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Abstract 

 The Marboré Cirque, which is located in the southern central Pyrenees on the 

north face of the Monte Perdido Peak (42º40’0 N; 0.5º0W; 3355 m), contains a wide 

variety of Holocene glacial and periglacial deposits, and those from the Little Ice Age 

(LIA) are particularly well-developed. Based on geomorphological mapping, 

cosmogenic exposure dating and previous studies of lacustrine sediment cores, the 

different deposits were dated and a sequence of geomorphological and 

paleoenvironmental events was established as follows: (i) The Marboré Cirque was at 

least partially deglaciated before 12.7 ky BP. (ii) Some ice masses are likely to have 

persisted in the Early Holocene, although their moraines were destroyed by the advance 

of glaciers during the Mid Holocene and LIA. (iii) A glacial expansion occurred during 

the Mid Holocene (5.1 ± 0.1 ka), represented by a large push moraine that enclosed a 

unique ice mass at the foot of the Monte Perdido Massif. (iv) A melting phase occurred 

at approximately 3.4 ± 0.2 and 2.5 ± 0.1 ka (Bronze/Iron Ages) after one of the most 

important glacial advances of the Neoglacial period. (v) Another glacial expansion 

occurred during the Dark Age Cold Period (1-4-1.2 ka), followed by a melting period 

during the Medieval Climate Anomaly. (vi) The LIA represented a clear stage of glacial 

expansion within the Marboré Cirque. Two different pulses of glaciation were detected, 

separated by a short retraction. The first pulse occurred most likely during the late 17th 

century or early 18th century (Maunder Minimum), whereas the second occurred 

between 1790 and 1830 AD (Dalton Minimum). A strong deglaciation process has 

affected the Marboré Cirque glaciers since the middle of the 19th century. (vii) A large 



rock avalanche occurred during the Mid Holocene, leaving a chaotic deposit that was 

previously considered to be a Late Glacial moraine. 
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Introduction 

The study and mapping of recent morainic deposits related to climatic 

fluctuations during the Holocene, particularly the Little Ice Age (LIA), can reveal the 

the extent and spatial variability of the ice masses during the last millennia and how 

they correlate with climate and environmental changes. A good comprehension of 

glacial events is key to understanding the changes that have recently affected 

mountainous areas (e.g., the temperature increases over the last two centuries) and the 

importance of topographic and climatic factors in the development of small glaciers. 

 Studies on Pleistocene glaciations have generally ignored the climate shifts of 

the Holocene, which is generally believed to have had a mild, almost stationary climate 

(Clague et al., 2009). Nevertheless, abrupt, sometimes large climate changes have 

occurred since the onset of the Holocene, ca. 11,700 yr BP (Marcott et al., 2013), 

causing remarkable glacial expansions and contractions (Bond et al., 1997; Mayewski et 

al., 2004; Deline and Orombelli, 2005; Clague et al., 2009; Davis et al., 2009; Wanner 

et al., 2011), changing the characteristics of vegetation (Magny et al., 2002; Fletcher et 

al., 2010; Jalut et al., 2009) and altering natural resources in ways that have had local 

effects on the patterns of human occupation (González-Sampériz et al., 2009). It has 

been demonstrated that mountain glaciers worldwide reacted rapidly to changes in 

precipitation and/or temperature during the Holocene, but the timing and causes of these 

changes remain unclear (Davis et al., 2009). 

 During the past few decades, Holocene climate and glacier fluctuations have 

been intensively studied for most mountains worldwide, particularly those in Europe 

(e.g., Jalut et al., 2000; Deline and Orombelli, 2005; Holzhauser et al., 2005; Bakke et 

al., 2010; Nesje, 2009) and North America (e.g. Clague et al., 2009; Menounos et al., 

2009). In the case of the Iberian mountains, particular attention has been paid to the 

moraines of the Little Ice Age (LIA) (González Trueba et al., 2008). The southern 

latitude of the Iberian Peninsula explains why the LIA glaciers were relatively small and 

restricted to the high peaks in the Central Pyrenees, Picos de Europa in the Cantabrian 



Range, and Sierra Nevada in the extreme south (González Trueba et al., 2008). The 

central Pyrenees had the highest number of glaciers during the LIA, especially at 

altitudes >3000 m. Many of these glaciers have disappeared during the last four decades, 

and the extent of the remaining glaciers has been greatly reduced (Chueca et al., 2002). 

Nevertheless, many moraines have been associated with the glacial expansions of the 

LIA, allowing reconstruction of the LIA sizes of most glaciers. The information 

provided by Schrader (1894) indicates that the LIA glaciers occupied 3366 ha of the 

Pyrenees in 1876. However, we do not have any data on glaciation in the Iberian 

Peninsula during most of the Holocene. 

The lack of information on glacial evolution during the Holocene (except for the 

LIA) contrasts with an increasing number of lacustrine Holocene records available from 

the Iberian Peninsula (Corella et al., 2011; Moreno et al., 2011; Morellón et al., 2012; 

Oliva and Gómez Ortiz, 2012). Collectively, these studies have demonstrated the 

existence of important environmental changes throughout the Holocene. The glacial 

response to this climate variability is unknown. 

 The area with the highest variety of recent morainic deposits in the Pyrenees is 

the Marboré Cirque. Located in the northern side of the Monte Perdido Massif, within 

the Ordesa and Monte Perdido National Park (OMPNP), the Marboré Cirque retains 

some active glaciers and has abundant and well-preserved glacial deposits. Recently, a 

sediment record obtained from a lake inside the cirque has reconstructed the 

depositional evolution of the alpine lake during the Holocene (Oliva-Urcia et al., 2013). 

The Marboré Cirque is very close to the Troumouse Cirque (French Pyrenees), where 

an important intra-Holocene advance was detected (Gellatly et al., 1992). Thus, the 

Marboré Cirque is a taget area to study glacial evolution in the Pyrenees during the 

Holocene. 

 The main purposes of this paper are to study and date the sequence of 

paleoenvironmental events represented in the deposits of the Marboré Cirque, to 

differentiate the LIA deposits from other possible Holocene deposits, and to reconstruct 

the extent and evolution of the ice masses at various moments during the recent 

millennia. 

The study area 

The Marboré Cirque (Fig. 1) forms a basin of 5.8 km2 at the foot of the northern 

face of the Monte Perdido Massif (Central Pyrenees, Spain). The cirque is bounded to 



the north by the Tucarroya Crest and the Astazu Peak (3071 m), to the west by the 

Pequeño Occidental Peak (3013 m), and to the south by a dramatic wall composed of 

the Monte Perdido (3355 m), Cilindro (3322 m) and Marboré (3247 m) peaks. This wall 

comprises a vertical cliff of 500–800 m height, with several secondary scarps composed 

of different Cretaceous and Tertiary rock formations. At the base of the wall, the Cinca 

River flows from the glaciers themselves, carving a longitudinal basin from west to east. 

