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Research on subterranean organisms has focused on the colonization process

and some of the associated phenotypic changes, but little is known on the long-

term evolutionary dynamics of subterranean lineages and the origin of some

highly specialized complex characters. One of the most extreme modifications

is the reduction of the number of larval instars in some Leptodirini beetles from

the ancestral 3 to 2 and ultimately a single instar. This reduction is usually

assumed to have occurred independently multiple times within the same line-

age and geographical area, but its evolution has never been studied in a

phylogenetic framework. Using a comprehensive molecular phylogeny, we

found a low number of independent origins of the reduction in the number

of instars, with a single transition, dated to the Oligocene–Miocene, from

3 to 2 and then 1 instar in the Pyrenees, the best-studied area. In the Pyrenees,

the 1-instar lineage had a diversification rate (0.22 diversification events per

lineage per million years) significantly higher than that of 3- or 2-instar lineages

(0.10), and similar to that seen in other Coleopteran radiations. Far from being

evolutionary dead-ends, ancient lineages fully adapted to subterranean life

seem able to persist and diversify over long evolutionary periods.
1. Introduction
Subterranean species are an ideal model for the study of phenotypic and ecologi-

cal specialization, and the study of the changes associated with underground

colonization have contributed many new insights into evolutionary biology

and physiology in recent years [1–3]. Here, focus has usually been on the process

of colonization, with less attention paid to macroevolutionary questions such as

the origin of lineages with multiple subterranean species or their diversification

dynamics. Despite recent work suggesting the possibility of evolutionary radi-

ations of subterranean aquatic organisms [4], the prevailing view in the case of

terrestrial organisms is still that once a lineage has adapted to the subterranean

environment it becomes confined to a limited geographical area, being unable to

expand or diversify other than at a very local scale [5–7]. The existence of ancient

groups in which all species are subterranean and morphologically and ecologi-

cally highly specialized (i.e. strictly troglobitic) is traditionally interpreted as

resulting from multiple independent colonizations, followed by the extinction

of related surface species, supposedly driven by global climatic or ecological

changes [5–9]. Although there is no doubt that in many disparate groups

there were multiple independent subterranean colonization events, resulting

in convergent phenotypes [10–13], recent work on some Pyrenean beetles pro-

posed a single origin of subterranean adaptations in ancient, diverse and

geographically widespread terrestrial lineages [14,15], even with the possibility

of range expansions of subterranean species over non-carstified areas [16].

This single origin would imply that highly specialized, troglobitic lineages are

able to disperse, diversify and persist in the subterranean environment for

long evolutionary periods.
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The reconstructed evolution of more complex characters

that differ between fully subterranean species should allow

one to distinguish between the two scenarios outlined above.

When all species in a lineage share a complex character rela-

ted to their subterranean habit, to assume their independent

evolution from surface ancestors will not only require the

extinction of all these surface relatives, but also of all subterra-

nean species with intermediate degrees of development of the

character. The alternative would be a concerted evolution of all

surviving species to reach the same phenotype [17], which is

equally unlikely.

One of these complex characters is the modification of the

life cycle observed in some subterranean species of Coleoptera

of the tribe Leptodirini, characterized by a reduction in the

number of larval instars. The Leptodirini, with around 900

species, is one of the largest groups of insects in which

most species are found in the subterranean environment [18].

Most of them show all the typical modifications associated

to the subterranean life (lack of eyes and membranous wings,

depigmentation and an elongation of body and appendi-

xes), and have very restricted geographical distributions [18].

A number of species have also severely altered life cycles,

with profound physiological changes [19,20]. While species

living in forest litter or shallow soil have the typical life cycle

of Coleoptera, with 3 larval instars [21], some cave species

show a reduction to 2 or 1 larval instars. Species with 3 larval

instars lay many small eggs and the larvae feed actively,

growing and moulting until they pupate. In the so-called

‘intermediate’ life-cycle type [19], observed only in strictly

subterranean species, females lay a reduced number of

medium-sized eggs and the larval period is reduced to 2 larval

instars with a mobile, free-living feeding phase. In the third

and most modified type of life cycle (‘contracted’, also found

exclusively in subterranean species) there is a single larval

instar. The larva hatches from a large (macrolecital) egg, where

the copious yolk provides sufficient nutrients to complete

larval development without feeding. The mobility of such

larva is also strongly limited, and a few days after hatching

they build a solid chamber (‘logette’) of sand and gravel in

which they pass the remainder of larval development, immobile.

