost the same for all agents regardless of their number of resources. However, this239

probability decreases as the level of global competition in the system increases (see Fig.240

5a), echoing our previous results at the network level.241

Additionally, we explore the risk associated with rapid changes in the distribution242

of resources by randomly changing the inter-agent resource-competition network via the243

resource-agent system (see Appendix B). These changes are investigated both alone and244

in combination with changes in the availability of resources (i.e., perturbations to the245

structural vector). In general, we find that the lower the number of initial resources an246

agent has, the lower its probability of remaining under a positive stable steady state (Figs.247

5b-c). Importantly, there seems to be a saturation point in the number of initial resources248

after which agents cannot increase any more their chances of remaining under a positive249

stable steady state. Overall, these findings reveal that rapid changes in the distribution250

rather than in the availability of resources can decrease the chances of a positive stable251

steady state for all agents.252

4 Discussion253

In this paper, we have used a parsimonious model and network representation of a254

resource-competition system to investigate the structural stability of global socioeconomic255

systems. However, the striking similarities found between model-generated and empirical256

characteristics suggest that this could be a promising starting point to answer how struc-257

turally stable global socioeconomic systems are. Echoing previous work (17), we have258

used the notion of structural stability to study the range of conditions compatible with259

the stability of a particular qualitative behavior. While the lack of detailed information260

about the availability and distribution of resources precludes us from revealing the actual261

structural stability of the observed global socioeconomic system, this will certainly not262
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change the fact that the higher the level of competition, the lower the structural stability263

in this resource-competition system.264

Importantly, our framework provides a new direction to increase our understanding265

on the capacity of a socioeconomic system to change and adapt. For instance, while the266

human population might be exponentially growing, we live constrained to a finite number267

of resources (21). At present we might be able to see an equally growing economic268

development simply because we have not reached our total carrying capacity, i.e., new269

resources are continuously being explored and exploited. If agents increase their carrying270

capacities by number or magnitude, they may also increase their total abundance or271

wealth. However, the positive stable steady state of all agents will depend on whether272

the new conditions in the system will be aligned or close enough to the corresponding273

structural vector of carrying capacities. The new challenges will be on how to deal with274

a limited number of resources under the constraints imposed by the structural vector and275

how to provide a desirable distribution of wealth among agents.276

Our framework can also be applied to other domains such as biological systems. In-277

deed, ecological systems are constantly updating in response to both their internal and278

external pressures. For instance, the concept of structural stability has been applied to279

mutualistic systems to investigate whether there are some network characteristics that280

can increase the likelihood of species coexistence (17). The resource-competition system281

used in this work has been intensively used in ecology to describe the competition for282

resources among species (22). This suggests that our findings can also shed new light283

into the factors shaping the competition among predators that forage on a common set284

of prey, or the competition among plants for minerals, water, and sunlight.285
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Appendices286

Appendix A. Mathematical derivations of the dynamical competition model.287

In this appendix, we give analytical results for the dynamical system described by the288

set of ordinary differential equations (1). Specifically, we study the existence of steady289

states, their feasibility (i.e., all agents having a strictly positive state), and their global290

stability. First, we prove that if the initial conditions of the dynamical system are in291

the positive quadrant (Rn
≥0), then their trajectories also remain in the positive quadrant.292

This implies that we have to focus on the existence and stability of steady states in the293

positive quadrant only.294

Lemma 1. Consider a dynamical system given by the set of ordinary differential equations295

(1) with initial conditions in the positive quadrant (Rn
≥0), i.e., Ni(t = 0) ≥ 0. Then the296

trajectory of the system remains in the positive quadrant, i.e., Ni(t) ≥ 0 for all time t ≥ 0.297

Proof. Consider that there exists an agent k and a time T1 such that Nk(t = T1) < 0.298