Toward the east, the cirque opens to the Pineta glacier Valley, with an abrupt loss of 

altitude (ca. 1000 m). The cirque altitude progressively ascends from the eastern border 

at 2520 m asl (called the Balcón de Pineta) towards the west. In the northern part of the 

cirque (i.e. at the foot of the Tucarroya Crest and the Astazu Peak), there is a narrow 

longitudinal depression where the Marboré Lake is located (2595 m asl). The Marboré 

Cirque and Monte Perdido Massif have been part of the OMPNP since 1981. 

 The Monte Perdido Massif is part of the Inner Sierras, which form a main 

structural unit of the southern Pyrenees. The rock formations exposed in the Inner 

Sierras correspond to Cretaceous-Eocene limestone, marly limestone and sandstone. 

The compressive structural style is characterized by the stacking of south-verging thrust 

sheets emplaced during the Alpine orogeny. Three morphostructural units can be 

distinguished in the Marboré Cirque: 

 (i) The Marboré Cirque has a clear structural control and it is located in a 

synclinorium-like structure, wherein alternating limestone and sandstone outcrops 

evolve towards cuestas, which become almost vertical at the extreme north of the cirque 

(i.e., at the Tucarroya Crest and Astazu Peak). The sandstone and limestone formations 

have been intensely affected by chemical and physical weathering, generating a series 

of small cuestas lined up WSW-ESW, with the scarps facing north. Structural karren 

(kluftkarren) are present, mainly due to the solutional widening of the stratification 

planes and joints, with solution flutes (rillenkarren) prevailing on steep slopes. Small 

dolines and chasms are also relatively common. 

 (ii) The south margin of the cirque is an abrupt and complex wall forming the 

northern faces of the Monte Perdido, Cilindro and Marboré peaks carved in several 

overthrusting folded units. Maastrichtian sandstone dominates in the western part of the 

cliff (Marboré), whereas Eocene limestone prevails in the eastern part (Monte Perdido), 

although the lower part of the cliff also has a large sandstone outcropping. 

 (iii) In the middle of the cirque a dome at 2720 m asl, separates the longitudinal 

depression of the Marboré Lake and the basin where the Cinca River flows (i.e., at the 



foot of the Monte Perdido, Cilindro and Marboré peaks). This dome is called the 

Central Threshold. 

 According to Del Barrio et al. (1990), the actual 0ºC isotherm is located at 2726 

m. Feuillet and Mercier (2012) established the 0ºC isotherm at approximately 2650 m, 

noting that the mean annual temperature is -1.3ºC on the Midi de Bigorre Peak (2877 

m). To the east, in the Maladeta Glacier, the Equilibrium Line Altitude (ELA) is located 

between 2956 and 2959 m; in 1820-1830, it was estimated to lie about 255 m lower 

than that (Chueca Cía et al., 2005). The mean annual precipitation is approximately 

2015 mm in the Marboré Lake (Del Valle, 1997). 

Methods 

 The recent glacier evolution in the Marboré Cirque has been reconstructed using 

several methodologies: (i) reviewing all information available from historical sources 

and previous works; (ii) performing detailed geomorphological mapping; (iii) analyzing 

some basic sediment characteristics; and (iv) cosmogenic dating of exposed surfaces. 

 A number of travellers crossed the Marboré Cirque since the end of the 18th 

century and during the 19th century; they described in detail the presence and extent of 

glaciers providing evidence of glacial evolution. In addition, scientific studies have been 

carried out since the end of the 19th century. An analysis of these documentary sources 

provided the framework for understanding the glacial evolution during the LIA, and 

helped us select the sampling sites for cosmogenic dating. 

 For geomorphological mapping, we identified morainic and periglacial deposits 

using the 1956 and 1982 aerial photographs and 2006 orthophotos. The survey was 

complemented by fieldwork during the summers of 2010, 2011 and 2012. In 2011, three 

generations of moraines were sampled and assessed for their grain-size distributions and 

carbonate contents. In 2012, an exhaustive search for polished or striated surfaces led to 

the identification of a few well-preserved sites with glacial erosion, which could be used 

for dating. 

 The moraine deposits did not contain organic carbon for 14C dating, and the 

presence of quartz or feldspar was too limited for Optically Stimulated Luminiscence 

(OSL) methods. Since the thresholds and boulders are composed of limestone or 

calcareous sandstone, we decided to use the 36Cl isotope to date how long the polished 

bedrocks and boulders had been exposed to cosmic radiation. 



Cosmogenic 36Cl is produced in carbonates by several mechanisms, including: 

(i) fast neutron spallation on 40Ca; (ii) absorption of epithermal and thermal neutrons by 
35Cl; and (iii) the capture of slow negative muons on 40Ca (Phillips et al. 2001). 

Furthermore, the cosmogenic production rates of 36Cl are much higher than those of 

other cosmogenic isotopes (Gosse and Pillips, 2001), making cosmogenic 36Cl the most 

suitable isotope for dating limestone surfaces. 

 The geomorphological map was used to select sampling sites for 36Cl surface-

exposure dating. Samples were collected from three glacial bedrock outcropings. The 

selection criteria were: (i) the sampling points were not glaciated during the LIA, 

according to our review of the historical sources and previous studies; (ii) they had a 

protrusive morphology that minimized the chance of a previous burial by soil, sediment 

or snow; (iii) they had a clear glacial polish, indicating no erosion after deglaciation; 

and (iv) they had been polished by a glacier that was thick enough to erode the pre-

glacial surface (thus minimizing the chance of 36Cl inheritance). Samples were also

taken from two boulders representing an external deposit of grey limestone, and one 

from the outermost moraine, which was composed of white Eocene limestone. The 

selected boulders were large (>1 m x 1 m x 1 m), located on the crest of prominent 

deposit ridges (to reduce the chance of previous burial by soil, sediment or snow), and 

found on a stable part of the deposit (in order to minimize the chance of the boulder

overturning or breaking). The monthly snow cover and the degree of erosion were 

estimated in the field, and these values were used as corrections during the age 

calculations.

 Samples were analysed following the procedures described by Phillips (2003) 

and Zreda et al. (1999). Briefly, each rock sample were pulverized in a roller grinder, 

and then dissolved in a hot mixture of hydrofluoric acid and nitric acid, spiked with 

isotopically enriched 35Cl. Each sample was then Cl- precipitated as AgCl, and AMS 

was used to measure the 36Cl/Cl and 37Cl/35Cl ratios of the AgCl targets (PRIME Lab, 

Purdue University). The total Cl content was determined by isotope dilution mass 

spectrometry; aliquots of rocks were powdered and analysed for major elements by 

fusion inductively coupled plasma; trace elements were examined by mass 

spectrometry; and boron was measured (all at PGNAA; Activation Laboratories, 

Canada). 