These modifications are traditionally considered to result

from multiple evolutionary processes originating from a

typical 3-instar cycle and taking place in each species

independently, even within the same genus. However, their

evolution has never been studied in a phylogenetic context.

Here, we use a comprehensive molecular phylogeny of the

major lineages of Leptodirini, including most of the species

for which life-cycle data are available (i) to trace their evol-

ution and establish the number of independent origins of

modified life cycles and (ii) to test the effect of changes in

life cycle on diversifications rates. We focus on the Pyrenean

clade of species, previously found to be monophyletic [15],

and for which most data are available both for life cycle

and the taxonomic coverage of the phylogeny.
2. Material and methods
(a) Life-cycle data, taxon sampling and phylogenetic

analyses
Specimens were collected by direct search or with the use of baits

and stored in pure ethanol. We obtained material from all but
seven species for which the life cycle was known, with a special

focus on the fauna of the Pyrenees (see the electronic supplemen-

tary material, tables S1 and S2). DNA extractions of single

specimens were non-destructive, using either a phenol–chloro-

form method or commercial kits (mostly DNeasy Tissue Kit,

Qiagen, Hilden, Germany) following the manufacturers’ instruc-

tions. Vouchers are kept at the Museo Nacional de Ciencias

Naturales, Madrid (MNCN) and the Institute of Evolutionary

Biology, Barcelona (IBE). We amplified and sequenced fragments

of the mitochondrial (five genes: cox1—amplified in two frag-

ments—cob, rrnL, trnL, nad1—the last three amplified in a

continuous single fragment) and nuclear genomes (two genes:

SSU and LSU) (see [16] for primers and PCR conditions). New

sequences have been deposited in GenBank (EMBL) with acces-

sion numbers HG915308–HG915710 (electronic supplementary

material, table S2).

Two datasets were compiled: (i) an extended dataset, includ-

ing all species with known life cycles and a representative sample

of 141 species of Leptodirini from their respective geographical

areas, using the genus Platycholeus (Western North America) to

root the tree [12]; (ii) the Pyrenean clade, with a comprehensive

dataset of the Pyrenean lineage (according to [15] and the results

of this study).

We aligned length variable (i.e. ribosomal) sequences with

MAFFT v. 7 and the Q-INS-i algorithm, which considers the sec-

ondary structure [22] and analysed the extended dataset with

Bayesian probabilities (as implemented in MRBAYES v. 3.2 [23])

and a fast maximum-likelihood algorithm (as implemented in

RAxML v. 7.0 [24]). In both cases, we used a partition by gene frag-

ments, pooling the sequence of the genes rrnL and trnL, and using

a GTR þ I þ G model with unlinked parameters for each partition.

We used the best of 100 RAxML replicates as our preferred ML

topology. Node support was measured with 1000 fast bootstrap

replicates using the CAT approximation [24]. To obtain an ultra-

metric tree we used BEAST v. 1.7 [25] with an uncorrelated

lognormal clock and a Yule speciation process. We used the

same partition and evolutionary model as in the phylogenetic ana-

lyses, but linked the evolutionary rates of the mitochondrial

protein coding genes and the two nuclear ribosomal genes respect-

ively to reduce the number of free parameters. We used the tectonic

separation between the Corso-Sardinian plate and the European

continent as a calibration point, with a normal distribution for

the prior of the age of the node separating the Sardinian clade

from its continental sister (as obtained in the MRBAYES analyses)

with an average of 33 Ma and a standard deviation of 1 Myr, fol-

lowing [15]. The analyses were run for 100 million generations,

with a burn-in of 10%. In all Bayesian analyses convergence was

assessed with the effective sample size in TRACER v. 1.5 [25].

