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RESUMEN 

 

En esta tesis doctoral pretendemos aclarar aspectos fundamentales relacionados con la 

interacción entre plantas y microorganismos del suelo y sus consecuencias para la dinámica de 

las comunidades vegetales. Pretendemos comprobar si las comunidades microbianas están 

determinando interacciones negativas y/o positivas entre plantas; si tras el abandono de tierras 

dedicadas al cultivo, las plantas y los microorganismos del suelo siguen patrones sucesionales, y 

si los microorganismos asociados a las especies vegetales son los que determinan su éxito 

competitivo en una comunidad vegetal. Para evaluar esto realizamos diferentes experimentos en 

campo y en invernadero apoyados por una serie de análisis físicos, químicos, biológicos y 

moleculares del suelo y de sus comunidades microbianas. 

 

En el primer capítulo de esta tesis buscábamos separar, dentro de los procesos de facilitación 

entre plantas, el efecto del suelo y de la copa del arbusto facilitador sobre el desarrollo de la 

comunidad de herbáceas que vive bajo el mismo. Para ello, en campo (Rambla del Saltador, 

Tabernas, Almería) seleccionamos individuos de copa pequeña, mediana y grande del arbusto 

facilitador Retama sphaerocarpa (Retama) e intercambiamos bloques de suelo tomados bajo cada 

una de estas copas. Encontramos que existe un fuerte efecto del suelo sobre la diversidad, la 

biomasa y la abundancia de la comunidad de herbáceas, el cual es independiente e incluso más 

importante que el conocido efecto de copa. 

 

Con base a estos resultados, en el segundo capítulo buscábamos indagar en mayor profundidad 

sobre aquellos factores, en especial de la matriz del suelo, que influyen sobre el desarrollo de la 

comunidad de herbáceas facilitadas. Establecimos un experimento en campo (Rambla del 

Saltador) usando como factores de estudio los microorganismos, el microhabitat y las propiedades 

físico-químicas del suelo asociados a los arbustos de Retama y a los claros de suelo desnudo 

entre arbustos. Evaluamos la respuesta en la germinación y desarrollo de especies vegetales que 

típicamente se desarrollan en claro o bajo Retama, y encontramos que los microorganismos del 

suelo asociados a Retama afectan positivamente a la germinación y desarrollo inicial de algunas 

especies pero negativamente a los de otras. Así mismo, la copa favorece la germinación de las 

plantas pero tiene un efecto neutro en cuanto a su desarrollo en biomasa, mientras que las 

propiedades del suelo tienen un efecto positivo sobre la germinación y el desarrollo de las plantas 

convirtiéndolo en el principal promotor de los procesos de facilitación entre plantas.  
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Dentro de la dinámica de las comunidades vegetales, otro proceso de relevancia es la sucesión 

secundaria. En el tercer capítulo buscábamos conocer si los microorganismos del suelo sufren un 

proceso de sucesión secundaria similar al de las plantas y si existen vínculos entre ambas 

sucesiones. Para esto, seleccionamos una extensa área de campos abandonados en diferentes 

fechas desde hace aproximadamente 100 años en el municipio de Tabernas (Almería). Usando 

sistemas de información geográfica, establecimos una cronosecuencia con 5 fechas de abandono 

distintas y en cada etapa caracterizamos las comunidades vegetales (cobertura y diversidad) y 

microbianas del suelo (biomasa, actividad y composición microbiana), así como las propiedades 

físico-químicas del suelo. Encontramos que los campos abandonados sufren procesos de 

sucesión secundaria tanto en lo referente a los microorganismos del suelo como a las 

comunidades vegetales, caracterizados por cambios en las propiedades del suelo, en la biomasa, 

actividad y composición microbiana, así como por cambios en la cobertura y diversidad de 

plantas. De esta manera, nuestros resultados sugieren que la sucesión microbiana sigue en el 

tiempo a la sucesión de plantas.  

 

En esta misma zona, también encontramos áreas que durante estos 100 años de estudio no han 

presentado ningún cambio en cuanto a la composición y estructura de las comunidades vegetales, 

es decir, que no han sufrido un proceso de sucesión secundaria. Estas áreas son dominadas por 

la gramínea Lygeum spartum (Lygeum) e impiden la entrada de otras especies típicas de la zona 

como Salsola oppositifolia (Salsola). En el cuarto capítulo pretendíamos profundizar en las 

razones que han llevado a esta detención de la sucesión secundaria, determinando si la habilidad 

competitiva de esta especie está vinculada a las comunidades microbianas del suelo, a las 

propiedades del suelo o a estrategias de la planta a lo largo de su etapa de desarrollo. Bajo 

condiciones controladas, realizamos 3 experimentos donde usamos semillas, plantas jóvenes o 

plantas adultas, respectivamente, de Lygeum y Salsola creciendo en interacción intra o inter-

específica, con suelos procedentes de bajo la copa de Lygeum o Salsola y con o sin 

microorganismos. Encontramos que los microorganismos de los suelos pertenecientes a Lygeum 

facilitan el desarrollo de Salsola tanto en estado juvenil como en estado adulto, pero las semillas 

de Lygeum germinan mucho más rápido que las de Salsola, lo que sugiere una rápida ocupación 

del espacio por parte de Lygeum. Esto sumado a su forma de crecimiento clonal, la convierte en 

una especie muy competitiva y con una gran dominancia, pudiendo incluso detener el avance de 

la sucesión secundaria.  

 



ASPECTOS GENERALES 

14 
  

La información obtenida con el desarrollo de esta tesis es relevante de cara a realizar 

predicciones de los efectos del cambio global en ecosistemas semiáridos ya que, al incluir tanto el 

estudio de comunidades vegetales como microbianas, proporciona un mejor conocimiento de los 

cambios funcionales y estructurales que pueden ocurrir en dichos ecosistemas. Esto permitiría 

anticipar las respuestas ante los cambios ambientales y, por tanto, mejorar su gestión y 

conservación. 
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INTRODUCCIÓN GENERAL 

 

La biodiversidad global está siendo sometida a una tasa de cambio sin precedentes (Pimm et al. 

1995) como respuesta a los múltiples factores antropogénicos que inciden en el medio ambiente 

(Vitousek 1994). Entre los principales vectores que afectan el funcionamiento y la biodiversidad de 

los ecosistemas se destacan en orden, el cambio de uso del suelo y el cambio climático (Sala et 

al. 2000). Uno de los más importantes cambios en el uso del suelo ha tenido lugar en áreas 

dedicadas a la agricultura. La intensificación de los cultivos y la severa desertificación relacionada 

con el calentamiento global y la sequía, han incrementado el abandono de tierras en zonas áridas 

(Zhao et al. 2005, Lasanta 2012). Los ecosistemas áridos comprenden cerca del 41% de la 

superficie terrestre y son habitados por más del 38% de la población mundial (Reynolds et al. 

2007), por lo que la degradación de tierras afecta aproximadamente a más de 2500 millones de 

personas en el mundo, cifra que aumentará en el futuro cercano debido al cambio climático y al 

rápido crecimiento poblacional (MEA 2005, FAO 2010). Por otra parte, el clima y la composición 

de la atmósfera están cambiando rápidamente, registrándose aumentos significativos en la 

temperatura global y la concentración de dióxido de carbono que desencadenan alteraciones en el 

ciclo hidrológico global y cambios en los patrones regionales de precipitación (IPCC 2007).  

 

Las interacciones planta-planta son una parte principal de los mecanismos que gobiernan la 

respuesta de las especies y comunidades vegetales a estos cambios ambientales (Brooker 2006); 

pueden ser positivas o negativas, y el balance neto de la interacción será de facilitación (si es 

positivo) o de competencia (Armas and Pugnaire 2005). Aunque por mucho tiempo la teoría 

ecológica y los modelos de interacción entre plantas han estado centrados en la competencia, 

existe gran evidencia experimental sobre las interacciones positivas entre plantas (Pugnaire et al. 

1996b, Callaway and Pugnaire 2007, Brooker et al. 2008), las cuales toman gran relevancia en 

zonas de elevado estrés ambiental (Callaway et al. 2002) tales como los ecosistemas áridos 

(Tirado and Pugnaire 2005). 

 

Bajo las extremas condiciones ambientales de estos ecosistemas, el efecto nodriza, un clásico 

ejemplo de facilitación donde una especie facilita el establecimiento y crecimiento de otras 

mediante el mejoramiento de las condiciones físicas bajo su copa (Flores and Jurado 2003, 

Callaway 2007), es un mecanismo clave para mantener la biodiversidad global, ya que promueve 

tanto la diversidad de especies como el aumento de la productividad del sistema (Callaway 1995, 

Pugnaire et al. 1996a, Pugnaire et al. 1996b, Brooker et al. 2008). Se ha visto que plantas nodriza, 
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como es el caso de Retama sphaerocarpa (L) Boiss., protegen a las plantas beneficiarias de los 

altos niveles de irradiación y temperatura (Moro et al. 1997, Yang et al. 2009, Jankju 2013), 

contribuyen al aumento de la disponibilidad hídrica por acción de la sombra o del levantamiento 

hidráulico (Zou et al. 2005, Prieto et al. 2012) e incrementan la disponibilidad de nutrientes debido 

a la acumulación de hojarasca (Rodríguez-Echeverría and Pérez-Fernández 2003). Las grandes 

modificaciones inducidas por las plantas nodriza sobre las propiedades del suelo y las condiciones 

microclimáticas han sido tradicionalmente identificadas como el principal mecanismo de 

facilitación en ambientes áridos. Sin embargo, datos recientes han sugerido un posible papel de 

los microorganismos del suelo en este proceso (Hortal et al. 2013, Rodríguez-Echeverría et al. 