Then as the trajectories of our dynamical system (1) are continuous, there exists T0 < T1299

such that Nk(t = T0) = 0. This implies that at the time T0 the derivative of Nk vanishes,300

i.e., dNk
dt |t=T0 = 0. Moreover, this equality is independent on the values of Ni for all i �= k.301

Therefore, we have that Nk(t ≥ T0) = 0, and in particular that Nk(t = T1) = 0. This302

contradiction proves the lemma.303

Recall that a steady state N∗ is called positive if N∗
i > 0 for all agents i. Any posi-304

tive steady state is be definition the solution of the following linear equation K = βN∗.305

Therefore, for a positive steady state to be well defined, we need to assume the competi-306

tion matrix β to be non singular, i.e., det(β) �= 0.307

308
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Next, we prove that a positive steady state is globally stable if and only if the eigen-309

values of the competition matrix β are strictly positive. Note that by definition our310

competition matrix β is symmetric, then the condition of having all eigenvalues strictly311

positive is equivalent to being strictly positive definite. Recall that a steady state N∗ is312

called positive if N∗
i > 0 for all agents i.313

Lemma 2. Consider that there exists a positive steady state, i.e., there exists N∗ such314

that N∗
i > 0 and K = β ·N∗, and that the competition matrix is non singular. Then this315

steady state is asymptotically globally stable in the strictly positive quadrant Rn
>0 if and316

only if the symmetric competition matrix β is strictly positive definite.317

Proof. ⇐= In ref (24), Goh introduced a Lyapunov function that proves the global asymp-318

totic stability in the domain Rn
>0 of any positive steady state N∗

i > 0 under the condition319

that the matrix β is Lyapunov diagonal stable. A matrix β is Lyapunov diagonal stable is320

there exists a strictly positive diagonal matrix D such that Dβ+βTD is strictly positive321

definite. As in our case β is already strictly positive definite, then it is also Lyapunov322

diagonal stable. Thus any positive steady state is globally stable. This proves the lemma323

from the right to the left.324

=⇒ Consider that the positive steady state N∗
i > 0 is asymptotically globally stable.

This implies that the eigenvalues of the Jacobian matrix have strictly negative real parts

under the assumption that det(β) �= 0. The Jacobian at the positive steady state is

given by the matrix J = −D(a)β, where D(a) is the diagonal matrix formed by the

elements of the vector a. The elements of a are strictly positive and given by ai =

ri/KiN∗
i . By similarity transformation the signature (also called the inertia) of the matrix

D(a)β is equal to the signature of the matrix D(a)1/2βD(a)1/2. Indeed, by similarity
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transformations we have the following equalities:

signature(D(a)β) = signature(D(a)βD(a)1/2D(a)−1/2)

= signature(D(a)1/2βD(a)1/2).

Moreover, as β is symmetric, Sylvester’s law implies

signature(D(a)1/2βD(a)1/2) = signature(β).

Therefore the eigenvalues of β are all strictly positive, and this proves the lemma from325

the right to the left.326

Lemma 2 implies that if we want the global asymptotic stability of a positive steady327

state we have to limit the level of global competition µ such that all eigenvalues of the328

matrix β are strictly positive. Indeed, for µ = 0 the eigenvalues of the matrix β are all329

equal to one. As the eigenvalues are a continuous function of µ, there exists a critical level330

µ̂ at which the lowest eigenvalue is equal to zero. Thus, for a level of global competition331

in the interval 0 ≤ µ < µ̂, a positive steady state is asymptotically globally stable.332

The previous lemma establishes the global asymptotic stability condition of a positive333

steady state. However, a positive steady state does not exist for all vectors of carrying334

capacity K ∈ Rn. There is in fact a subset of carrying capacity vectors compatible with335

a positive steady state. This subset is by definition FD = {K ∈ Rn|there exist N∗
i >336