(b) Ancestral state reconstruction and rates
of diversification

We restricted the detailed analyses of the evolution of the life cycle

to the Pyrenean clade of Leptodirini, as it included the highest

number of species for which the life cycle was known and the

group for which we had the most comprehensive sampling (elec-

tronic supplementary material, table S1). We reconstructed the

ancestral character states for the number of larval instars using

BEAST to account for topological uncertainty in the phylogenetic

tree. We rooted and dated the tree according to the results of the

extended dataset, using the estimated average age of the two

basal nodes as calibration points. We used an asymmetrical

matrix of character change rates and applied other settings as in

the analyses of the extended dataset.

To estimate diversification rates within the Pyrenean clade, we

associated the species not included in the phylogeny to the less

inclusive clade of our phylogeny according to their current taxon-

omy. We then considered these clades as unresolved terminals in

http://rspb.royalsocietypublishing.org/
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a backbone tree (electronic supplementary material, figure S3). We

did not consider subspecies owing to their uncertain taxonomic

status, although the number of subspecies is higher among the

1-instar taxa [26], so any potential bias would be against

our conclusions. We analysed the backbone tree (with missing

species and species with missing information on the life cycle; elec-

tronic supplementary material, tables S1 and S2, and figure S3)

with MEDUSA from the GEIGER 1.3-1 package in R [27].

MEDUSA fits a birth–death model to different clades of an ultra-

metric tree, optimizing the complexity and fit of the model with the

Akaike information criterion (AIC) and identifying the branches

with significant shifts in diversification rates. To account for topo-

logical uncertainty, we resampled 1000 trees from the stationary set

of trees found in the analysis of the Pyrenean dataset in BEAST

using LOGCOMBINER [25], pruned the terminals to fit the

unresolved backbone tree using R and ran MEDUSA on them.

For the estimation of the speciation and extinction rates associ-

ated with each type of larval development and the rates of

character state change we used the binary state speciation and

extinction method (BiSSE), which unites trait evolution and species

diversification in the same birth–death models [28]. We used the

modification of FitzJohn et al. [29] implemented in the R package

DIVERSITREE [30] to allow the inclusion of incompletely resolved

terminals and missing character state data. We obtained Bayesian

estimates of the parameters using MCMC as implemented in

DIVERSITREE, with runs of 10 000 steps and a burn-in of 5000.

To account for topological uncertainty, we ran the selected optimal

model of BiSSE on the same set of 1000 trees used for MEDUSA

above. As BiSSE uses only binary data, we pooled the character

states in all three possible combinations for comparison (1 instar

versus 2 and 3 instars; 2 versus 1 and 3; and 3 versus 1 and 2).

FitzJohn [30] extended the BiSSE method to allow the use of

multistate characters (MuSSE, multistate speciation and extinc-

tion), also with the possibility of using incompletely resolved

terminals and missing data. In preliminary tests using MuSSE

the high number of unresolved terminals and missing data pre-

vented convergence of the models, so we built 1000 trees with

randomly resolved terminal clades using MESQUITE and ana-

lysed them in MuSSE. In order to try to reduce the number of

parameters, we compared the full model with a model with no

extinction and assuming the impossibility of reversals in the

evolution of the life cycle, and used this reduced model when

differences were not significant. To test for the effect of missing

life-cycle data we used, in addition to the matrix with known

character states only, two matrices with different levels of

missing data (electronic supplementary material, table S4).
3. Results
(a) Phylogenetic origin of the modifications in the

life cycle
The monophyly of the Mediterranean Leptodirini (i.e. with

the exclusion of the American Platycholeus) and of the linea-

ges of each of the main geographical regions were very well

supported, although the relationships among these lineages

were not (figure 1). Topological differences between the trees

obtained by different methods (Bayesian probabilities and

ML) were limited to poorly supported nodes, mostly at the

backbone of the tree (figure 1; electronic supplementary

material, figure S1).

For the calibration of the tree in BEAST, we used the node

linking the Sardinian clade with Leptodirini from the Mediterra-

nean coast of France (including one species in northwest

Catalonia; figure 1), which resulted in mean rates for the protein

coding, ribosomal mitochondrial and ribosomal nuclear genes
of 0.015, 0.006 and 0.004 substitutions per site per Myr, respect-

ively. The Mediterranean Leptodirini were estimated to have an

Early Eocene origin (42+5 Ma), and the main lineages in each of

the geographical areas a late Eocene–Oligocene origin (figure 1).