2013), que se ha explorado para las asociaciones de micorrizas (Van Der Heijden and Horton 

2009, Van der Putten 2009), pero que se ha obviado para las comunidades de bacterias a pesar 

de la fuerte influencia que tienen para el desarrollo de las plantas. 

 

La mayoría de los modelos actuales consideran la disponibilidad de luz y nutrientes como la 

fuerza que gobierna las interacciones entre plantas (Grime 1983, Tilman 1988) y, por tanto, la 

composición y estructura de las comunidades vegetales. Sin embargo, las interacciones entre 

plantas y organismos del suelo pueden tener consecuencias importantes para la dinámica de la 

vegetación (Van der Putten and Peters 1997) porque, aunque la naturaleza de las interacciones 

suelo-planta es todavía en gran parte desconocida, se sabe que la identidad de las especies 

vegetales influye notablemente en la comunidad de organismos del suelo, y que éstos dejan un 

legado que condiciona el desarrollo posterior de la comunidad vegetal. Este legado vendría 

mediado por la acumulación en la rizosfera de microorganismos cuyos efectos pueden ser 

positivos (Bever 2003, Rodríguez-Echeverría et al. 2013) o negativos (Klironomos 2002) afectando 

al resultado de la interacción con otras especies de plantas (Van der Putten and Peters 1997, 

Bonanomi and Mazzoleni 2005). 

 

Otro mecanismo que promueve la biodiversidad y en el que los microorganismos pueden también 

jugar un papel importante, es la sucesión secundaria que ocurre tras una fuerte perturbación como 

el cambio de uso del suelo o el abandono de tierras dedicadas al cultivo. Los fenómenos de 

sucesión secundaria se desarrollan a lo largo del tiempo tendiendo a la restauración natural de los 

ecosistemas perturbados. El estudio de la sucesión secundaria en ecosistemas áridos ha estado 

principalmente centrado en la dinámica de las comunidades de plantas, con escasa atención a las 

comunidades microbianas del suelo. En otros ecosistemas como dunas arenosas de interior se 

han observado cambios en las comunidades microbianas a lo largo del tiempo (Tarlera et al. 
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2008). Así mismo, tras la restauración de ecosistemas forestales se han observado tendencias 

sucesionales en la comunidad de bacterias (Banning et al. 2011), mientras que otros autores 

(Kuramae et al. 2011) encontraron cambios en las comunidades microbianas pero únicamente en 

etapas tempranas de sucesión. Aun así, en comparación con las comunidades de plantas, hay 

una escasa evidencia que demuestre patrones sucesionales en comunidades microbianas y 

menos aún sobre su cambio respecto a la composición de las comunidades de plantas. Sin 

embargo, cambios en los microorganismos del suelo pueden resultar en efectos lineales sobre la 

tasa de crecimiento de las plantas (Bever 2003), y aunque la escasa evidencia experimental 

existente ha sido principalmente desarrollada bajo condiciones controladas, los datos disponibles 

sugieren que las comunidades microbianas pueden jugar un importante papel en la sucesión 

secundaria. El escaso conocimiento actual nos muestra que, dependiendo de la posición 

sucesional de las especies de planta implicadas, las interacciones negativas planta-suelo pueden 

promover el avance sucesional favoreciendo el reemplazo de especies (Klironomos 2002, Bever 

2003, Bonanomi et al. 2005, Kardol et al. 2006) o, por el contrario, retroalimentaciones positivas 

pueden conducir a la dominancia de una especie, reduciendo la tasa de sucesión (Bever 2003, 

Kardol et al. 2006).  

 

Parece probado que las plantas pueden modificar la estructura de la comunidad microbiana 

asociada a la rizosfera (Chanway et al. 1991, Kowalchuk et al. 2002, Hortal et al. 2013) y que 

estos cambios influyen en su propio funcionamiento (Bever 1994, Bever et al. 1997), lo que puede 

hacer que aumente o disminuya su tasa de crecimiento. No obstante, el papel de tales 

interacciones en la dinámica temporal de la comunidad vegetal ha recibido poca atención 

(Bardgett et al. 2005, Kardol et al. 2006). No está claro, por ejemplo, cómo cambios específicos en 

la comunidad de microorganismos del suelo contribuyen a la dinámica de la comunidad vegetal y 

sus tasas de reemplazo sucesional, o cuánto tiempo permanecen operacionales estos efectos 

(Van der Putten 2003). Lo que sí parece claro es que cuando la interacción suelo-planta reduce la 

capacidad competitiva de una especie pionera, también afecta de forma decisiva el resultado de 

competencia con especies sucesionalmente más tardías (Bever 2003), de forma que la influencia 

de las especies pioneras sobre el suelo influye en la dinámica posterior de la comunidad vegetal. 

 

Las dificultades tradicionalmente asociadas al estudio de los microorganismos han hecho que 

exista un gran desconocimiento sobre su influencia en la dinámica de las comunidades vegetales. 

Recientemente, los avances asociados al uso de técnicas moleculares han facilitado acceder a 

esta caja negra y comprender mejor cómo funcionan las comunidades microbianas. Está 
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demostrado, por ejemplo, que la diversidad y composición de las comunidades microbianas del 

suelo influyen en el crecimiento y la productividad de las plantas (Wardle et al. 2004) y en la 

abundancia de especies (Klironomos 2002, Hortal et al. 2013). El efecto de los microorganismos 

del suelo en las comunidades de plantas es el resultado combinado de la interacción entre 

diferentes grupos microbianos así como entre plantas y organismos patógenos, parásitos, 

mutualistas y descomponedores (Van der Putten and Peters 1997, Kulmatiski and Beard 2008, 

Rodríguez-Echeverría et al. 2013). Por tanto, la integración de las comunidades microbianas del 

suelo en el marco de las interacciones entre plantas y de la sucesión secundaria nos debería 

proporcionar una imagen más realista de estos procesos. 

  



ASPECTOS GENERALES 
 

20 
  

OBJETIVOS GENERALES 

 

Explicar aspectos fundamentales relacionados con la interacción entre plantas y microorganismos 

del suelo y sus consecuencias para la dinámica de las comunidades vegetales.  

 

Específicamente, los objetivos que se abordarán en los diferentes capítulos de esta tesis son:  

 

 Determinar si en los procesos de facilitación en ecosistemas semiáridos, los suelos de las 

especies nodriza afectan la productividad y diversidad de las plantas a las que benefician, 

en un proceso independiente del efecto de copa.  

 Diferenciar el efecto de los microorganismos del suelo, del microhabitat y de las 

propiedades del suelo  en los procesos de facilitación en ecosistemas semiáridos.  

 Evaluar si las interacciones entre plantas, suelo y microorganismos del suelo definen la 

sucesión secundaria en ecosistemas semiáridos (capítulo 3). 

 Definir si la interrupción de la sucesión es el resultado de la interacción entre plantas y 

microorganismos del suelo.  

 

 

 

  



 

21 
  

 

 

  



CHAPTER 1. SOILS AFFECT PLAN PRODUCTIVITY AND DIVERSITY INDEPENDENTLY OF THE CANOPY EFFECT 

 

22 
 

 

 

1. SOILS UNDER NURSE SPECIES AFFECT PLANT PRODUCTIVITY AND 
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1.1. ABSTRACT 

 

The nurse plant effect has been mainly explained by the positive effect of the canopy on the 

amelioration of microclimatic conditions while the direct effect of the complex soil matrix on this 

facilitation process has received less attention. We examined the effects of both canopy and soil of 

the nurse shrub Retama sphaerocarpa on changes occurring in aboveground biomass, 

abundance, diversity and richness of the understorey plant community. We hypothesized that, in 

addition to the positive effect of the canopy associated to size, there will be a strong and 

independent effect of soil on these changes. For this, we collected three soil blocks 20 cm x 20 cm 

x 15 cm (length, width, depth) under the canopy of eighteen Retama shrubs grouped into three 

different canopy sizes (small, medium, large) and randomly distributed it back into the extraction 

holes under the shrubs, such that each shrub had three soil blocks, each of them from a different 

soil origin (collected under small, medium or large shrubs). We found that both soil origin and 

canopy size of the nurse shrub independently affected the total aboveground biomass and plant 

diversity. Regarding canopy effect, both biomass and diversity increased in communities growing 

under large Retama canopies promoted by a decrease in irradiance and temperature related to 

deeper shade. However, regarding soil origin, we recorded an inverse relation between them so 

that aboveground biomass increased and plant diversity decreased under soils from large Retama 

shrubs. The positive effects of soil organic matter and the increase in nutrients added to soil 

microbial and activity could promote a higher biomass under soils from large Retama shrubs. On 

the other hand, factors linked to low soil seed bank diversity due to limitations in seed dispersal, 

temporally variable environment or positive plant interactions of some species with soil 

microorganisms or nutrients that could cause competitive exclusion may explain the reduced plant 

diversity observed in soils from under large shrubs. The effect of soil origin on biomass and 

abundance per species was larger than the canopy effect, thus playing a key role in determining 

the structure of understorey communities. Overall, complex processes that occur in the soil matrix 

need more attention to increase our understanding of the mechanisms that regulate facilitation 

among plants. 
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1.2. INTRODUCTION 

 

Although models for plant interactions have mainly emphasized competition (Went 1973, Tilman 

1982, Aerts 1999, Keddy 2001, Grime 2002), plant species may also provide benefits to neighbors 

through facilitation processes (Callaway 1995, 2007, Callaway and Pugnaire 2007). Facilitation, 

defined as the interaction where one plant species benefits another neighboring species in terms 

of germination, survival or growth, is a well-known phenomenon described in many ecosystems 

around the world (Callaway 2007). A particular case of facilitation is the nurse plant effect (Niering 

et al. 1963), in which a species develops several mechanisms to facilitate the establishment and 

growth of others species beneath their canopy (Pugnaire et al. 1996a, Callaway 2007). The nurse 

effect has great relevance in extreme conditions, such as arid environments (Flores and Jurado 

2003), where nurse plants mitigate high temperatures and irradiance (Moro et al. 1997, Yang et al. 