 The exposure ages were calculated with the CHLOE program version 3-2003 

(Phillips and Plummer, 1996); we used the thermal and epithermal neutron distribution 



equations and 36Cl production parameters applied in Phillips et al. (2001); the 

production of 36Cl by muons reported by Stone et al. (1998); and the latitude and 

elevation scaling of production rates described by Lal (1991). For the CHLOE-based 

calculation of exposure ages we assumed rock surface erosion ratios of 0 (no erosion), 3 

and 5 mm/ka. The applied snow cover value was based on the present snow dynamics. 

Results 

A) The glacial evolution of the Marboré Cirque according to historical sources

The Marboré Cirque was the highest cirque of the Cinca Glacier, which was 

approximately 24 km in length at its maximum extent, making it one of the largest in 

the southern Pyrenees. Penck (1883) was the first to describe the Cinca glacier deposits 

corresponding to the Upper Pleistocene glacier, although its timing and maximum 

extent were not studied until recently (Martí-Bono and García-Ruiz, 1993; Lewis et al., 

2009). The Local Last Glacial Maximum would have occurred at approximately 64 ± 11 

ky BP (Lewis et al., 2009), similarly to other Pyrenean valleys and the northern Iberian 

Peninsula glaciers (García-Ruiz et al., 2013; Jiménez-Sánchez et al., 2013). 

The first scientist to study the Marboré Cirque and its glaciers was Franz 

Schrader, who traversed and described the area between 1866 and 1924. In 1873, 

Schrader (1874) mapped the cirque at a scale of 1:40,000, delimiting the extent of the 

glaciers. He later generated two additional maps at 1:100,000 (Schrader, 1882-1892) 

and 1:20,000 (Schrader, 1914). The extent of glaciation had not changed significantly 

between the 1874 report and the subsequent maps, even though the map of 1914 was 

much more precise, with contour levels similar to modern maps. Figure 2 includes 

information on the distribution of moraine deposits related to the ice masses that were 

cited and mapped by Schrader. 

According to the map of 1874, a small glacier occupied the base of the 

Tucarroya Crest and the Astazu Peak. The so-called Lake Glacier (near the Marboré 

Lake) was visited and described by Ramond de Carbonnières in 1797 (Bonaparte, 1891). 

In the southern part of the cirque, the map of 1874 describes a unique glacier (the Monte 

Perdido Glacier), at the foot of the large wall formed by the Monte Perdido, Cilindro 

and Marboré peaks. The map of 1914 divides the glacier into three ice masses, one from 

each of the peaks, with that of Monte Perdido extending furthest. The Monte Perdido 

Glacier continued towards the east, up to at least 2420 m asl. The Lake Glacier extended 

up to the Marboré Lake. The Central Threshold appeared to be ice-free. According to 



the map of 1874, the Monte Perdido Glacier covered a total of 388 ha, although this was 

most likely overestimated due to the presence of a large snow cover (Martínez de Pisón 

and Arenillas, 1988). In contrast, the Lake Glacier covered only 8 ha. Several 

descriptions from Ramond de Carbonnières (1801) are consistent with the spatial 

distribution of glaciers according to Schrader and the ice-free nature of the Central 

Threshold. Between 1880 and 1894 several authors noted that the Lake Glacier had 

disappeared (e.g., Degrange 1882), and the Monte Perdido Glacier had clearly retreated 

(Bonaparte, 1891). Photos taken between 1890 and 1910, most of them by anonymous 

contributors (Médiathéque de l’Architecture et du Patrimoine of the French 

Government), show a rapid retreat of the glacier front and the dead ice amidst boulder 

chaos in the westernmost part of the cirque, resulting in a thermokarst topography. 

During the 20th century, the excellent conservation of a number of glacial 

deposits in the Marboré Cirque facilitated various studies aimed at determining the 

extent occupied by the ice during the LIA. Gómez de Llarena (1936) described the 

existence of two types of moraines, with the oldest running parallel to the north-facing 

slope of the cirque, while the others were located perpendicular to the oldest. 

Hernández-Pacheco and Vidal Box (1946) studied the same moraines and agreed with 

the interpretation of Gómez de Llarena (1936). Boyé (1952a) was the first to perform a 

detailed study of the main moraine of the Monte Perdido Glacier, which was 

erroneously considered as a protalus-rampart that developed due to block falls displaced 

over a snow and ice mantle towards the foot of the versant. Nicolás Martínez (1981) 

attributed a large accumulation of grey limestone boulders in the Balcón de Pineta to the 

Late Glacial period, and following Gómez de Llarena (1936), he considered them to be 

an external moraine. García-Ruiz and Martí-Bono (2001) performed a relief study of the 

OMPNP, including a geomorphological mapping of glacial deposits. They stated that 

the morainic ridges located in the southern half of the Marboré Cirque should 

correspond to the LIA, and identified the accumulation of grey limestone boulders as a 

supraglacial till that most likely belonged to the Late Glacial period. Martín Moreno 

(2004) attributed the accumulation of grey limestone boulders to the Late Glacial period, 

but noted that they could also possibly correspond to intra-Holocene advances. He 

proposed two glacial advance phases within the LIA, with different moraine deposits. 

 Recently, sediment cores from the Marboré Lake demonstrated that partial 

deglaciation of the Marboré Cirque occurred approximately 13 ka ago, as the Marboré 

Lake was ice-free 12,700 years ago (Oliva-Urcia et al., 2013) The sediment sequence is 



composed of laminated silts and shows a significant change in depositional 

environments around 5500 cal yr BP. Cores from La Larri paleo-lake, located 3 km to 

the east of the Marboré Lake, revealed that the paleo-lake developed > 35 ka ago when 

the valley was dammed by a lateral moraine of the Cinca Valley, and it was drained 

when the moraine was breached around 11 ka ago (Salazar-Rincón et al., 2013). 

These previous works provide a framework for deglaciation in the Cinca Valley. 

First, the Marboré Cirque was at least partially deglaciated 13 ka ago, and no glacier has 

covered the Marboré Lake since then (Oliva-Urcia et al., 2013; Salazar-Rincón et al., 

2013). Sedimentary analysis of the Marboré Lake cores indicates that a significant 

depositional change occurred in the middle of the Holocene, coinciding with the glacial 

advance in the Troumouse Cirque (Gellatly et al., 1992). Second, the previous studies 

differentiated three groups of morainic or pseudo-morainic deposits (Figure 3): (i) 

morainic ridges that run transverse to the north-facing slope of the cirque; (ii) 

longitudinal, more externally located moraines that present the glacial maximum during 

the LIA (Gómez de Llarena, 1936; Hernández-Pacheco and Vidal Box, 1946; Nicolás 

Martínez, 1981; Martínez de Pisón and Arenillas, 1988; García-Ruiz and Martí-Bono, 

2001; Martín Moreno, 2004), and appear to have been affected by subsequent advances 

(Martín Moreno, 2004); and (iii) a more external complex of grey limestone boulders, 

located close to the Balcón de Pineta, considered of Late Glacial or intra-Holocene age, 

and interpreted as a moraine (Gómez de Llarena, 1936; Hernández-Pacheco and Vidal 

Box, 1946; Nicolás Martínez, 1981; Martínez de Pisón and Arenillas, 1988), a nival 

protalus rampart (Boyé, 1952a) and a supraglacial till (García-Ruiz and Martí-Bono, 

2001). 