0, such that Ki =
�

j βijN∗
j }. That subset can simply be expressed as the strictly pos-337

itive linear combination of the vectors vk = βek (ek are the vectors of the standard338

orthonormal basis of Rn), FD = {λ1v1+ · · ·+λnvn|λ1, · · ·λn > 0}. As the elements of the339

matrix β are all positive, this implies that the vectors vk have all their elements positive,340

and in turn this also implies that the vectors of carrying capacity leading to a positive341

steady state have all their elements positive, i.e., FD ⊂ Rn
≥0342
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In the next lemmas, we study the existence and stability of steady states in the positive343

quadrant Rn
≥0 for any vector of carrying capacity K. First, let us remark that without344

loss of generality, we can always assume that a steady state has the following form N∗ =345

(0, · · · , 0, N∗
m+1, · · · , N∗

n� �� �
>0

)T . Indeed, this form can always be achieved by renumbering the346

agents such that the first m’s are the non-positive ones and the last n−m are the positive347

ones.348

Lemma 3. Consider that the symmetric competition matrix β is strictly positive definite.349

Then, for all vectors of carrying capacity K ∈ Rn, there exists one and only one steady350

state, written without loss of generality in the form N∗ = (0, · · · , 0, N∗
m+1, · · · , N∗

n� �� �
>0

)T , that351

is globally asymptotically stable in the domain Ω = Rm
≥0∪Rn−m

>0 . Moreover, all other steady352

states in the positive quadrant Rn
≥0 are unstable. Finally, the value of this stable steady353

state is only determined by the competition matrix β and the carrying capacity vector K.354

Proof. 1. Consider N∗ = (0, · · · , 0, N∗
m+1, · · · , N∗

n� �� �
>0

)T to be a steady state. The Ja-

cobian evaluated at this steady state is then given by the following 2-by-2 block

matrix:

J = −D(b)





�
j β1jN∗

j −K1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . .

�
j βmjN∗

j −Km 0 . . . 0
N∗

m+1βm+1,1 . . . N∗
m+1βm+1,m N∗

m+1βm+1,m+1 . . . N∗
m+1βm+1,n

...
. . .

...
...

. . .
...

N∗
nβn,1 . . . N∗

nβn,m N∗
nβn,m+1 . . . N∗

nβn,n





.

The elements of the vector b are strictly positive and given by bi = ri/Ki, and the

matrix D(b) is a diagonal matrix formed by the elements of the vector b. The steady

state N∗ is locally stable if and only if
�

j βijN∗
j −Ki > 0 for all i ∈ {1, · · · ,m},
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and the real parts of the eigenvalues of the sub-matrix



bm+1N∗

m+1βm+1,m+1 . . . bm+1N∗
m+1βm+1,n

...
. . .

...
bnN∗

nβn,m+1 . . . bnN∗
nβn,n





are strictly positive. The latter condition is automatically satisfied as the matrix

β is symmetric and strictly positive definite. Then, the conditions of existence and

local stability of N∗ can be summarized by:

N∗
i ≥ 0,

�

j

βijN
∗
j −Ki ≥ 0 and N∗

i (
�

j

βijN
∗
j −Ki) = 0,

for all agents i, with the second inequality begin strict if Ni = 0.355

2. We recall that a vector N∗ is the solution of a linear complementarity problem (26)

defined by the competition matrix β and the carrying capacity vectorK if it satisfies

the following inequalities:

N∗
i ≥ 0,

�

j

βijN
∗
j −Ki ≥ 0 and N∗

i (
�

j

βijN
∗
j −Ki) = 0.

Moreover, as in our case, the competition matrix N∗ is strictly positive definite356

and there exists one and only one solution to that linear complementarity problem.357

Up to renumbering the agents i, it can always be assumed that the solution can be358

written in the form N∗ = (0, · · · , 0, N∗
m+1, · · · , N∗

n� �� �
>0

)T .359

3. We prove that the steady state, which is the solution of the linear complementarity

problem defined by the competition matrix β and the carrying capacity vector K is

asymptotically globally stable in the domain Ω = Rm
≥0 ∪ Rn−m

>0 . The proof is based

on the following Lyapunov function introduced by Goh in ref. (27):