2009, Jankju 2013) through shade and increased water availability due to shading or hydraulic lift 

(Zou et al. 2005, Prieto et al. 2012). Nurse plants also increase nutrient availability and cycling 

through the accumulation of litter and increased decomposition due to higher soil moisture 

(Rodríguez-Echeverría and Pérez-Fernández 2003, Armas et al. 2012) and microbial activity and 

biomass (Hortal et al. 2013). All these mechanisms promote the establishment of a plant 

community under the canopy of nurse plants including species that would otherwise be absent 

without facilitator species (Armas et al. 2011).  

 

The nurse effect has been mainly linked to plant age and canopy size and its buffering of physical 

conditions underneath (Pugnaire et al. 1996a, Pugnaire et al. 1996b, Moro et al. 1997, Callaway 

2007). As a consequence, understorey plant diversity and productivity increases with increasing 

canopy size of the nurse (Pugnaire et al. 1996b, Schöb et al. 2013). Canopies also affect soil 

chemical and physical properties underneath, increasing fertility under the canopy of nurse shrubs 

compared to gaps (Pugnaire et al. 2004). Although changes promoted by nurse plant canopies on 

soil properties and microclimatic conditions have been recognized as the main mechanism behind 

the facilitative effects of nurses in arid conditions, the role of soil has been scantly addressed and 

mostly considered a consequence not independent from canopy effects. Recent reports have 

shown, however, that soil biota changes in composition, biomass and activity with shrub age 

(Hortal et al. 2013) suggesting a potential role of soil microbial communities in the facilitation 

process (Rodríguez-Echeverría et al. 2013). Moreover, the complex soil matrix under a nurse plant 

species has intrinsic properties that may directly affect the development of understorey 

communities. For instance, soil texture, soil organic matter contents and aggregation have an 
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effect on water dynamics and soil oxygenation, affecting the availability of dissolved nutrients and 

root development (Porta-Casanellas et al. 2003, Rucks et al. 2004). 

 

In an experiment in the field we addressed these points trying to tell apart the effects of soil origin 

(collected under small, medium or large nurse shrubs) and canopy (small, medium or large 

canopies) of the facilitator shrub species Retama sphaerocarpa on the plant community growing 

underneath this shrub species. 

 

1.3. OBJECTIVES 

 

Our main objectives were 1) to determine whether there is an effect of soil on plant communities 

growing under Retama sphaerocarpa, and whether this effect is independent of the canopy; and 2) 

to assess the contribution of both soil origin and canopy size on plant diversity and productivity of 

the understorey plant community. 

 

1.4. HYPOTHESES 

 

We hypothesized that, in addition to the well-known positive effect of the canopy associated to 

size, there will be a strong effect of soil independent from the canopy influencing understorey 

communities. We expected an increase in plant productivity, diversity and richness under the 

canopy of large Retama shrubs compared to small shrubs, an in soils collected under large 

Retama shrubs compared to soils collected under small shrubs, as well as a strong and 

independent effect of soil on plant biomass and abundance per species.  

 

1.5. METHODS 

 

1.5.1. Field site and species 

 

The field site was located in the Rambla del Saltador, a dry valley on the southern slope of the 

Sierra de los Filabres mountain range, Almería, southeast Spain (37º08´N, º22´W; 630 m altitude). 

The climate is semiarid Mediterranean, with a mean annual temperature of 16º C and mean annual 

rainfall of 300 mm (Puigdefabregas et al. 1999). The soil is of alluvial origin, with a loamy sand 

texture, characterized by low values of water holding capacity, electrical conductivity, cation 

exchange capacity, organic matter, nutrient concentrations, and a moderate alkaline pH (Pugnaire 
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et al. 1996b, Puigdefábregas 1996). The plant community is dominated by the leguminous species 

Retama sphaerocarpa (L.) Boiss. (Retama hereafter, Fig. 1.1), a tall shrub with an open canopy 

with photosynthetic stems and a dimorphic root system with shallow lateral roots and tap roots that 

can reach 30 m deep (Haase et al. 1996). Thanks to its root system, shrubs can lift water from 

deep, wet soil layers and release it to shallow, dry soil layers via hydraulic lift (Prieto et al. 2010), 

contributing to its nurse effect (Prieto et al. 2012). Retama facilitates the establishment and growth 

of many other plant species under their canopy (Pugnaire et al. 1996b) compared to gaps among 

shrubs, having an overall positive impact on local community diversity in semiarid environments 

(Armas et al. 2011). Plant biomass and species richness under Retama increase with shrub size 

and age (Pugnaire et al. 1996b). 

 

 

Fig.1.1. Field site in the Rambla del Saltador dominated by the leguminous shrub Retama. Patches of 

vegetation underneath Retama contrasted with almost bare soil in gaps among shrubs. 

 

1.5.2. Experimental design  

 

Eighteen Retama shrubs grouped into three different canopy sizes (small, medium, large) were 

randomly selected in a ~2 ha homogeneous plot. Mean shrub height (±SE) in each size category 

was 1.04±0.06; 2.12±.0.08; 3.29±0.22 m, and mean projected canopy area (calculated as the 

area of an ellipse; [Pugnaire et al. 1996b]) was 0.95±0.12; 7.19±0.66; 37.43±3.13 m2, respectively 

(Hortal et al. 2013). Shrub height and canopy area were significantly different among size classes 

and corresponded to different shrub ages, i.e., <10, 10-25, >25 years old, respectively, according 

to data from the same field site (Pugnaire et al. 1996b, Hortal et al. 2013). In November 2010, 

before the onset of the germination and growth of the herbaceous community, three soil blocks 20 

cm x 20 cm x 15 cm (length, width, depth) were collected using a square shovel to maintain its 

structure at the northern aspect of each shrub and at an intermediate distance between the trunk 
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and the edge of the canopy, where microclimatic conditions, soil chemical fertility and soil seed 

bank lead to high levels of productivity and diversity (Moro et al. 1997).  

 

The 54 soil blocks were randomly distributed back into the extraction holes under the 18 shrubs 

(six per canopy size) such that each shrub had three soil blocks, each of them from a different soil 

origin, i.e. collected under small (SS), medium (MS) or large shrubs (LS) (Fig. 1.2). Soil properties, 

soil microbial biomass and activity, and community composition under the 18 shrubs were 

characterized at sampling time (Hortal et al. 2013). Soil blocks were placed into plastic containers 

to avoid mixing with adjacent soil, with small punctuations in the bottom to allow for drainage (Fig. 

1.3). Therefore, seeds from three different soil origins emerged and grew under three different 

canopy sizes (referred as SC, MC and LC for small, medium and large canopies). This 

experimental design allows separating microclimate from soil and seed bank effects as causes of 

changes in diversity and productivity of plant communities under Retama shrubs. All soil blocks 

were covered with a wire mesh to prevent seed predation and grazing. In April 2011, six months 

after establishment and at peak of plant growth, plants were harvested, sorted by species, and 

counted. Plant material was dried at 70ºC during 48 h and weighted to obtain aboveground dry 

mass. Plant diversity was assessed through the Shannon’s diversity index. All taxa were identified 

to the species level. 

 

 

Fig. 1.2. Experimental design. Soil blocks collected under small (SS), medium (MS), and large (LS) Retama 
shrubs were randomly assigned to grow under small (SC), medium (MC) and large (LC) shrubs. Drawing by 
Josep Berenguel.  
 

 

MS LS SS 

MS LS SS 

MS LS SS 

SC 
MC 

LC 
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Fig. 1.3. Field experiment. Soil blocks translocated under a large Retama shrub (a), and detail of the 
experimental unit: a plant community growing in a soil block in a plastic container (b). 

 

1.5.3. Statistical analyses  

 

The experimental design was a split plot factorial where each shrub (small, medium and large) was 

the main plot, and each soil block (from under small, medium and large Retama shrubs) was the 

sub-plot. Canopy size and soil origin were considered as fixed factors and main plots and subplots 

where included as random effects. Aboveground mass and plant diversity were analyzed using 

linear mixed models. Violations of normality and/or homoscedasticity were checked and the best 

model was selected by comparison using the Akaike information criterion (Akaike 1974). Species 

richness was analyzed using Generalized Linear Mixed Models with a poisson distribution, a 

logistic link function and the maximum likelihood (ML) criterion. Significance was established at 

p<0.05. Post-hoc comparisons were performed using Fisher’s LSD test. We also carried out a 

principal component analysis (PCA) of the abundance and aboveground biomass per species and 

only on those species that have a minimum frequency ≥ 20% (i.e., in at least 10 soil blocks). 

Differences were evaluated through NPMANOVA with 9999 permutations using Past v 2.12 

software (Hammer et al. 2001). The rest of the data was analyzed with the InfoStat software 

package (Di Rienzo et al. 2013). 

 

1.6. RESULTS 

 

1.6.1. Aboveground productivity 

 

Understorey plant biomass increased with canopy size independently from soil origin (Table S1.1). 

Total aboveground biomass was three times larger in blocks growing under large shrubs than in 

blocks growing under small shrubs (Fig. 1.4a, Table S1.1). Soil origin also had a significant effect 
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on total aboveground biomass, being higher in soils collected under large and medium Retama 

shrubs than in soils collected under small Retama shrubs (Fig. 1.4b, Table S1.1). 

 

 

Fig. 1.4. Total aboveground biomass of plants growing under Retama shrubs of different canopy size (a), 
and with soils collected from different Retama canopy sizes (b). Different letters indicate significant 
differences among treatments after post-hoc comparisons at a significance level of 0.05. 
 