B) Geomorphological analysis of the Marboré Cirque 

The map presented in Figure 2 shows the distribution of moraines and other 

deposits in the Marboré Cirque. Except for a small deposit to the east of the Marboré 

Lake, all of the morainic ridges are located in the southern part of the cirque, at the foot 

of the large wall of the Monte Perdido, Cilindro and Marboré peaks. Several deposits 

can be distinguished: 

 (i) A large accumulation of grey limestone boulders in the Balcón de Pineta area 

(Fig. 3). This chaotic deposit is composed of blocks that frequently surpass 5 m in the a

axis without fine material; the boulders appear to be aligned on rocky crests, giving the 

(mistaken) impression of comprising several parallel morainic ridges. Lithologically, it 



is a very homogeneous deposit, with an almost absolute predominance of grey 

limestone blocks transported from the summit areas of the northern face of Monte 

Perdido Peak. The blocks do nbot present any angle erosion, polishing or striation, 

although this could be due to the rapid dissolution of the limestone surface. Notably, no 

other similar deposit has been found elsewhere the cirque. 

 A number of authors interpreted this deposit as a glacial moraine corresponding 

to the Late Glacial (Upper Pleistocene) (Nicolás Martínez, 1981; Martínez de Pisón and 

Arenillas Parra, 1988; García-Ruiz and Martí-Bono, 2001; Martín Moreno, 2004). 

However, a variety of arguments suggests that this deposit represents a large rock 

avalanche that felt from the northern side of the Monte Perdido Peak: (a) it lacks any 

fine matrix, even though it is located more externally than the other Marboré Cirque 

moraines, which include copious fine material; (b) it is unique for its structure and 

texture, with no other similar deposit in the Marboré Cirque; and (c) it is an 

extraordinarily homogeneous deposit exclusively dominated by grey limestone, which 

contrasts with the lithological diversity of the Monte Perdido wall (e.g., grey and white 

limestone, brown Maastrichtien sandstone). We propose that this deposit was emplaced 

as a rock avalanche that affected the middle part of the Monte Perdido cliff. 

 (ii) A long and narrow NW-SE morainic ridge that runs from the foot of the 

Marboré Peak towards the east-southeast, showing a well-defined form and an acute 

crest 20 m above the base (Fig. 4). This deposit is composed of two units: a basal 

matrix-supported Maastrichtien sandstone blocks, and a top, 2 m thick block-supported 

unit. The lower unit is a typical push moraine that was displaced by an ice mass, and the 

top unit represents the supraglacial till. The ridge decreases rapidly in height and 

appears to continue toward the east as a series of parallel narrow ridges that are 

primarily composed of white limestone blocks from the Monte Perdido Wall. The latter 

observation suggests that the materials from the Marboré, Cilindro and Monte Perdido 

peaks did not mix during the development of this moraine, and, consequently, when this 

long moraine was deposited, the glacier continuously occupied the southern half of the 

Marboré Cirque, extending towards the Cinca Valley. 

 (iii) Smaller moraines located behind the previously described main moraine 

indicate that the ice mass retreated and expanded again, in the form of individual ice 

tongues. Three glaciers can be distinguished: (a) the Western Glacier, which was 

located at the foot of the Marboré Peak, and bordered by a moraine that almost 

contacted the main morainic ridge; (b) the Central Glacier, which was located at the foot 



of the Cilindro Peak; and (c) the Eastern Glacier (generally called the Monte Perdido 

glacier), which was located at the foot of the Monte Perdido Peak, and it is considered 

the most important glacier in the Marboré Cirque. The Monte Perdido Glacier was 

delimited by a large moraine, which forms a massive hill from west to east (750 m long, 

250 m wide, and 40 m high; Fig. 5). It is composed of a mixture of Maastrichtien and 

Palaeocene materials and includes copious fine matrix; this internal structure is more 

typical of a subglacial till, rather than a protalus rampart as claimed by Boyé (1952a). 

The Monte Perdido glacier extended to the right, and had a well-defined ice tongue 

whose front was visible from the Cinca Valley in the 19th century. The individuality of 

this glacier is confirmed by the presence of a clear lateral moraine to the left side, 

separating this glacier from the Cilindro Peak one. 

 (iv) A subsequent retreat and re-advance resulted in the development of smaller 

ice masses. The Central Glacier, located at the foot of the Cilindro Peak, issued a short 

tongue whose moraines advanced to surpass those of the previous stage, leaving a small 

perpendicular double ridge that resembles a fluted moraine. Simultaneously, a small 

arched frontal moraine developed at the foot of the Marboré Peak, and another moraine 

developed in the westernmost sector of the cirque; the latter deposit, mostly composed 

of Maastrichtien blocks and boulders without polished or striated surfaces, is interpreted 

as a protalus rampart. 

 The morphology of the large moraine of the Monte Perdido Glacier indicates 

that a relatively important sediment remobilization occurred after its deposition. The 

existence of fluting transverse to the deposit indicates a rapid and recent glacial re-

advance and the passage of ice over the moraine, leaving a thin layer of till. The 

dragging of blocks would have caused the development of furrows typical of fluted 

moraines (as pointed out by Martín Moreno, 2004). These furrows are also visible in the 

subglacial till deposited between the foot of the Monte Perdido wall and its moraine. 

Similarly, this advance would have deposited some small block-supported moraines. 

 A large accumulation of blocks without fine matrix forming several arcs and 

depressions caused by ice melting at the western end of the cirque is interpreted as a 

small, non-functional rock (or rock-covered) glacier developed. 

 Table 1 shows the grain-size distribution and carbonate contents of three glacial 

deposits: (i) the most external moraine; (ii) a moraine at the foot of the Cilindro Peak; 

and (iii) the large moraine at the foot of the Monte Perdido Peak. Their mean carbonate 

contents are 30.2%, 35.8% and 86.6%, respectively. The grain size distribution of the 



matrix also distinguished the Monte Perdido moraine, with a greater proportion of clay 

(37.3% versus 16.2% and 20.1% in the outer moraine and the Cilindro Peak moraine, 

respectively). The inner moraine of the Cilindro Peak contains a higher sand percentage. 

These local differences illustrate how Maastrichtien sandstone outcrops control the 

moraine compositions, as the Monte Perdido Moraine reflects the greater presence of 

limestone in the Monte Perdido Wall. 

 In the northern part of the Marboré Cirque the Lake Glacier did not leave any 

moraine deposit, probably because it calved into the Marboré Lake; however, polished 

and striated surfaces are visible in the areas that were directly affected by this glacier. 

At the end of the 20th century, small snow patches persisted in this region. 