In all the main lineages, corresponding to well-defined

geographical areas, there was at least one transition to a

2-instar or a 1-instar cycle, but there was no evidence of

more than 1 (figure 1).

(b) Ancestral state reconstruction in the
Pyrenean lineage

We included 81 taxa of the Pyrenean lineage, with examples of all

known genera and main species groups (electronic supple-

mentary material, table S2). To root and calibrate the tree we

constrained the two main clades, referred to as the Speonomus
and Bathysciola clades, according to the results of the previous

analysis (figures 1 and 2). The Bathysciola clade included the

only two species confirmed to have 3 larval instars, and was

reconstructed to have a 3-instar ancestor. The Speonomus clade

was reconstructed to have a 2-instar larval ancestor, with a

single transition to a 1-instar larvae around 20 Ma. The Speono-

mus clade was reconstructed to have a 2-instar larval ancestor,

with a single transition to a 1-instar larvae at either 17 or 20 Ma.

The clade between the 2- and 1-instar species, with three genera

without life-cycle data, was reconstructed to have a 1-instarances-

tor at 20 Ma, but this was with a probability (0.50) very similar to

that of a 2-instar ancestor (0.38). These results were essentially

unaltered by uncertain life-cycle data, with only one additional

transition if Parvospeonomus canyellesi was considered to have 1

instar, affecting only this species (see below; see also electronic

supplementary material, table S1 and figure S2).

(c) Shifts in diversification in the Pyrenean lineage
To test for differences in diversification rates within the

Pyrenean lineage we constructed an unresolved backbone

tree with 38 terminals to which the 141 known species of

the lineage could be associated. These terminals corresponded

to monophyletic genera plus groups of species for para- or

polyphyletic genera (figure 2; electronic supplementary

material, figure S3). Using maximum-likelihood contrasts, we

found a single significant change in diversification rate in a

selection of 1000 trees from the stationary phase of a BEAST

run. This shift was always within the clade having 1-instar

larvae, and in the same node in 983 of the trees (figure 2).

Of the remaining trees, 16 had a significant shift in the same

node but excluding two genera, and one also in the same node

but including the genus Trocharanis (electronic supplemen-

tary material, figure S4). The diversification rate estimated for

the fast part of the tree was always more than twice that of the

slowest part (table 1).

(d) Association between number of instars and
diversification rates

All BiSSE models including differences in diversification rates

among species with different life cycles were significantly

better than the assumption of no differences, with the excep-

tion of the model pooling species with 1 and 2 versus 3

instars (electronic supplementary material, table S3). Of the

different combinations of species with different cycles, the

model with the best likelihood grouped species with 3 and 2

http://rspb.royalsocietypublishing.org/
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Figure 1. Calibrated ultrametric tree obtained with BEAST with the extended dataset. Black circle, node used for calibration (vicariant split between the Sardinian
and the continental clade). Numbers at nodes, posterior probability of BEAST/maximum-likelihood bootstrap support in RAxML/posterior probability in MRBAYES.
Species of the Pyrenean lineage were collapsed in the Speonomus and Bathysciola clades (see figure 2). Species with known life cycle are coloured: in blue, species
with larvae with a 1-instar cycle; in purple, a 2-instar cycle.
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instars versus species with 1 instar. The significance of this

model was not affected by the topological uncertainty of the

tree (mean of the 1000 BEAST trees p ¼ 0.012+0.0002, with

only three trees with p . 0.05) or the inclusion of uncertain

life-cycle data. For this comparison, there were also no signifi-

cant differences between the models with reversible or

irreversible changes, as measured with a likelihood ratio test

(electronic supplementary material, table S3), again irrespec-

tive of the topologies ( p . 0.95 in all 1000 trees). In all cases,

both speciation and extinction rates of the fast diversifying

lineages (always including species with 1 instar) was twice
that of the slow-diversifying lineages (always including species

with 3 instars). The 95% CIs of the Bayesian estimates of the

two speciation rates with the best model (1 versus 2 and 3

instars, with irreversible character state transitions) did not

overlap, and were very robust to topological variations in

the tree or the inclusion of uncertain life-cycle data (table 1;

electronic supplementary material, table S3).