Regarding aboveground biomass per species, the ordination analysis showed a positive 

correlation between the aboveground biomass of several species such as Avena sterilis, Bromus 

rubens, Brachypodium distachyon, Lagurus ovatus and Geranium molle with soils collected under 

large Retama shrubs, while biomass of Minuartia hibrida, Rumex bucephalophorus, Medicago 

minima, Paronychia argentea, Sisymbrium erysimoides and Stipa capensis were positively 

correlated with soils obtained under small or medium Retama shrubs (Fig. 1.5, Table S1.2). We 

only found significant differences in aboveground biomass per species in relation to soil origin, so 

that biomass of species grouped in soils from large Retama shrubs was significantly different to 

that found in soils from small or medium Retama shrubs (F2,51 = 1.97, p<0.001, NPMANOVA, Table 

1.1). No differences were found regarding canopy size or interaction between soil origin and 

canopy size (F2,51 = 1.37, p=0.07; F4,45 = 0.73, p = 0.96, respectively, NPMANOVA). 
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Soil Origin 

Aboveground biomass  Abundance 

Small 
(SS) 

Medium 
(MS) 

Large 
(LS) 

 Small 
(SS) 

Medium 
(MS)  

Large 
(LS) 

Small (SS)  ns 2.31*   ns 3.11* 
Medium (MS)   2.23*    2.87* 
Large (LS)        

 

Table 1.1. F values of pairwise comparisons of Bray-Curtis similarity index of aboveground biomass and 
abundance per species using one-way NPMANOVA analysis. Asterisks and bold values indicate significant 
differences among soil origin after post-hoc comparisons at a significance level of 0.05. ns= non significant; 
n=9999 permutations.  

 

 
 

Fig. 1.5. Principal component analysis of aboveground biomass per annual/herbaceous plant species (n=54 
soil blocks). Colours indicate soil origin from small (white), medium (grey) and large (black) Retama shrubs. 
Symbols indicate small (circle), medium (triangle) and large (square) Retama canopy size. 

 

1.6.2. Species abundance 

 

Soil origin influenced the number of individuals per species in soil blocks. PCA ordination based on 

species abundance rendered a clear separation of soil blocks along the first axis (Fig. 1.5). Plant 

community composition -in terms of plant abundance per species- grouped by soil origin rather 

than by canopy size (Fig. 1.6) so that the number of individuals per species in soils collected under 

large Retama shrubs were significantly different to soils collected under small or medium Retama 

shrubs (F2,51 = 2.30, p<0.001, NPMANOVA; Table 1.1). The ordination analysis showed a positive 

correlation between several species such as Minuartia hibrida, Rumex bucephalophorus, 
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Medicago minima, Paronychia argentea, Sisymbrium erysimoides and Stipa capensis with soils 

collected under small or medium Retama shrubs, while, Avena sterilis, Bromus rubens, 

Brachypodium distachyon, Lagurus ovatus and Geranium molle were negatively correlated with 

these soils (Fig. 1.6, Table S1.2). Canopy size or interaction between soil origin and canopy had 

no significant effects on plant communities in terms of plant abundance per species (F2,51 = 1.38, p 

= 0.08; F4,45 = 0.76, p = 0.91, respectively, NPMANOVA). 

 

 

Fig. 1.6. Principal component analysis of plant community composition based on plant abundance (number 
of individuals per species). Colours indicate soil origin from small (white), medium (grey) and large (black) 
Retama shrubs. Symbols indicate small (circle), medium (triangle) and large (square) Retama canopy size.  
 

1.6.3. Plant diversity and species richness 

 

Similarly to aboveground biomass, plant diversity (Shannon index) was independently affected by 

canopy size and by soil origin with no significant interaction between them (Table S1.1). Plant 

diversity was higher under large Retama canopies than under small or medium canopies (Fig. 

1.7a), as well as in soils collected from small and medium Retama than in soils from large Retama 

shrubs (Fig. 1.7b). 
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Fig. 1.7. Diversity of communities growing in soil blocks placed under Retama shrubs of different canopy 
size (a) and collected from under different Retama shrubs (b). Different letters indicate significant 
differences among treatments after post-hoc comparisons at a significance level of 0.05. 
 

Species richness was affected by the interaction between canopy size and soil origin (Table S1.1), 

being highest under large Retama canopies for any soil origin and in particular in soils collected 

under small and medium Retama shrubs. Richness in blocks from small and from large Retama 

shrubs followed the same pattern being lower in blocks placed under small and medium Retama 

canopies than under large canopies. In soils from medium Retama shrubs, richness was lowest 

under small Retama canopies, intermediate under medium canopies and highest under large 

Retama canopies. Species richness was higher in soils collected from small and medium Retama 

shrubs than in soils from large Retama shrubs except under small Retama canopies where soils 

from large and medium Retama shrubs showed similar richness (Fig.1.8, Table S1.3). 
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Fig. 1.8. Species richness of soil blocks collected under different Retama shrubs and growing under 
Retama shrubs of different canopy size. Different letters indicate significant differences among treatments 
after post-hoc comparisons at a significance level of 0.05. 

 

1.7. DISCUSSION 

 

Both soil origin and canopy size of the nurse shrub Retama sphaerocarpa affected, but with 

independent effects on, total aboveground biomass and plant diversity. Total aboveground 

biomass increased in communities growing under large Retama canopies and in soils collected 

from under large Retama shrubs; however, plant diversity and species richness increased under 

large Retama canopies but decreased in soils collected from large Retama shrubs. Soil origin 

showed an overall larger effect than canopy size on species plant abundance and biomass. 

 

1.7.1. Aboveground productivity and species abundance 

 

We found an increase in plant productivity parallel to the increase in canopy size related to deeper 

shade and overall better microclimatic conditions under the shrub canopy (Pugnaire et al. 1996b, 

Moro et al. 1997, Callaway 2007). Bigger canopies promote a decrease in temperature and 

irradiance at soil level (Moro et al. 1997, Yang et al. 2009, Jankju 2013) having a positive effect on 

understorey plants. Many species from arid environments reach their maximum photosynthetic 

rates at photosynthetically active radiation (PAR) levels far below the general natural maximum, 

~2000 μmol m-2 s-1 (Callaway and Pugnaire 2007). Extreme temperatures typical of arid 

environments limit plant productivity through negative effects on plant tissues (Fischer and Turner 
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1978) and lead to greater water lost to transpiration as vapor pressure deficits increase with 

temperature (Anderson 1936, Day 2000). Retama canopies decrease understorey temperatures 

and daily amplitudes (Pugnaire et al. 2004) as well as soil water evaporation (Domingo et al. 

1999), with an overall positive effect on aboveground biomass. 

 

On the contrary, the poor aboveground biomass observed under small Retama shrubs was likely 

due to the fact that their canopies do not have a shade as deep as large Retama canopies and 

thus microclimatic conditions may be more similar to the dry, open spaces. Many species which 

showed a suitable development with low shade, such as Stipa capensis or Paronychia argentea 

(Pugnaire et al. 1996b, Boeken et al. 2004), increased their biomass when moved to better 

microclimatic conditions such as medium and large Retama canopies. Previous studies under 

Retama have also found higher mass of herbs under large Retama canopies than under small 

Retama canopies also linked to a different plant composition (Pugnaire et al. 1996b, Schöb et al. 

2013). 

 

Although shade is considered a major facilitation factor in arid ecosystems (Moro et al. 1997, 

Holmgren 2000), our results showed that soil effects on aboveground biomass of herbaceous plant 

communities was independent of canopy effects. Total aboveground biomass was higher in soils 

blocks collected under large Retama than in soils collected under small Retama shrubs. A recent 

survey in the same Retama shrubs has shown an increase in soil nutrients, soil microbial biomass 

and activity, as well as different soil microbial composition under large Retama than under small or 

medium Retama shrubs (Hortal et al. 2013). This, added to the increase in soil moisture under 

large shrubs (Pugnaire et al. 2004) and the increase in organic matter and nitrogen with age 

(Pugnaire et al. 1996b), generate better soil conditions that promoted the highest total 

aboveground biomass of understorey plants in soils from under large Retama shrubs. 

 

Aboveground biomass and abundance per species were linked to soil origin rather than canopy 

size. We observed that plant communities grown in soils from large Retama shrubs were clearly 

different to plant communities grown in soils from medium and small Retama shrubs. For example, 

Sisymbrium erysimoides, a species typical from low shade microhabitats (Pugnaire and Lázaro 

2000) showed similar aboveground biomass under any Retama canopy size, but showed higher 

aboveground biomass and abundance in soils from under small Retama than in soils from large 

Retama shrubs; while Avena sterilis or Geranium molle, species typical from understorey 

communities under Retama (Armas et al. 2011) were strongly facilitated by soil from large Retama 
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shrubs rather than Retama canopies. The soil origin effect could be explained because the 

presence of Retama strongly modifies soil resources underneath its canopy (Pugnaire et al. 2004), 

and soil characteristics such as the abundance and composition of soil seed bank (Aguiar and 

Sala 1999, Díaz-Villa et al. 2003). It has positive effects on soil water holding capacity, soil 

temperature (Moro et al. 1997, Pugnaire et al. 2004), porosity, aeration and buffering soil pH 

(Porta-Casanellas et al. 2003) through the accumulation of soil organic matter. The presence of 

Retama shrubs is also linked to an increase in soil nutrients (Rodríguez-Echeverría and Pérez-

Fernández 2003), soil microbial biomass and activity (Hortal et al. 2013) as well as an increase in 

clay content (Sessitsch et al. 2001, Porta-Casanellas et al. 2003, Chapter II). All these factors 

together could explain the observed increase in both aboveground biomass and abundance of 

species in understorey plant communities irrespective of shrub canopy size. 