C) Cosmogenic dating of the Marboré Cirque glacial landforms 

 Six dates were obtained from the Marboré Cirque, three from polished surfaces 

and three from boulders (Table 2). Two polished surfaces close to the small Lake 

glacier at the foot of the Astazu Peak yielded dates of 3.4 ± 0.2 ka and 2.5± 0.1 ka. (Fig. 

6), while another polished surface at the outlet of the Marboré Lake yielded a date of 

1.2 ± 0.1 ka. Two samples from large boulders located in the grey limestone deposit of 

the Balcón de Pineta yielded dates of 2.5 ± 0.05 ka and 4.4 ± 0.1 ka, whereas a boulder 

located in the white limestone moraine (outermost moraine) at the front of the Monte 

Perdido glacier yielded an age of 5.1 ± 0.1 ka. 

No other dates have been obtained from polished surfaces, moraines or other 

deposits of the Marboré Cirque, because weathering has intensively affected most of the 

deposits, and no adequate sites were found for sampling. The moraines behind the large 

outermost moraine undoubtedly belong to different stages of the LIA, given their fresh 

appearance and the absence of soil and vegetation. In fact, according to the map of 

Schrader from 1874 and other historical sources, the Monte Perdido Glacier made direct 

contact with the large moraine in the second half of the 19th century. 

Discussion

The Marboré Cirque offers the best examples of Holocene glacial deposits in the 

Pyrenees and the Iberian Peninsula. No deposits corresponding to the Late Pleistocene 

have been found in the cirque, and there is sedimentological evidence that the Marboré 

Lake was deglaciated at least since the onset of the Holocene (Oliva-Urcia et al., 2013). 

The neighbouring La Larri Lake was dammed by a lateral moraine of the Cinca Glacier, 



which was probably related to the glacial advance phase at 39-32 ka (Lewis et al., 2009). 

The lake filled up with sediment since > 35 ka until ca. 11 ka BP, when the moraine 

dam was breached, the lake was drained and incorporated to the fluvial network 

(Salazar-Rincón et al., 2013). 

During the Holocene, the glaciers in the Marboré Cirque were confined to the 

southern half of the cirque, with ice masses associated with the large wall at the 

northern face of the Monte Perdido Massif (composed of the Monte Perdido, Cilindro 

and Marboré peaks). These glaciers undoubtedly experienced numerous spatial 

fluctuations (Fig. 7), following patterns similar to those seen for other Holocene glaciers 

in mountain massifs of the world during the climate changes experienced since the 

beginning of the Holocene (e.g. Mayewski et al., 2004; Deline and Orombelli, 2005; 

Camborieu Nebout et al., 2009; Clague et al., 2009; Davis et al., 2009; Menounos et al., 

2009; Nesje, 2009; Bakke et al., 2010; Wanner et al., 2011). Davis et al. (2009) 

concluded that many alpine glaciers disappeared during the Early Holocene, as 

temperatures warmed, particularly between 7 and 5.5 ka (Holocene Thermal Optimum) 

(Holzhauser et al., 2005; Wanner et al., 2011; Renssen et al., 2012; Geirsdóttir et al., 

2013). Many of such glaciers appeared again during the Neoglacial period (Davis et al., 

2009; Kelly and Lowell, 2009; Geirsdóttir et al., 2013). In addition, the relatively large 

extent of the LIA glaciers probably obscured most of the previous Holocene-era 

deposits (Deline and Orombelli, 2005). Figure 8 presents two geomorphic transects 

showing the relative positions of the glacial deposits and the rock avalanche, as well as 

the dates obtained from our analysis of cosmogenic exposure ages. The extents of the 

glaciers in the Mid Holocene and during the LIA are also indicated. A general view of 

the Marboré Cirque is presented in Fig. 9, showing the location of the LIA glaciers, the 

rock avalanche and the Neoglacial moraine. 

Two of the deposits found in the Marboré Cirque, the rock avalanche and the 

outermost moraine, are related to processes that occurred before the LIA, according to 

our 36Cl dating. Although we have only a single boulder dated from the moraine (5.1 ± 

0.1 ka) this is the first Holocene date for glacial deposits in the Iberian Peninsula, apart 

from those of the LIA. Notably, radiocarbon ages from the Troumouse Cirque, located 9 

km to the north on the French side of the Pyrenees, revealed an intensification of glacial 

activity between 5190 ± 90 yr BP and 4654 ± 60 yr BP (Gellatly et al., 1992), with 

glaciers larger than those developed during the LIA. This period coincides with the end 

of the relatively more humid and warmer conditions during the early Holocene to mid 



Holocene and the onset of a trend towards more arid and (most probably) colder 

conditions around 5–4.5 ka detected in the Marboré Lake (Oliva-Urcia et al., 2013) and 

a significant lake-level drop in other lakes in the Pyrenees after 5.7 cal yr BP (Pérez-

Sanz et al., 2013). In Sierra Nevada, southern Spain, this Mid-Holocene cold period 

coincided with the development of solifluction landforms (Oliva and Gómez Ortiz, 

2011). This era was also characterized by the development of rock glaciers in the 

Pyrenees (Serrano et al., 2011) and the Cantabrian Range of northern Spain (Pellitero et 

al., 2011). 

This period of glacial advance has also been reported in many other mountain 

areas. For instance, Mayewski et al. (2004) stated that the most extensive of the so-

called Holocene Rapid Climate Changes occurred from 6000 to 5000 yr BP. In the Alps, 

a generalized advance of the glaciers occurred during the period 5350–4900 yr BP in 

most regions (Denton and Karlén,1973; Haas et al., 1998; Deline and Orombelli, 2005; 

Joerin et al., 2006; Wanner et al., 2011), with some exceptions (Ivy-Ochs et al., 2009a). 

Nesje (2009) reported several glacial advances in Scandinavia, including one at 5600-

5300 yr BP. A short-lived cooling event was detected by Dormoy et al. (2009) in the 

Alboran and Aegean seas at 6.0-5.5 yr BP. A millennial-scale glacier advance was also 

identified in Western Canada by Clague et al. (2009) at 6.9-5.6 ka, and by Maurer et al. 

(2012) at 5.4-4.9 ka (the so-called Garibaldi Phase). Davis et al. (2009) confirmed that 

glaciers reformed and/or advanced in many regions of the world during the Neoglacial 

period, starting at approximately 6.5 ka. In general, this cold period coincided with an 

arid phase in the Western Mediterranean (Jalut et al., 2000, 2009). 

No evidence of older Holocene glacial activity has been found in the Marboré 

Cirque. The 8.2 Event (Alley and Agutsdottir, 2005) has been detected in some 

Pyrenean lake records (Sanz-Pérez et al., 2013), and it had remarkable consequences for 

human activity and settlements in some parts of the Mediterranean region (González-

Sampériz et al., 2009). However, it was likely too short-lived to have large 

consequences on alpine glacier dynamics. Sediment cores from the Marboré Lake do 

not reflect any significant depositional change during the 8.2 Event (Oliva-Urcia et al., 

2013). 