For the implementation of multistate character models

(MuSSE), we first used the backbone phylogeny with rando-

mly resolved terminals. MuSSE models were not significantly

different when only known life-cycle data were included

http://rspb.royalsocietypublishing.org/
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or when species were assumed to have the character state as

reconstructed with Bayesian probabilities in BEAST. For all

comparisons there were also no significant differences between

a full model (i.e. with 12 parameters: three speciation rates, three

extinction rates and six transitions between the three character

states) and a model with no extinction and irreversible change

(five parameters; electronic supplementary material, table S4).

To reduce the level of missing data we then used 1000 trees

with randomly resolved terminals and with the reconstructed

number of instars, except for the intermediate clade between

two and three instars, which were left as unknown. Again, in

all trees the full and reduced models (no extinction, irreversible

change) were not significantly different ( p . 0.9 for all 1000

trees). The reduced model with three speciation rates was, how-

ever, always significantly better than a model with equal

probability of speciation ( p , 0.0001 for all 1000 trees). The esti-

mated speciation rate of the 1-instar clade (0.23 species per

lineage per Myr) was higher than that of the lineages with

2 and 3 instars (0.11 and 0.09, respectively), with no significant

difference between the latter (figure 2, table 1; electronic

supplementary material, table S4).
4. Discussion
Our results support a single origin of life-cycle modifica-

tion in the Pyrenean lineage of subterranean Leptodirini

beetles, with a single transition from the ancestral 3-instar

to a 2-instar cycle in the Late Oligocene, and a subsequent

single transition to 1 instar in the Early Miocene. Our results

are also compatible with a single origin of such modifications

in all the other major lineages of the tribe, although the lim-

ited knowledge of their life cycles does not allow this to be

tested more robustly. Contrary to expectations, the transition

to a 1-instar life cycle, the most modified and specialized phe-

notype, was associated in the Pyrenean lineage with a highly

significant increase in diversification rate.

(a) Single origin of the life cycle modifications in the
Pyrenean lineage

We found clear geographical structuring within the Leptodir-

ini, in agreement with previous results for the same group

and for other subterranean organisms [11,14,15,31]. Even if

within each of these geographically restricted lineages there

were species known to have a modified life cycle, the required

minimum number of independent transitions according to our

phylogeny was surprisingly low. In the best-known area, the

Pyrenees, we reconstructed a single transition from 3 to 2

and another from 2 to 1 instars. In southern France, and despite

the high level of missing data, all species known to have a con-

tracted cycle form a monophyletic lineage, also suggesting a

single transition. The progressive reduction of the number of

instars through the phylogeny of the Pyrenean Leptodirini is

strong evidence of a single, ancient origin of their subterranean

adaptations, as suggested by Ribera et al. [15] and contrary to

the common view hypothesizing multiple origins, followed

by extinction of epigean lineages [5–9].

There are several caveats to be considered in evaluating

the robustness of our conclusions, in particular the amount

of missing data and the uncertainty in some of the life-cycle

information. By adding more data it would always be poss-

ible to find additional transitions, but these would most

http://rspb.royalsocietypublishing.org/
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probably affect terminal species, and have no consequences

for our estimated diversification rates. There is also indirect

evidence supporting our reconstructed evolution of larval

development. While it is common to find larvae of the species

reconstructed as having a 2-instar cycle (in fact, many were

known before their cycles could be studied in the laboratory,

e.g. [32]; electronic supplementary material, table S1), we are

not aware of any instance in which a single larva of a species

of the reconstructed 1-instar clade has ever been found in a

cave, despite a continuous search for decades in caves in

which some of these species are very common [38] (J.F. 2013,

unpublished observations; A. Faille & C. Bourdeau 2013, per-

sonal communication). This strongly suggests that the larvae

of these species do not have an active phase, as is characteristic

of the 1-instar cycle.

For the detailed reconstruction of the life cycle in the

Pyrenean lineage we used only data from papers reporting

the complete life cycle, from egg to adult, which are basically

those produced at the Laboratoire Souterrain in Moulis (elec-

tronic supplementary material, table S1). There are other

incomplete reports of life-cycle data, and with a single excep-

tion they agree with our reconstruction. This exception is the

species Parvospeonomus canyellesi, reconstructed as having a

2-instar cycle in our phylogeny but reported as having 1

instar [33]. This was mainly based on the fact that the first

instar larva was relatively large, inactive and non-feeding.