 

1.7.2. Plant diversity and species richness 

 

Similarly to different studies that have shown a positive relationship between canopy size and plant 

diversity or species richness (Pugnaire et al. 1996b, Maestre and Cortina 2005) we also found that 

plant diversity and richness significantly increased under large Retama canopies. However, we 

found significantly lower diversity and richness in soil blocks collected from under large Retama 

shrubs than in soil from under other origins. Our results showed that plant diversity was 

independently affected by canopy size and soil origin while species richness was affected by the 

interaction among them. 

 

The increase in plant diversity and species richness under large Retama shrubs was linked to the 

amelioration of microclimatic conditions under large Retama canopies. Under these large canopies 

there are gradients of radiation and temperature that interact with gradients of litter accumulation 

and nutrient distribution (Moro et al. 1997, Amarasekare and Possingham 2001) promoting 

microhabitat heterogeneity and thus niche differentiation (Lambers et al. 2004). This phenomenon 

may facilitate seed germination of more species and, thus, plant diversity and species richness 

(Pugnaire et al. 1996b, Moro et al. 1997, Maestre and Cortina 2005). We suggest that seeds from 

greater number of plant species might find their germination optimum under the more diverse 

microhabitat conditions beneath large Retama shrubs leading to higher number of species that 

germinate here compared to other more homogeneous microhabitats (smaller shrub canopy 

sizes). In accordance, our results show that seeds of species such as Desmazeria rigida, 

Diplotaxis virgata or Erodium cicutarium were present in soils from small or medium Retama 
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shrubs, which were much more diverse and species rich than soils from large Retama shrubs, but 

they only germinated under large Retama shrubs. The positive canopy effect was also evident in 

species richness of soils from medium Retama shrubs, which, unlike plant diversity, significantly 

decreased under the hostile conditions of small Retama canopies compared to larger canopies.  

 

Parallel to the increase in canopy size, the increase in microhabitat heterogeneity promoted seed 

germination of both rare and abundant species and therefore a lower species evenness under 

large canopies. Rare species such as Limonium lobatum, Valantua muralis, Calendula 

tripterocarpa or Galium spurium as well abundant species such as Cerastium dichotomum, 

Paronychia argentea or Medicago minima grew under better microhabitat conditions provided by 

medium and large Retama shrubs. This low species evenness in soils from medium and large 

Retama shrubs growing under medium and large Retama canopies was opposite to the observed 

high species evenness in the same soils growing under small canopies. The more homogenous 

microhabitat under small canopies promoted low species richness but high species evenness 

explaining the similar plant diversity between small and medium Retama canopies.  

 

Although we found high total aboveground biomass in soils collected under large Retama, plant 

diversity and species richness showed an opposite pattern being lowest in soils from large Retama 

shrubs. We expected that the better properties in soils from large Retama shrubs (higher soil 

nutrient content, soil microbial biomass and activity) than in other soil origins (Pugnaire et al. 2004, 

Hortal et al. 2013), should have promoted high plant diversity and species richness. However, 

other factors linked to soil seed bank, seed dispersal, temporal climatic variation, conditions or 

even soil biota may have caused the low levels of plant diversity and species richness in large 

Retama soils. 

 

It has been suggested that species composition of soil seed banks under Retama shrubs does not 

change with shrub age (Pugnaire and Lázaro 2000). However, our results suggest the opposite. 

We observed that species such as Hypochaeris glabra, Rumex bucephalophorus or Valantia 

muralis and other 32 species (62% of total species richness) were not present in any of the soils 

from large Retama shrubs as they did not germinate irrespective of microclimatic conditions (i.e, 

Retama canopy size), whereas they germinated in soils from other origins. This suggests low 

richness of soil seed bank from soil under large Retama shrubs, hostile conditions for seed 

germination and, probably, positive plant-soil feedbacks with some dominant species. Soil seed 

bank can sometimes show low similarity with aboveground plant diversity (Díaz-Villa et al. 2003) 
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since suitable places for seed deposition may not be suitable for seed germination and growth 

(Rey and Alcántara 2000). However, in our system, the presence of large shrubs strongly modifies 

seed dispersal patterns (Pulliam 1996, Aguiar and Sala 1999) hindering seed dispersal by wind 

underneath large Retama shrubs. This would lead to a low species diversity and richness of the 

soil seed bank under large Retama shrubs compared to a high diversity and richness in soils under 

small and medium Retama shrubs that would translate into similar observed aboveground diversity 

patterns.  

 

We observed that some species increased their aboveground biomass and abundance in soils 

from large Retama shrubs suggesting positive interactions with soil microorganisms (Bever 2003, 

Van der Putten et al. 2013) or with soil nutrients (e.g., nitrophilous species Avena sterilis (Ruiz 

Téllez et al. 2007)) that could cause competitive exclusion of other plant species (Callaway et al. 

2002) reducing plant diversity and species richness. Finally, seed germination can also be affected 

by a temporally variable environment (i.e., dry versus wet years) (Espigares and Peco 1993, 

Pugnaire and Lázaro 2000). Our results suggest an important role of soil characteristics on seed 

germination and plant recruitment, being this effect even greater than the canopy effect.  

 

Overall these results suggest a parallel increase in plant productivity and diversity (Tilman et al. 

1996) in relation to canopy size. Different microhabitat conditions under large Retama shrubs 

(Moro et al. 1997) may have increased germination of more species and better conditions for plant 

growth, increasing plant diversity and thus the likelihood that productive species were present (i.e., 

positive selection) (Loreau and Hector 2001, Lambers et al. 2004). However, our results also 

showed an inverse relationship between plant productivity and diversity (Brooker and Callaghan 

1998) in soils from different origin, which may happen in this nurse system as there is an 

independent effect of the shrub canopy and soil on plant productivity and diversity. As discussed 

above, total productivity in soils from large Retama increased due to the positive effects of soil 

organic matter, nutrients, moisture, temperature and biota on productivity. However, limitations in 

seed dispersal, temporally variable environment or competitive exclusion due to positive plant-soil 

feedbacks with some species could explain the observed decrease in plant diversity in soils from 

under large Retama shrubs. 
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1.8. CONCLUSIONS 

 

We conclude that both canopy size and soil origin of the nurse shrub independently affected total 

aboveground biomass, plant diversity and species richness of the understorey herbaceous 

community. Total aboveground biomass increased under large Retama canopies and in soils from 

under large Retama shrubs but, contrary to our expectations, plant diversity and species richness 

decreased in soils collected from under large Retama shrubs. These results suggest both a 

parallel and inverse relationship between productivity and diversity due to the independent effects 

of canopy and soil on them. Nonetheless, soil origin had a larger influence than canopy size on 

species aboveground biomass and abundance linked to soil seed bank composition, soil nutrients 

and organic matter and soil biota. There is an array of complex processes that occur in the soil 

matrix that need more attention to increase our understanding of the mechanisms that regulate 

facilitation among plants. 

 

 

1.9. APPENDIX 

 

Effect Aboveground biomass Shannon index Species richness 

Canopy 14.75*** 8.11*** 19.46*** 
Soil origin 5.68** 3.50** 24.86*** 
Canopy*Soil origin 0.60 1.31 9.27* 

 
Table S1.1. F values of the linear mixed model for aboveground biomass, plant diversity (Shannon index) 
and chi-square values of the generalized mix model for species richness under different treatments. Values 
in bold denote a significant effect of that factor on the dependent variable (*** P<0.001, ** P<0.01, and * 
P<0.05). 
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 Aboveground biomass  Abundance 

Species E1 E2  E1 E2 

Asphodelus tenuifolius -0.13 -0.15  0.11 -0.01 
Avena sterilis 0.31 0.06  -0.26 -0.06 
Brachypodium distachyon 0.02 -0.27  -0.14 -0.10 
Bromus rubens 0.47 0.30  -0.17 0.63 
Cerastium dichotomum -0.06 -0.06  0.01 0.50 
Geranium molle 0.56 0.18  -0.38 0.30 
Lagurus ovatus 0.22 -0.17  -0.15 -0.08 
Minuartia hibrida -0.20 0.48  0.13 -0.01 
Medicago minima -0.24 0.03  0.42 -0.04 
Paronychia argentea -0.24 0.10  0.31 -0.09 
Rumex bucephalophorus -0.16 0.53  0.50 0.21 
Stipa capensis -0.03 0.47  0.31 0.02 
Sisymbrium erysimoides -0.36 0.03  0.25 0.44 

 

Table S1.2. Eigenvectors of principal component analysis for plant community based on aboveground 
biomass and abundance per species 
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 Small canopy (SC)  Medium canopy (MC)  Large canopy (LC) 

Species /Soil Origin Small 
(SS)  

Medium 
(MS) 

Large 
(LS) 

 Small 
(SS)  

Medium 
(MS) 

Large 
(LS) 

 Small 
(SS)  

Medium 
(MS) 

Large 
(LS) 