The 36Cl age that we obtained for the outermost moraine appears to contradict 

the geomorphological evidence from other deposits and the dates obtained for polished 

bedrock using the same method. This is the case for the avalanche of grey limestone 

boulders (2.5 ± 0.05 ka and 4.4 ± 0.1 ka) located a bit further away from the Monte 



Perdido Wall, as well as the polished surfaces (3.4 ± 0.2 ka and 2.5 ± 0.1 ka), located in 

the Central Threshold. This apparent contradiction may reflect technological limitations 

when using cosmogenic methods to date the exposure ages of limestone surfaces, which 

may be easily dissolved in a snowy environment. Nevertheless, 36Cl dating has been 

applied successfully to the limestone surfaces of archaeological remnants, when 

combined with adequate corrections for the snow cover and high dissolution rate (10 

mm ka-1) (Ivy-Ochs et al., 2009b). The intense dissolution of limestone could 

potentially explain why we obtained more recent dates for the avalanche deposit than 

for the outermost moraine, and could account for the dating differences between the two 

boulders sampled from the avalanche. However, even if we apply a dissolution rate of 

20 mm ka-1, the dates would remain too recent, at 2.4 and 4.1 ka. An alternative 

explanation is that the avalanche boulders underwent a rapid transport with 

fragmentation that facilitated subsequent erosion and weathering. In spite of these 

uncertainties, these minimal ages indicate that the avalanche occurred during the 

Holocene, prior to the LIA. 

The ages obtained from the polished bedrocks of the Central Threshold date the 

time when the ice retreated from these surfaces, but they are also difficult to integrate in 

the general glaciation framework for the Holocene. It is noteworthy that the glacial 

advances during Neoglaciation reflected periods of sudden, short climate change, and 

our dating method is not precise enough to distinguish the glaciation and deglaciation 

dates. However, the existence of clear glacial striations indicates that there was minimal 

post-glacial erosion, confirming that the deglaciation was a recent event. One possibility 

is that the polished bedrock was covered by other deposits, but we do not have any 

geomorphological evidence of such deposition. Another possibility is that these surfaces 

were covered by a glacier prior to the LIA. This possibility is more consistent with our 

observations, especially given that the Central Threshold was not, but almost fully 

glaciated during the LIA, when the Equilibrium Line Altitude was located somewhat 

below 2700 m (i.e. slightly below the 2750-m summits of the Central Threshold). Thus, 

a glacial advance slightly more intense than that experienced during the LIA would 

have developed a small icefield over the Central Threshold during this period (3.5-2.5 

ka). 

If we accept the above hypothesis, the ages obtained for the surface-polished 

bedrock of the Central Threshold indicate that a glacier retreated between 3.4 ± 0.2 ka 

and 2.5 ± 0.1 ka coinciding with the Bronze-Iron Ages. This coincides with the end of 



one of the most important glacial advances of the Neoglacial period, at 3.5–2.3 ka 

(Mayewski et al., 2004; Wanner et al., 2008, 2011; Davis et al., 2009). This advance 

could have glaciated the summit of the Central Threshold, where the two sampling sites 

were located. Consistent with this, important glacial advances around 3.5-3.2 and 2.6-

2.4 ka have been detected in the Alps (Haas et al., 1998; Deline and Orombelli, 2005; 

Holzhauser et al., 2005; Joerin et al., 2006; Ivy-Ochs et al., 2009a), Scandinavia (Nesje, 

2009; Bakke et al., 2010), Iceland (Larsen et al., 2012; Geirsdóttir et al., 2013), the Altai 

Mountains (Chernykh et al., 2013), West Greenland (Levy et al., 2013), West Canada 

(Tiedeman–Peyto Advance) (Clague et al., 2009; Menounos et al., 2009; Maurer et al., 

2012) and the Sierra Nevada of California (Bowerman and Clark, 2011). This is 

typically considered a period of minimum glaciation (Holzhauser et al., 2005) due to 

increasing aridity in the Pyrenees (Pérez-Sanz et al., 2013), the Iberian Peninsula 

(Martín-Puertas et al., 2008) and the Western Mediterranean in general (Nieto-Moreno 

et al., 2011). However, more humid conditions have been found in some other areas 

(Menounos et al., 2009; Corella et al., 2011; Moreno et al., 2011). For example, the 

sedimentary record from the Laguna de la Mosca in Sierra Nevada (southern Spain) 

indicates that a glacier was present at the northern face of the Mulhacén Peak between 

2.8-2.7 ka BP (Oliva and Gómez Ortiz, 2012). 

Another polished surface was also dated in a small depression of the Central 

Threshold (1.2 ± 0.1 ka), suggesting the presence of a glacier during the generalized 

glacial expansion that took place between 1.4–1.2 ka (Dark Age Cold Period) in Europe 

and North–America (Mayewski et al., 2004; Bakke et al., 2010; Wanner et al., 2008, 

2011; Menounos et al., 2009; Davis et al., 2009; Nesje, 2009; Larsen et al., 2012; 

Maurer et al., 2012; Chernykh et al., 2013; Geirsdóttir et al., 2013; Levy et al., 2013; 

Lowell et al., 2013). The glaciation of this phase equaled (Haas et al., 1998; Ivy-Ochs et 

al., 2009a) and in some cases surpassed (Holzhauser et al., 2005; Deline and Orombelli, 

2005) the LIA glacier advance in some areas of the Alps. Furthermore, glaciation re-

appeared on the northern slope of Mulhacén Peak (Sierra Nevada, southern Spain), 

between 1.4-1.2 ka BP (Oliva and Gómez Ortiz, 2012). The age of this polished surface 

indicates that during the Medieval Climatic Anomaly (MCA, 1.15–0.65 cal ky BP) 

deglaciation occurred at the high altitudes in the Pyrenees. The MCA was warmer and 

relatively more arid period in the Iberian Peninsula as indicated by lacustrine records 

from NE Spain (Morellón et al., 2012; Corella et al., 2012, 2013), and southern Spain 

(Zoñar and La Moska lakes: Martín-Puertas et al., 2008; Oliva and Gómez Ortiz, 2012), 



marine sediment near the Alboran basin (Martín-Puertas et al., 2010; Nieto-Moreno et 

al., 2011), and fossil pollen data from southern France to southeast Spain (Jalut et al., 

2000). According to Moreno et al. (2012), the MCA in the Iberian Peninsula was 

characterized by decreased lake levels, fewer floods, major Saharan aeolian fluxes, and 

less fluvial input to marine basins. 