V (N ) =
m�

i=1

diNi +
n�

i=m+1

di

�
Ni −N∗

i +
1

N∗
i

log

�
Ni

N∗
i

��
,

18



with di some strictly positive numbers. Clearly, we have V (N ) ≥ 0, as N∗
i ≥ 0, and

Ni −N∗
i + 1

N∗
i
log

�
Ni
N∗

i

�
≥ 0 for all i ∈ {m + 1, · · · , n}. Moreover V (N ) = 0 if and

only if N = N∗. Let us compute its derivative as a function of time. We obtain

dV

dt
=

m�

i=1

di
ri
Ki

Nifi +
n�

i=m+1

di
ri
Ki

(Ni −N∗
i )fi,

where fi = Ki −
�n

j=1 βijNj. For i ∈ {m + 1, · · · , n}, consider the fact that Ki =
�n

i=1 βijN∗
j , then we can write fi as: fi = −

�n
j=1 βij(Nj−N∗

j ). For i ∈ {1, · · · ,m},

we rewrite fi like: fi = Ki −
�n

j=1 βijN∗
j −

�n
i=j βij(Nj − N∗

j ). Substituting these

two expressions into the derivative of the Lyapunov function we obtain

dV

dt
=

m�

i=1

di
ri
Ki

diNi(Ki −
n�

j=1

βijN
∗
j )−

n�

i=1

ri
Ki

diNi(Ni −N∗
i )βij(Nj −N∗

j ).

The first term of the right side is always negative, indeed, Ni ≥ 0 and for i ∈360

{1, · · · ,m} we have Ki −
�n

j=1 βijN∗
j ≤ 0. The second term of the right side is361

always strictly positive. Indeed, if we set di = Ki
ri
, then it is a quadratic form362

defined by the strictly positive definite matrix competition matrix β. Therefore, in363

the domain Ω, we have that dV
dt < 0. Thus, the steady sate, which is the solution of364

the linear complementarity problem, is asymptotically globally stable in the domain365

Ω.366

4. Consider that we have another steady state, the one given by the solution of the367

linear complementarity problem. Then, by the uniqueness of the solution of the368

linear complementarity problem, there is an agent k for which N∗
k = 0 and at the369

same time
�

j βijN∗
j −Ki < 0. This implies that one eigenvalue of the Jacobian is370

strictly negative, thus this steady state is unstable. Therefore, there exists one and371

only one globally stable steady state, which is given by the solution of the linear372

complementarity problem defined by the competition matrix β and the carrying373
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capacity vector K. This proves the two first assertions of the lemma. For the last374

assertion it is enough to remark that the solution of the linear complementarity is375

only function β and vector K. Therefore, the value of the stable steady state is376

also only a function of β and vector K.377

378

All these lemmas together imply that under the condition that all eigenvalues of β379

are strictly positive, i.e., β is a strictly positive definite matrix, the trajectories of the dy-380

namical system (1) starting in the strictly positive quadrant converge to a unique steady381

state. Moreover, for a given competition matrix β, the value of that steady state is only382

function of the carrying capacity K; the growth rate r only dictates the velocity at which383

the trajectory converges to the stable steady state.384

385

Appendix B. Alternative inter-agent resource-competition networks. We use386

a resampling procedure that is able to generate a large gradient of inter-agent resource-387

competition networks while preserving the total number of interactions in the network388

(28).389

First, we randomize the resource-agent system (i.e, the bipartite network) between390

agents (countries) and resources (companies). Note that two agents interact if they share391

a resource, and the strength of the interaction is equal to the number of shared resources.392

This randomization is performed by inferring the probability of an interaction between393

an agent i and a resource k using the model394

logit(p(T )ik) =
1

T

�
−κ(vi − fk)

2 + φ1v
∗
k + φ2f

∗
k

�
+m(T ). (2)