Andryala ragusina – – –  1 – –  1 1 – 
Asphodelus tenuifolius 3 2 2  2 2 1  3 2 1 
Asterolinon linum-stellatum – – 1  1 1 1  – 1 – 
Avena sterilis 1 – 2  – 1 2  1 – 2 
Brachypodium distachyon – – 2  – 1 1  1 2 3 
Bromus diandrus 1 – 1  – – –  1 – 3 
Bromus rubens 2 – –  – 1 2  4 3 2 
Calendula arvensis – – –  – – –  1 1 – 
Calendula tripterocarpa                  – – –  – – –  1 – – 
Campanula erinus 1 – –  – – –  – 2 – 
Centaurea melitensis                      – – –  – – –  1 – – 
Cerastium dichotomum 2 1 –  1 1 1  3 2 1 
Crucianella angustifolia 1 – –  – – –  – – – 
Desmazeria rigida – – –  – – –  1 1 – 
Diplotaxis virgata – – –  – – –  – 2 – 
Erodium cicutarium – – –  – – –  – 2 – 
Galium spurium – – –  – – –  – 1 – 
Geranium molle 1 – 1  – 1 2  – 1 4 
Hedypnois cretica 1 – –  – – 1  2 1 – 
Hypochaeris glabra 1 – –  – 2 –  3 1 – 
Lagurus ovatus – 1 –  – 2 2  – 2 2 
Leontodon hispidus – – –  1 1 1  1 2 – 
Leysera leyseroides – 1 –  – – –  1 – – 
Limonium lobatum – – –  – 1 –  – – – 
Logfia minima 1 – –  1 – –  2 1 – 
Lolium rigidum 1 – –  – – –  1 – – 
Malva parviflora – – –  – – –  – 1 – 
Medicago minima 2 – –  3 4 1  3 3 2 
Medicago truncatula – – –  1 – –  3 1 – 
Minuartia funkii – – –  1 – –  – – – 
Minuartia hybrida 2 – –  3 – –  3 2 – 
Paronychia argentea 2 – –  2 3 –  4 4 – 
Plantago albicans 2 – –  1 1 –  1 – 1 
Plantago lagopus – – –  – 1 –  2 3 – 
Polycarpon tetraphyllum                 – – –  1 – –  2 – – 
Reichardia intermedia – – 1  – 2 1  – – – 
Reichardia picroides – – –  – – –  – 1 – 
Reichardia tingitana – 2 –  – – –  1 1 – 
Rostraria pumila – – –  2 1 –  1 – – 
Rumex bucephalophorus 1 1 –  2 1 –  2 2 – 
Silene decipiens 1 – –  – – –  1 2 – 
Silene sclerocarpa 1 – –  1 – –  – 1 – 
Sisymbrium erysimoides 4 3 1  3 3 –  3 3 2 
Sonchus oleraceus – – 1  – – –  – – – 
Sonchus tenerrimus – – 1  – – 1  – – 1 
Spergularia rubra – 1 –  – – –  – – – 
Stipa capensis 2 – –  3 1 1  2 3 1 
Trigonella monspeliaca – – –  – – –  1 – – 
Trigonella polyceratia                      – – –  1 – –  1 – – 
Valantia muralis 1 – –  – 1 –  1 1 – 
TOTAL SPECIES 22 8 10  19 21 14  33 32 13 

 
Table S1.3. List of species under small, medium and large Retama canopies growing with soil blocks from 
small, medium and large Retama shrubs. Numbers indicate the frequency of the species in each treatment, 
i.e. number of replicates in which the species was present (Maximum frequency = 6). A ´–´ symbol indicates 
the absence of a plant species. Species used for PCA analyses are highlighted in bold. 
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2.1. ABSTRACT 

 

Nurse plant species promote the establishment of other species under their canopies. Two 

mechanisms have been identified as key drivers of facilitation in arid environments: the 

improvement of microclimatic conditions and of soil properties by the nurse. However, soil biota 

may play an important role as well, but an analysis to tell apart the effects of these drivers is 

lacking. We addressed whether soil biota, soil properties, and shrub size had differential effects on 

understory plants depending on their life stage, hypothesizing that soil microbial communities 

associated to the nurse promote seed germination and plant growth of beneficiary species. We 

selected 3 microhabitats under field conditions (in gaps, under small, and under large Retama 

sphaerocarpa shrubs) and distributed 6 microcosms filled with sterile soil added with either alive or 

sterile inocula extracted from gap soils and from under small and large Retama shrubs. In each 

microcosm we sowed 50 seeds of each of six plant species, three usually found under Retama 

shrubs (Lagurus ovatus, Medicago minima and Asphodelus tenuifolius) and three preferentially 

found in gaps (Stipa capensis, Sisymbrium erysimoides, and Andryala ragusina). We monitored 

seed germination and measured aboveground biomass and individual number 5 months after 

sowing. Soil microbial communities under Retama shrubs and in gaps were different,  and had 

significant effects on seed germination, ranging from positive to neutral to negative depending on 

species identity. High nutrient and soil organic matter content under Retama shrubs promoted 

seed germination and increased aboveground biomass and plant density, while amelioration of 

microclimatic conditions under Retama shrubs promoted seed germination but, contrary to our 

expectations, had no significant effect on plant performance. Our results showed that the effect of 

soil biota and soil properties were more decisive than canopy effects on plant establishment under 

Retama shrubs, evidencing that soil is a major driver of facilitation processes in this arid 

environment. 
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2.2. INTRODUCTION 

 

The structure and composition of plant communities are influenced by positive and negative 

interactions among plants (Brooker et al. 2008, Armas and Pugnaire 2009). Facilitation, described 

as the positive, and at least one-way interaction where one plant species benefits another 

neighboring species in terms of germination, survival or growth, is a well-known phenomenon in 

many ecosystems around the world (Callaway 2007). A classic and frequent case of facilitation in 

plant communities is the nurse plant syndrome (sensu Niering et al. 1963, Franco and Nobel 

1989), in which an individual of one species facilitates the establishment and growth of other 

species (Flores and Jurado 2003). In arid ecosystems, the most common mechanism behind such 

nurse effect are the amelioration of microclimatic conditions and soil properties under the canopy 

(Pugnaire et al. 1996a, Flores and Jurado 2003, Maestre and Cortina 2005, Callaway 2007, 

Pugnaire et al. 2011).  

 

The nurse effect is especially important in arid environments (Flores and Jurado 2003) where 

shade provided by nurse plants can protect understory plants from high temperatures and 

irradiance (Moro et al. 1997, Jankju 2013). Although not always, water availability can be also 

higher under the canopy, either as a result of shading and higher soil water holding capacity or 

through hydraulic lift (Pugnaire et al. 2004, Armas and Pugnaire 2005, Zou et al. 2005, McCluney 

et al. 2012, Prieto et al. 2012). Nurse plants usually increase nutrient availability under the canopy 

through litter fall and enhance cycling because increased soil moisture speeds decomposition 

(Rodríguez-Echeverría and Pérez-Fernández 2003, Armas et al. 2012). Overall, all these 

processes improve soil chemical and physical conditions in the understory of nurses (Pugnaire et 

al. 1996a, 2004, 2011). Although the large modifications induced by nurse plants have traditionally 

been identified as the main mechanisms behind facilitation, recent reports evidenced the important 

impact of soil biota on plant-plant facilitation (Hortal et al. 2013) through processes independent on 

the nurse canopy or soil quality (Rodríguez-Echeverría et al. 2013). 

 

Soil biota can influence plant performance either positively, e.g., through mycorrhizal associations 

(Van Der Heijden and Horton 2009, Smith and Read 2010), or negatively, e.g., through the 

accumulation of soil pathogens that impair plant establishment (Van der Putten and Peters 1997, 

Bever 2003). Although it is already known that soil microbial communities have a strong influence 

on individual plant performance (Bever et al. 2010), plant community biodiversity (Wardle et al. 

2004, van der Heijden et al. 2008) and ecosystem multifunctionality (Loreau 2001, Wagg et al. 
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2014), the effect of soil microorganisms on the outcome of plant-plant interactions has been less 

explored (Selosse et al. 2006, Kardol et al. 2007, Pendergast et al. 2013, Rodríguez-Echeverría et 

al. 2013) and experiments in natural field conditions are just lacking. 

 

In a recent observational study, Hortal et al. (2013) showed that soil microbial activity, along with 

soil microbial biomass (fungi and bacteria) were much higher under the nurse shrub Retama 

sphaerocarpa (L.) Boiss (hereafter Retama) than in open spaces without shrubs (hereafter gaps) 

and that both soil microbial activity and biomass increased as the shrub aged. The relative 

abundance of different microbial groups also changed with shrub age, with an increase in groups 

such as Bacteroidetes and Proteobacteria and a decrease in Actinobacteria and Firmicutes. In 

fact, the composition, activity and biomass of soil microbial communities in gaps and under the 

canopy of large Retama shrubs were quite different (Hortal et al. 2013) and suggest that changes 

are behind the great positive impact that large Retama shrubs have on their understory plant 

community (Pugnaire et al. 1996b, Armas et al. 2011). In a greenhouse experiment, Rodríguez-

Echeverría et al. (2013) found that soil biota associated to Retama shrubs had a positive effect on 

the biomass of an experimental plant community, as well as on the abundance and growth of 

numerous plant species that usually grow in the understory of this nurse species. All this suggests 

an important role of soil biota in addition to soil physico-chemical properties and canopy size on 

plant-plant facilitation. 

 

2.3. OBJECTIVES 

 

In an experimental setup in field conditions we tried to disentangle the impact of each driver (soil 

microorganisms, soil properties, and canopy) on the facilitation exerted by Retama on its 

understory plant community.  

 

Our main objectives were 1) to analyze whether seed germination, number of plants and plant 

biomass were affected by soil microorganisms, soil properties or microhabitat; and 2) to determine 

whether these drivers had different effects depending on the life stage of beneficiary plants. 
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2.4. HYPOTHESIS 

 

We hypothesized that soil microbial communities associated to the nurse shrub are integral part of 

the facilitation effect of Retama, promoting seed germination and growth of understory plant 

species, being as important as soil properties and microhabitat in this process.  

 

2.5. METHODS 

 

2.5.1. Field site and species  

 

The field site was located in the Rambla del Saltador, a dry valley on the southern slope of the 

Sierra de los Filabres mountain range, Almería, southeast Spain (37º08´N, º22´W; 630 m altitude). 