The type of life cycle could not be established experimen-

tally, and the size of the first instar larvae is actually of little

value to predict the number of instars (I.R. & A.C. 2013, unpub-

lished data). In any case, the consideration of P. canyellesi as

having a 1-instar cycle would only add an additional terminal

transition within the Pyrenean lineage, leaving the reconstruc-

tion of ancestral states and the estimation of diversification

rates unaltered (electronic supplementary material, table S5).

There could also be the possibility of taxonomic bias if

there was an over-splitting of the 1-instar clade in comparison

with 3- and 2-instar species. In Leptodirini species delimitation

is traditionally based on external morphology, and in particu-

lar on the male aedeagus [18] (as common in many groups of

Coleoptera). The general morphology and structure of the gen-

italia is very similar in all species of Leptodirini and there is no

reason to assume differences in taxonomic treatment. In the

cases in which molecular data are available the general trend

is the discovery of cryptic diversity within recognized species,

frequently in agreement with named subspecies [16]. As noted

in the Material and methods section, the number of subspecies

was not considered in the species counts, but it is higher in 1-

instar than in 2- or 3-instar species [18,26]. In other words,

accounting for cryptic diversity is only likely to increase the

observed difference in diversification rates.

(b) Diversification rates
The estimated diversification rate for the 1-instar Pyrenean

clade (approx. 0.2–0.3 species per lineage per Myr) is well

above the overall Coleopteran rate (0.05–0.07 [34]), and fully

comparable with the estimated rates of a number of Coleop-

teran radiations, also ranging from 0.2 to 0.3 [35–38]. The

estimated rate was very consistent across the different methods,

analytical conditions and uncertainties in the life-cycle data. It

is also likely to be conservative, as there seems to be a high

degree of cryptic diversity among the Pyrenean Leptodirini

[15,16], as is generally the case in subterranean species [39].
Our results do not allow us to unambiguously link the

increase in speciation and extinction rates and the develop-

ment of a 1-instar cycle, both because the transition to a

contracted life cycle happened previous to the shift in diver-

sification and since it is a single evolutionary event. There are

a number of uncertainties in the identification of drivers of

diversification shifts using phylogenies [40], and a temporal

delay may be observed for different reasons. In any case,

the evolution of a contracted life cycle, usually considered

an extreme specialization to the subterranean environment,

was not an evolutionary dead-end for the lineage, but instead

allowed its long-term persistence and diversification.

The reduction of the number of larval instars has been inter-

preted as a strategy to escape predation at the most vulnerable

developmental stage [41], which may result in a reduced

extinction probability and an increased diversification rate.

The building of a refuge of sand and gravel would offer a

high degree of protection to an immobile larva freed from the

need to search for food, although there are no data on the

rates of predation in caves compared with the surface, or

between caves occupied by 2- or 1-instar species.

An alternative possibility is that a non-feeding larva may

allow the species to survive in more extreme environments,

as the more mobile adult can forage over a larger area and

provide enough resources to complete the whole develop-

ment [5]. In the Pyrenees, scarcer resources are usually

associated with caves at higher altitudes or with more iso-

lated, deeper areas within the same subterranean system.

The increased diversification may then be linked to the colo-

nization of these deeper regions or of new areas, requiring the

geographical expansion of the species. Highly modified

species in the deep subterranean environment have usually

low dispersal abilities and very restricted, allopatric distri-

butions (most often they are found in a single cave or in

nearby caves of the same geological system [18,26]), but the

global distribution of the Pyrenean 1-instar clade, including

the central Pyrenees and some coastal areas near Barcelona

[15], demonstrates that there were at least occasional range

expansions to nearby areas [16].

Subterranean species have frequently been used as

examples of evolutionary dead-ends (Darwin’s ‘wrecks of

ancient life’ [42], or Jeannel’s ‘fossiles vivants’ [8]), locked in

their restricted habitat by their strong morphological and phys-

iological specializations. This work shows that, far from being

an evolutionary dead-end, the transition to a 1-instar cycle in

the Pyrenean Leptodirini did not lead to isolated forms but

to a highly diverse and relatively widespread radiation with

a very dynamic evolutionary history.
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