The term v∗i quantifies the variability in number of resources, the term f ∗
k quantifies395

the assortative structure of the system, and the temperature T modulates the level of396
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stochasticity in the model. Since v∗i and f ∗
k are a priori unknown, they can be estimated397

from the observed resource-agent system itself. The parameters κ, φ1, and φ2 are positive398

scaling parameters that give the importance of the contributions of the terms. Then,399

based on their estimation, the probability of an interaction between all pairs of agents and400

resources is inferred. Thus, an alternative resource-agent system can simply be generated401

by drawing randomly the interactions based on those estimated interaction probabilities.402

The intercept m(T ) is adjusted for each temperature value such that the expected number403

of interactions is equal to the observed one. When the temperature goes to infinite, our404

model converges to the Erdős-Rényi model, when the temperature goes to zero, the system405

freezes in the most probable configuration predicted by our model, and when T = 1 we406

recover the expected distribution of resources.407

Second, we transform the previously generated resource-agent system into an inter-408

agent resource-competition network. This competition network is characterized by a sym-409

metric matrix β of size N ×N , called the competition matrix. The elements of the com-410

petition matrix βij are a function of the number of shared resources between agents.411
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a

b

C O U N T R Y

C O M P A N Y

Figure 1: Network representation of a global socioeconomic system. The global socioeconomic
network is represented by the inter-agent resource-competition network extracted from the
resource-agent system. (a) The resource-agent system is given by the interactions between
agents (countries, represented by circles) and resources (companies, represented by squares).
(b) The inter-agent resource-competition network is formed by the interactions among agents
sharing resources and weighted by their corresponding number of shared resources. Countries
are represented by their administrative capital (blue symbols), and the darker/reddish the in-
teraction the larger the number of companies shared. For the sake of clarity, we do not show
interactions between countries that share less than 10 companies. Azimuthal equidistant pro-
jection of the Earth centered in longitude 10 and latitude 20 degrees.
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Figure 2: Model-generated wealth and empirical GDP. The figure shows the model-generated
wealth at a stable equilibrium N∗

i > 0 for each agent (country) and their empirical GDP in
2013. (a) shows that wealth at equilibrium and GDP are significantly and positively correlated
(r = 0.88, Spearman rank correlation) when the dynamical model is parameterized with the
structural vector of the observed resource-competition network. (b) shows a non-significant
correlation (r = 0.003, Spearman rank correlation) when the dynamical model is parameterized
by the structural vector of an alternative competition network where interactions are randomized
in a similar fashion to an Erdős-Rényi model (Appendix B). Here, we show the results for the
dynamical model using a half of the boundary of maximum global competition; however, all
levels of global competition that satisfy the global stability condition yield similar results.
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Figure 3: Structural stability of a global socioeconomic system. The figure presents the fraction
of agents (countries) that remain under a positive stable steady state as function of both the level
of deviation η (on a log scale) from the structural vector and the level of global competition
(standardized to the boundary of maximum global competition). The system is structurally
stable under the parameter space compatible with all agents in a positive stable steady state
(N∗

i > 0, yellow/light region). The higher the level of global competition (black dashed line),
the smaller the structural stability of the system (e.g. see brackets). For each level of global
competition, we simulate different equilibrium points N∗

i by initializing the model with different
random proportional perturbations to the structural vector of carrying capacities.

27



●

●

●●

●
●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●

●●
●

●

●●
●

●

●
●

●

●
●

●
●●

●

●

●
●

●
●

●●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●
●

●●

●

●
●
●

●
●

●

●

●

● ●

●

●

●

●
●
●

●
●

●

●●

● ●● ●
●

●●

●
●

●

● ●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●●

●

●

●

●

●
●
●

●

●●

●

●●
●

●● ●●
●

●

●●
●

●

●

●

●●

● ●●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●
●●

● ●

●

●

●●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●●
●●

●

●●

●●

●●

●
●●

● ●

●

●
●

●

● ●●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●
●● ●● ●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●
●

●●

●●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●●●
●●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●●●●