A new and far-reaching glacial re-advance occurred during the LIA (Fig. 7), a 

period of relatively colder and more humid conditions in the Iberian Peninsula, but with 

large climate variability (Morellón et al., 2012). Numerous fluctuations in the sizes of 

the ice masses in the Marboré Cirque demonstrate that the glaciers expanded and 

contracted following small climate changes. During the LIA maximum extent, the 

glaciers almost fully contacted with the mid Holocene outermost moraine. The LIA 

moraines are very well defined, with acute ridges composed of blocks embedded in a 

massive fine matrix. The largest of these moraines developed at the foot of the Monte 

Perdido Peak, resulting in a frontal-lateral deposit that extended to the east. Later, a 

retreat followed by a new (probably short-lived) expansion caused a re-advance during 

which the ice mass covered the previous moraines, leaving deposits in the form of fluted 

moraines (Martín Moreno, 2004; González Trueba et al., 2008). Since then, the region 

has experienced intense deglaciation, particularly in the middle of the 19th century and 

the end of the 20th century: the Western and Central glaciers have melted, and the 

Monte Perdido Glacier has become an increasingly thin ice mass. Until the middle of 

the 20th century, the Monte Perdido Glacier consisted of three stepped ice masses. The 

lowest one, which was supported by snow and ice avalanches from the intermediate 

glacier, had already melted in the late 1970s. The other two ice masses have been in a 

rapid regressive stage since the 1980s, decreasing in both area and (especially) thickness. 

The intermediate glacier formed an abrupt ice cliff that produced frequent ice 

avalanches. It had a bevelled ice front that lost up to 40 m in thickness between 1981 

and 1999 (Julián and Chueca, 2007) (Fig. 10). According to Chueca and Julián (2010, 

published in 2011) and considering the location of the LIA moraines, the glaciers of the 

Marboré Cirque occupied 239 ha at the end of the LIA, 62.1 ha in 1999, and only 49.2 

ha in 2011. 

In the Lake Glacier, deglaciation caused the rapid development of gelifraction, 

solifluction and nivation processes, leading to the disappearance of glacial landforms 

under a series of debris cones. Patterned ground also developed in small flat areas, 

mainly in the eastern sector of the Marboré Lake and in some platforms of the Central 



Threshold, close to the western end of the cirque (Boyé, 1952b). Other glaciers have 

also disappeared over the last few decades, including those in the southern versant of 

the Monte Perdido Massif (i.e., Soum de Ramond, Southwest Cilindro and South 

Taillón) and other Pyrenean massifs (Chueca et al., 2002). 

 González Trueba et al. (2008) confirmed that the maximum LIA glacier advance 

occurred at the end of the 17th or the beginning of the 18th centuries, coinciding with 

the Maunder Minimum (a period of low sunspot activity, 1645-1715 AD) (Morellón et 

al., 2012). This maximum has also been supported by dendrochronological data (Saz 

and Creus, 2001). However, lichenometric analyses dated the maximum advance 

between 1600 and 1620 yr BP in the Maladeta Massif (Julián and Chueca, 1998). 

 Another significant advance may have occurred during the Dalton Minimum 

(1790-1830 AD), according to the field descriptions of Ramond de Carbonnières (1801, 

1803, 1813). In any case, the glacier fronts were in contact with or very close to the 

moraines of the maximum in 1873 (Schrader, 1874). Many glaciers worldwide had their 

maximum Holocene expansions during the first half of the 19th century, as documented 

in Scandinavia (Nesje, 2009; Bakke et al., 2012), Iceland (Larsen et al., 2012; 

Geirsdóttir et al., 2013), some parts of Greenland (Kelly and Lowell, 2009; Lowell et al., 

2013), some glaciers in Western Canada (Menounos et al., 2009; Maurer et al., 2012), 

Sierra Nevada of California (Bowerman and Clark, 2011), and many other mountains of 

the Northern Hemisphere (Wanner et al., 2008). In the Alps, the most generalized 

maximum advance during the Holocene occurred in 1850-1860 (Ivy-Ochs et al., 2009a), 

when the expansion in some places surpassed the advance of the Maunder Minimum 

(Haas et al., 1998; Holzhauser et al., 2005; Deline and Orombelli, 2005). 

Although generalized glacial retreat started after this phase in the Pyrenees, 

some Pyrenean glaciers experienced a minor re-advance during a short cooling period 

between 1880 and 1910 (Saz and Creus, 2001). Since the turn of the 20th century, the 

mean temperature in the southern Pyrenees has increased between 0.85 and 1ºC, as 

estimated by Chueca et al. (1998), López-Moreno (2000) and González Trueba et al. 

(2008). Glacial retreat of the 20th century has affected all of the Pyrenean glaciers 

(Gellatly et al., 1994; López-Moreno, 2000; Chueca Cía et al., 2005), as well as those in 

the Sierra Nevada, southern Spain (Gómez Ortiz et al., 2004) and the Cantabrian Range 

(González Trueba et al., 2008). Strong and rapid glacial retreats in response to climate 

warming have also been reported throughout the Alps, particularly in the case of small 

glaciers (Diolaiuti et al., 2011). Chueca Cía et al. (2005) demonstrated that the retreat of 



the Pyrenean glaciers is related to increases in annual temperature and decreases in 

winter precipitation, and not to summer temperature or the annual precipitation. It is 

also noteworthy that the late-spring snow accumulation in the Pyrenees has shown a 

significant negative trend since the mid 20th century, due to a progressive decline in 

winter precipitation (López-Moreno, 2005). 

Conclusions 

 The Marboré Cirque contains the best examples of Holocene glacial deposits in 

the Iberian Peninsula. A detailed geomorphological survey of the different deposits and 

new cosmogenic dates on surface exposure allow us to reconstruct the Holocene glacial 

evolution with the following phases: 

(i) Deglaciation of most of the Marboré Cirque occurred before 12.7 cal. ky BP. 

(ii) There is no evidence of glacial activity during the Early Holocene. It is 

highly probable that some ice masses persisted at the foot of the northern face of the 

Monte Perdido Massif, but their moraines have been obscured by subsequent glacial 

advances. Thus, as seen for many other mountains worldwide, the early Holocene 

glaciers in this region were much smaller than those of the mid Holocene or LIA. 

(iii) A glacial expansion occurred during the Mid Holocene (5.1 ± 0.1 ky BP), 

and a large continuous push moraine was generated by a unique ice mass at the foot of 

the Monte Perdido Massif. 

(iv) A large rock avalanche occurred during the Mid Holocene, affecting the 

northern face of the Monte Perdido Peak and leaving a chaotic deposit of large grey 

limestone blocks. This avalanche has not yet been related to any environmental event. 

(v) The surface exposure ages of approximately 3.4 ± 0.2 and 2.5 ± 0.1 ky BP 

shows a glacial retreat synchronous with the Bronze/Iron Ages, following one of the 

most important glacial advances of the Neoglacial period. 

(vi) A melting period occurred during the MCA (ca. 1.2 ± 0.1 ka) after a small 

glacial expansion during the Dark Age Cold Period (1.4-1.2 ka). 

(vii) The LIA represented a clear stage of glacial expansion, with independent 

ice masses expanding from the bases of the Monte Perdido, Cilindro and Marboré peaks. 