The climate is semiarid Mediterranean, with a mean annual temperature of 16º C and mean annual 

rainfall of 300 mm (Puigdefabregas et al. 1999). The soil is of alluvial origin, with a loamy sand 

texture, characterized by low values of water holding capacity, electrical conductivity, cation 

exchange capacity, organic matter, nutrient concentrations, and a moderate alkaline pH (Pugnaire 

et al. 1996b, Puigdefábregas 1996) 

 

The plant community is dominated by the leguminous shrub Retama sphaerocarpa, a tall shrub 

with an open canopy with photosynthetic stems and a dimorphic root system with shallow lateral 

roots and tap roots that can reach 30 m deep (Haase et al. 1996). Retama shrubs can lift water 

from deep, wet soil layers and release it into shallow, dry soil layers (Prieto et al. 2010), 

contributing to its nurse effect (Prieto et al. 2012). Retama shrub facilitates the establishment and 

growth of many other plant species under their canopy (Pugnaire et al. 1996b) compared to gaps 

among shrubs, having an overall positive impact on local community diversity in semiarid 

environments (Armas et al. 2011, Schöb et al. 2013). Aboveground biomass and plant species 

richness increase with Retama shrub size and age (Pugnaire et al. 1996b, Pugnaire and Lázaro 

2000). 

 

2.5.2. Soil sampling and inoculum preparation 

 

In October 2011 we randomly selected 8 large Retama shrubs in a ~5 ha homogeneous plot. Near 

each large shrub we selected one small Retama shrub and a gap in between (i.e., a total of 24 

microhabitats). We collected soil from the top 10 cm in each microhabitat, combined the 8 samples 
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corresponding to the same microhabitat and sieved it through a 5-mm sieve obtaining 60 kg of soil 

per soil origin (i.e., gaps, under small and under large Retama shrubs). Pooling soil samples 

reduces variability but allows testing for differences between soil origins and could be considered 

as technical replicates (Kardol et al. 2006, Ayres et al. 2009, Meisner et al. 2013, Rodríguez-

Echeverría et al. 2013). Fifty of these 60 kg of soil per origin were autoclaved during 20 min at 

120ºC to destroy all soil organisms and were used as microcosms substrate. 

 

Following recommendations by Meisner et al. (2013), and Pendergast et al. (2013), we took apart 

10 kg from each soil origin and divided it in halves; one was left intact to prepare the “alive” soil 

inoculum and the other half was autoclaved at 120 ºC during 20 min to prepare the sterile soil 

inoculum. In both cases, the soil was stirred in distilled, autoclaved water in a proportion 1:2 (v:v) 

and then filtered through a 0.5 mm sieve to remove soil particles but allowing the pass of fungal 

spores, hyphae, soil bacteria and microfauna (Van de Voorde et al. 2012). These two types of 

inocula (sterile and alive) per soil origin were used to inoculate soil microcosms. 

 

2.5.3. Experimental design 

 

In each microhabitat we randomly distributed 6 microcosms (pots of 17 cm of diameter and 18 cm 

height; 1 L volume) filled with one of the three types of autoclaved soil and watered with either 

alive or sterile inocula of its respective soil origin. The volume of inoculum added to each 

microcosm was adjusted to have a density of 20% (v:v), i.e., 200 ml per microcosm. We thus had a 

total of 144 microcosms (3 microhabitat x 3 soil origins x 2 inocula x 8 replicates). In each 

microcosm we sowed 300 seeds of six different plant species (50 seeds per species), three of 

them usually found under Retama shrubs (Lagurus ovatus (L.), Medicago minima (L.) Bartal., and 

Asphodelus tenuifolius (Cav), hereafter Lagurus, Medicago and Asphodelus) and the other three 

species preferentially found in gaps (Stipa capensis (Thunb), Sisymbrium erysimoides (Desf), and 

Andryala ragusina (L.), hereafter Stipa, Sisymbrium and Andryala) (Pugnaire et al. 1996b, 

Pugnaire and Lázaro 2000, Boeken et al. 2004, Pugnaire et al. 2004). Prior to sowing, seeds 

surface was sterilized by submerging them in 75% ethanol for 2 minutes. All microcosms were 

covered with a wire mesh to prevent predation and herbivory (Fig. 2.1a) 
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Fig. 2.1 Field experiment: Microcosms covered with a wire mesh distributed under large Retama shrub (a), 
and detail of the plants grown in a microcosm (b). 
 
 

Sowing took place in November 2011 and the number of germinated seeds was tallied twenty days 

later (Fig 2.1b). Microcosms were left in the field for 5 months, and then plants in each microcosm 

were counted, harvested, and separated by species. Shoots were dried at 70ºC during 48 h and 

weighted. Soil from each microcosm was also collected and divided in two halves; one was kept at 

4ºC for physical and chemical analyses and another was kept at -80ºC for microbial analyses. 

Although samples were stored a couple of months, we were more interested in analysing relative 

differences among treatments than on the absolute values, we assumed these comparisons were 

valid since all samples were stored in the same conditions. 

 

2.5.4. Soil analyses  

 

Soil properties were measured in soils from each origin after inoculation with either alive or sterile 

inocula at the start of experiment (n=3). Soil electrical conductivity (EC) and pH were obtained 

using an aqueous solution of 1:5 for EC and 1:2.5 for pH (w:v), with a conductivity- and pH-meters 

(Crison, BA, Spain), respectively. Total soil carbon (C), organic C after removal of inorganic C with 

HCL 2N (Schumacher 2002) and total nitrogen (N) content were determined using a C/N analyzer 

(LECO Truspec, MI, USA).  Anion phosphate (PO4
3-), nitrate (NO3

-), and sulphate (SO4
2-) 

concentrations in water extract (1:10 soil:water) were analyzed by HPLC (Metrohm, HE, 

Switzerland). Percentage of clay, sand and silt were measured by the Robinson method. 

 

2.5.5. Soil microbial community composition 

 

Molecular analyses were performed on autoclaved soil samples from gaps and from under large 

Retama shrubs that were watered with their respective alive inoculum at the beginning of the 
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experiment (2 soil origin x 1 inoculum x 3 replicates). Moreover, at the end of the experiment (five 

months after sowing), we collected soil samples from gap soils placed in gaps and from large 

Retama soils placed under large Retama canopies inoculated at the beginning of the experiment 

with either alive or sterile inoculum (2 soil origin x 2 inocula x 3 replicates). DNA was extracted 

from 0.25 g of homogenized soil from each of the 18 soil samples using the PowerSoil® DNA 

Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, USA) following the manufacturer’s directions. A 

16S rDNA gene fragment corresponding to V3 to V6 regions was amplified using primers 357F 

with Roche adaptor B (5`CTATCCCCTGTGTGCCTTGGCAGTCTCAGCCTACGGGAGGCAGCAG 

3`) and 926 Rb (5` CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNNNNNNCCGTCAAT 

TYMTTTRAGT 3`) that included Roche adaptor A and 12 base-pair barcode (Sim et al. 2012). 

Each sample was amplified in quadruplicate to reduce random mispriming bias (Polz and 

Cavanaugh 1998). Amplicons were combined in a single tube in equimolar concentrations and the 

pooled amplicon mixture was purified twice (AMPure XP kit, Agencourt, Takeley, United Kingdom). 

DNA concentration was quantified using the PicoGreen® assay (Sim et al. 2012). This pool was 

prepared and pyrosequenced in a Roche Genome Sequencer FLX System (Roche, Basel, 

Switzerland) using 454 Titanium chemistry at Lifesequencing lab (Valencia, Spain). 

 

Sequences were trimmed for primers, filtered and demultiplexed using the pyrosequencing pipeline 

from the Ribosomal Database Project (RDP, Michigan State Univ., USA). Sequences shorter than 

150 bp, with quality scores <20 or containing any unresolved nucleotides were removed from the 

dataset. We used Acacia software version 1.52 (Bragg et al. 2012) for pyrosequencing noise 

removal using default parameters for error correction. We established a minimum average quality 

threshold of 30 and all sequences were trimmed to a maximum length of 570 bp. Chimeras were 

identified using Uchime tool (Edgar et al. 2011) from RDP pipeline and removed from the dataset. 

Retained sequences were aligned using the Aligner tool from the RDP pipeline and then were 

clustered into operational taxonomic units (OTUs) defined at 97% similarity cutoff using the 

complete linkage clustering tool of the RDP pipeline. Taxonomic assignation of sequences was 

performed using the RDP naïve Bayesian classifier (Wang et al. 2007) at a confidence level of 80 

%, and relative abundances of the different phyla, classes, subclasses, order and main genus per 

each of the 18 samples were calculated. 
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2.5.6. Statistical analyses 

 

The experimental design was a split plot factorial design where each replicate of each microhabitat 

was the main plot (a total of 24), and each microcosm (pots with one type of soil origin and one 

respective soil inoculum) was the subplot (a total of 6). Microhabitat type (gaps, under small and 

under large Retama shrubs), soil origin (from gaps, under small and under large Retama shrubs), 

type of inoculum (alive and sterile), and plant species (Lagurus, Sisymbrium and Stipa; 3 out of the 

6 initial species sown, see results) were considered as fixed factors, and main plots and subplots 

where included as random effects. Aboveground biomass per plant was square root-transformed 

(Ramette 2007) and analyzed using General Linear Mixed Models that included number of 

neighbors as covariate. Spatial correlation was modeled with a compound symmetry correlation 

structure (corCompSymm) that considers a uniform correlation among seeds within a pot (the 300 

seeds within each pot were sown at random). We tested several variance structures to avoid 

heteroscedasticity and selected the best one (varIdent) by comparison using the Akaike 

information criterion (Akaike 1974). VarIdent represents a variance structure with different 

variances for different strata (Gałecki and Burzykowski 2013). To select the most parsimonious 

model with lowest AIC, we compared the models using the likelihood ratio test and performed a 

graphical inspection of their residues distribution. The maximum likelihood estimation was 

calculated using the restricted maximum likelihood (REML) criterion. The total number of plants 

that survived at the end of the experiment with neighbors as covariate, the number of seeds that 

germinated and the relative abundance of microbial groups were analyzed using Generalized 

Linear Mixed Models with a binomial distribution, a logistic link function and the maximum 

likelihood (ML) criterion. Significance was established at p<0.05. Post-hoc comparisons were 

performed using DGC test (Di Rienzo et al. 2002). Differences in soil properties at the beginning of 

the experiment were evaluated by using linear models. Analyses were done with InfoStat-

Statistical Software (Di Rienzo et al. 2013). Results shown throughout the text and figures are 

mean values ± 1 SE.  