●

●

●●

●

●

●
●
●

●
●

●
●

●
●

●
●

●

●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●
●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●
●

●●

●●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●●
●

●●

●

●●
●

● ●
●

●
●

●

●
●

●
●

●
●●
●●

●

●

●

●●

●

●
●

●

●

● ●
●
●
●

●

●

●

●

●

●●

● ●

● ●
●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●●

●

●●

●
●

●●
●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●
●●

●
●

●
●

●

●
● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

● ●●
●
●●

●●

●
●●

●
●

●
●

●

●●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●
●
●

●
●●

●

●● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●
●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●●

●

●
●

●

●
●

●

●

●●

●● ●

●

●

●
●●

●●

●

●
● ●●

●

●

● ●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●
●

●

●

● ●
●

●●

●

●
●

●

●●● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●
●
●●

●●●●

●●

●

●

●●

●
● ●

●

●

●

●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●
●

●●
●

●

●●
●

●

●
●

●

●
●

●
●●

●

●

●
●

●
●

●●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●●●

●

●
●

●
●

●●

●

●
●
●

●
●

●

●

●

● ●

●

●

●

●
●
●

●
●

●

●●

● ●● ●
●

●●

●
●

●

● ●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●●●

●

●

●

●

●
●
●

●

●●

●

●●
●

●● ●●
●

●

●●
●

●

●

●

●●

● ●●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●
●●

● ●

●

●

●●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●●
●●

●

●●

●●

●●

●
●●

● ●

●

●
●

●

● ●●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●
●● ●● ●

●

●

●

●

●

● ●

●

●
●●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●
●

●●

●●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●●●
●●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●●●●

●

●

●●

●

●

●
●
●

●
●

●
●

●
●

●
●

●

●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●
●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●
●
●

●

●

●
●●

●

●
●

●●

●●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●●●
●

●●

●

●●
●

● ●
●

●
●

●

●
●

●
●

●
●●
●●

●

●

●

●●

●

●
●

●

●

● ●
●
●
●

●

●

●

●

●

●●

● ●

● ●
●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●●

●

●●

●
●

●●
●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●
●●

●
●

●
●

●

●
● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

● ●●
●
●●

●●

●
●●

●
●

●
●

●

●●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●●
●
●

●
●●

●

●● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●
●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●●

●

●
●

●

●
●

●

●

●●

●● ●

●

●

●
●●

●●

●

●
● ●●

●

●

● ●
●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●
●

●

●

● ●
●

●●

●

●
●

●

●●● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●
●

●●

●
●
●●

●●●●

●●

●

●

●●

●
● ●

●

●

●

●
●

●●

●

●

● ●

●

●
●

●

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

4 6 8 10 12

R
el

at
ive

 c
ha

ng
e 

in
 c

om
pe

tit
io

n

Heterogeneity of resources per agent

Figure 4: Association between distribution of resources and level of global competition. The figure
shows that the higher the heterogeneity (standard deviation) in the distribution of resources,
the higher the level of global compeition in the inter-agent resource-competition system. The
x-axis corresponds to the family of distribution of resources calculated from alternative resource-
competition networks, which are extracted from randomly generated resource-agent systems
(see Appendix B). The y-axis correspond to the relative change (ρ/ρ∗) between the level of
competition in an alternative competition network ρ and the level of competition in the observed
competition network ρ∗ (red symbol). The black symbols correspond to alternative competition
networks generated by preserving the expected distribution of resources per agent (Appendix
B).
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Figure 5: Risk assessment of changes in the global socioeconomic system. For high, medium,
and low levels of global competition (colors/symbols) the figure shows as function of the number
of resources the fraction of times each agent (country) remains under a positive stable steady
state after (a) a large gradient of proportional random perturbations to the structural vector of
carrying capacities; (b) changes in the resource-competition network; and (c) to a combination
of a and b. Each point corresponds to an agent. In each scenario, we simulate 100 thousand
different cases.
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