Two different pulses were separated by a short retraction. The first (more extended) 

pulse most likely occurred at the end of the 17th century or the beginning of the 18th 

century (Maunder Minimum), whereas the second, which appears to have occurred 

between 1790 and 1830 (Dalton Minimum), was a rapid glacial advance that left only 



thin deposits as fluted moraines. Since then, glaciers have been receding rapidly, 

particularly during the second half of the 20th century. 
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FIGURE CAPTIONS 

Figure 1. The study area. 



Figure 2. Moraines and other deposits in the Marboré Cirque. 



Figure 3. Rock avalanche, composed of large limestone blocks, close to Balcón de 
Pineta. 



Figure 4. The large outer moraine and the Monte Perdido Peak, with small glaciers 
remaining at its wall. 



Figure 5. The Monte Perdido Moraine (LIA Moraine), forming a large hill at the foot of 
the Monte Perdido Glacier. The foreground shows the chaotic accumulation of large 
limestone blocks and the outer Neoglacial moraine. 



Figure 6. A polished surface sampled for cosmogenic dating of surface exposure near 
the former location of the Lake Glacier. 

Figure 7. Evolution of glaciers in the Marboré Cirque during the Holocene. (i) Mid 
Holocene glaciers; (ii) 17-18th century glaciers; and (iii) mid 19th century glaciers. 
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Figure 8. Geomorphic transects taken from the Marboré Cirque, showing the location of 
glaciers, tills, and the Central Threshold. The locations and surface extent of the 
Holocene and LIA glaciers are shown. 



Figure 9. A general view toward the west of the Marboré Cirque, with the position and 
extent of the LIA glaciers, the rock avalanche and, in the foreground, the Neoglacial, 
mid-Holocene Moraine. 



Figure 10. The Upper and Middle (now Lower) Monte Perdido glaciers, showing the 
bevelled ice surface. The ice masses are located on structural perched flats of the 
northern face of the Monte Perdido Peak. 

Table I. Grain-size distribution of the fine fraction in the moraines of the Marboré 

Cirque (%) 

Sample site CO3Ca Sand Silt Clay Class
Outer moraine 30.2 59.9 19.9 20.1 Sandy clay loam
Mt Perdido main moraine 86.6 55.4 7.3 37.3 Sandy clay
Cilindro inner moraine 35.8 70.2 13.6 16.2 Sandy loam



Table 2. 
36
Cl exposure ages, sample type and sample location. Ages are reported for four assumed erosion rates (0, 1, 3, and 5 

mm/kyr). Errors correspond to the analytical uncertainty of the AMS 
36
Cl determination (one standard deviation). 

Sample Sample type Zero erosion age

(ka)

1 mm/kyr age

(ka)

3 mm/kyr age

(ka)

5 mm/kyr age

(ka)

Latitude

(°N)

Longitude

(°E) 

Elevation

(m)

MARB-1 polished bedrock 3.4 ± 0.2 3.4 ± 0.2 3.7 ± 0.2 3.7 ± 0.2 42° 41’ 53.07” 0° 01’ 38.73” 2756

MARB -2 polished bedrock 2.5 ± 0.1 2.5 ± 0.1 2.5 ± 0.1 2.5 ± 0.1 42° 41’ 53.37” 0° 01’ 38.38” 2756

MARB -3 polished bedrock 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 42° 41’ 35.80” 0° 02’ 24.09” 2580

MARB -4 rockslide boulder 2.3 ± 0.04 2.3 ± 0.04 2.3 ± 0.04 2.3 ± 0.04 42° 41' 23.22” 0° 02’ 38.69” 2542

MARB -5 rockslide boulder 4.0 ± 0.1 4.0 ± 0.1 4.0 ± 0.1 4.0 ± 0.1 42° 41' 21.72” 0° 02’ 44.72” 2544

MARB -6 moraine boulder 5.1 ± 0.1 5.2 ± 0.1 5.2 ± 0.1 5.2 ± 0.1 42° 41’ 16.00” 0° 02’ 46.80” 2513



Table 2. Field and analytical data for 
36
Cl samples from Marboré, Pyrenees. 

Sample ID MARB-1 MARB -2 MARB-3 MARB-4 MARB-5 MARB-6 

Latitude (°N) 42.6981 42.6982 42.6933 42.6898 42.7001 42.6878

Longitude (°E) 0.0274 0.0273 0.0400 0.0333 0.0458 0.0463

Elevation (m) 2756 2756 2580 2542 2544 2513

Sample thickness (cm) 1.5 2.5 2.5 1.5 2.0 2.0

Shielding factor (unitless) 0.798 0.798 0.831 0.947 0.974 0.964

Effective fast neutron 

attenuation length
(g cm-2) 165 165 162 149 171 160

Na2O (wt %) 0.79 0.8 0.52 0.03 0.05 0.03

MgO (wt %) 1.07 0.98 1.11 2.94 0.83 0.56

Al2O3 (wt %) 9.81 8.94 9.04 0.48 0.58 0.14

SiO2 (wt %) 56.23 55.46 45.75 8.55 2.75 0.38

P2O5 (wt %) 0.04 0.07 0.06 0.06 0.07 0.03

K2O (wt %) 2.16 1.92 2.07 0.14 0.18 0.04

CaO (wt %) 13.97 15.06 20.83 47.31 52.98 53.69

TiO2 (wt %) 0.649 0.628 0.468 0.041 0.025 0.004

MnO (wt %) 0.026 0.034 0.022 0.006 0.006 0.008

Fe2O3 (wt %) 3.07 2.67 2.64 0.14 0.23 0.09

Cl (ppm) 61.70 20.19 18.19 69.93 53.62 32.62

B (ppm) 88.7 87.2 77.7 5.4 3.7 2.1

Sm (ppm) 4.7 4.7 4.6 1 0.5 0.1

Gd (ppm) 4.2 4 3.8 1 0.6 0.2

U (ppm) 3.3 3.4 3.4 2.5 1.6 0.5

Th (ppm) 10.9 10.9 9 1.2 0.6 < 0.1

36Cl/Cl ratio  (de-spiked) (36Cl/1015 Cl) 235.7 458.5 263.7 366.0 884.0 1745.2

36Cl/Cl 1σ uncertainty  
(de-spiked)

(36Cl/1015 Cl) 14.3 16.8 16.1 6.8 18.0 28.1

Sample mass (g) 27.41 25.20 29.17 26.15 28.07 25.54

Mass of 35Cl spike 

solution
(mg)

0.991 1.033 1.022 1.020 1.026 1.036

Concentration spike 

solution
(g g-1) 1.0 1.0 1.0 1.0 1.0 1.0

Analytical stable isotope 

ratio
(35Cl/(35Cl+37Cl)) 5.51 ± 0.0720 11.25 ± 0.0200 10.84 ± 0.1520 5.40 ± 0.0300 5.90 ± 0.0230 8.15 ± 0.0520

Analytical 36Cl/Cl ratio (36Cl/1015 Cl) 147.8 ± 9.12 149.9 ± 5.48 89.3 ± 5.47 233.8 ± 4.34 522.7 ± 10.63 772.1 ± 12.44