 

Similarity among bacterial community composition (with OTUs showing at least 5 reads in the 

overall dataset) were analyzed with principal coordinates analysis (PCoA) using Bray-Curtis 

similarity index. Differences among treatments were evaluated performing a NPMANOVA with 

9999 permutations using Past v 2.12 software (Hammer et al. 2001) and multivariate mean 

comparisons (gDGC test) based on cluster analysis, using diagonal covariance matrix with a single 

linkage and Monte Carlo simulation with 500 permutations (Valdano and Di Rienzo 2008). 
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Shannon’s diversity index of OTUs per sample was calculated with Past software after excluding 

singletons (OTUs only showing 1 read in the overall dataset) to reduce the overestimation of 

diversity (Tedersoo et al. 2010).  

 

2.6. RESULTS 

 

2.6.1. Seed germination 

 

There was no germination of Medicago or Andryala seeds in any of the microcosms 20 days after 

sowing, and only few Asphodelus seeds germinated (less than 1.2 ± 0.1 seeds per pot with 52% of 

pots lacking any germination). We thus discarded these three species from further analyses. 

 

Alive soil inoculum (i.e., with soil microorganisms) had a significant effect on seed germination but 

its effects were mediated by the other experimental factors (i.e., there was a significant “species x 

microhabitat x soil origin x inoculum” interaction, Table S2.1). Germination was greatest in soils 

from under Retama shrubs and lowest in soils from gaps (Figs. 2.2 and S2.1) in any microhabitat. 

The number of germinated Lagurus and Sisymbrium seeds was higher with alive than with sterile 

inocula irrespective of soil origin (Fig. 2.2a, b). On the contrary, alive inocula from gaps or from 

small Retama soils had a negative effect on germination of Stipa seeds, whereas there were no 

differences between sterile or alive inocula from soils collected under large Retama shrubs (Fig. 

2.2c). Germination was also affected by microhabitat, being lowest in gaps for all plant species. 

For both Lagurus and Sysimbrium, germination was highest under large Retama canopies and 

intermediate under small Retama canopies (whit alive inocula) while Stipa germination was similar 

under the two Retama canopies (Fig. S2.1). 
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2.6.2. Aboveground biomass and number of plants 

 

Five months after sowing we had an average of 5.62 ± 0.55 Lagurus plants, 3.01 ± 0.28 Sisymbrium and 

10.92 ± 0.84 Stipa per microcosm. Maximum individual aboveground biomass was 0.86, 2.97 and 2.46 g for 

Lagurus, Sisymbrium and Stipa, respectively. Alive and sterile inocula from each soil origin had similar 

effects on plant biomass and number of established plants. The soil origin where plants grew had a 

significant impact on plant biomass but its effect was influenced by microhabitat and species (significant 

“species x soil origin x microhabitat” interaction, Table S2.1). Lagurus showed more biomass in soils from 

large than from small Retama shrubs or gaps regardless of the microhabitat they grew under. Sisymbrium 

plants had more biomass when grown in soils from under small Retama shrubs in any microhabitat, while 

Stipa showed more biomass when grown in soils from under either small or large Retama shrubs, in 

particular under small canopies with soil from large Retama shrubs (Fig. 2.3). 

 

 

Fig.2.3. Mean aboveground individual plant mass of Lagurus, Sisymbrium and Stipa growing in microcosms 
with soils from gaps, small or large Retama shrubs, and growing either in gaps, under small or large 
Retama shrubs (microhabitat) 5 months after sowing. Data are mean ± 1 SE, n = 8. Symbols with different 
letters indicate significant differences among treatments after post-hoc comparisons at a significance level 
of 0.05. 

 

 

Soil origin had a significant effect on the number of plants depending on the species identity 

(significant “soil origin x species” interaction, Table S2.1). Plant abundance for Lagurus, Stipa and 

Gap

Small

Large

Gap Small Large Gap Small Large Gap Small Large

Microhabitat*Species

0.1

0.2

0.3

0.4

S
q

u
ar

e 
ro

o
t 

B
io

m
as

s

B

B

B
B

CC
C

C
C

A

A

A

B
B

B

B

C

C

A

A

B
B

B
B B B

B

B

B

B
B

CC
C

C
C

A

A

A

B
B

B

B

C

C

A

A

B
B

B
B B B

B

3 sp (Raiz (Biomass/ind)

Gap

Small

Large

Lagurus Sisymbrium Stipa

(g
)

Microhabitat x Species

 

Gap

Small

Large

Gap Small Large Gap Small Large Gap Small Large

Canopy*Specie

0.1

0.2

0.3

0.4

S
q

u
ar

e 
ro

o
t 

B
io

m
as

s

B

BB
B

CC
C

C C

A

A

A

B
B

B

B

C

C

A

A

B
B

B
B B B

B

B

BB
B

CC
C

C C

A

A

A

B
B

B

B

C

C

A

A

B
B

B
B B B

B

3 sp (Raiz (Biomass/ind)

Gap

Small

Large

Soil Origin  Gap Soil

Small Retama Soil

Large Retama Soil

Lagurus Sisymbrium Stipa

Species

0.1

0.2

0.3

P
la

n
ts

 (
#

)

CCC

B
BB

A A

B

CCC

B
BB

A A

B

1106-S*Sp

Gap Soil

Small Retama Soil

Large Retama Soil



CHAPTER 2. FACILITATION MECHANISMS: EFFECTS OF SOIL MICROORGANISMS, MICROHABITAT AND SOIL 
PROPERTIES 

 

55 
 

Sisymbrium was lowest in gaps and intermediate in soils from small Retama shrubs; for Lagurus 

and Stipa, it was highest in soils from large Retama shrubs (Fig. 2.4). Overall, the number of plants 

was higher under large Retama canopies than under small canopies or gaps (Fig. S2.2). 

 

 

Fig. 2.4. Results from generalized mix model of number of Lagurus, Sisymbrium and Stipa individuals 
established per microcosm in soils from gaps, small or large Retama shrubs after 5 months from sowing 
(total of 300 seeds per microcosm). Data are mean ± 1 SE, n = 8. Symbols with different letters indicate 
significant differences among treatments after post-hoc comparisons at a significance level of 0.05. 
 
 

2.6.3. Soil properties 

 

Properties of soils collected at the beginning of the experiment were different depending on their 

origin, but there were no differences depending on whether they were watered with alive or sterile 

inocula (Table 2.1). Total C, organic C, and total N contents increased gradually from gaps to small 

to large Retama shrubs. Clay and SO4
-2 contents were higher in soils from large and small Retama 

shrubs than in gaps. Silt and NO3
- contents were higher in soils from small Retama shrubs than in 

other soils. Sand content was lowest in small Retama shrubs, intermediate in large shrubs and 

highest in gaps. Soil electrical conductivity was highest in soils from large Retama shrubs and 

there were no differences in pH among soils. Soil PO4
3- and NO2

- were very low, well under the 

detection threshold of the HPLC. 

 

2.6.4. Soil bacterial community composition  
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We obtained a total of 63857 sequences after filtering and removing chimeras. The mean number 

of retained sequences per sample was 3548 ± 231, with no differences among treatments. 

Average length of retained sequences was 550 ± 8 bp. We identified 8489 distinct operational 

taxonomic units (OTUs) at 97% similarity. Ordination de OTUs with a minimum of 5 reads within 

the overall dataset (1804) showed marked differences in bacterial community composition in soils 

with alive inocula from gap or large Retama shrubs both at the start (T0) and at the end of the 

experiment (T5). Communities from T0 compared to T5 were also markedly different (Fig. 2.5). 

Moreover, within each soil origin, soils with alive compared to sterile inocula were also different at 

the end of the experiment (F2,17= 3.25, p<0.001, NPMANOVA and hierarchical cluster (Fig. S2.3)). 

 

 
 
Fig. 2.5. Principal coordinates analysis (PCoA) of soil bacterial communities based on operational 
taxonomic units (OTUs) using Bray–Curtis similarity index. Crosses and circles indicate soil watered with 
alive inoculum from gaps and from under large Retama soils, respectively, at the start of the experiment 
(T0). Grey symbols represent soils from gaps (G) and black symbols soils from under large Retama shrubs 
(LR) at the end of the experiment (T5). Squares correspond to soils initially watered with alive inoculum (Ai) 
and diamonds with sterile inoculum (Si).  
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Sequences mostly belonged to five different phyla, Proteobacteria, Actinobacteria, Bacteroidetes, 

Firmicutes and Acidobacteria. Other minor phyla (with relative abundance lower than 2%) were 

Verrucomicrobia, Gemmatimonadetes, Chloroflexi, Cyanobacteria, Nitrospira, Armatimonadetes, 

and Planctomycetes. Relative abundances of the different taxa differed among treatments (Fig. 

2.6). We observed at the beginning of the experiment a higher abundance of Actinobacteria in soils 

from gaps than in soils from large Retama shrubs, while Alphaproteobacteria and 

Gammaproteobacteria were higher in large Retama soils than in gaps (Fig. 2.6). Comparing alive 

soils at the beginning and at the end of the experiment the abundance of Actinobacteria and 

Acidobacteria decreased in both soils from gaps and from under Retama shrubs while Firmicutes, 

Bacteroidetes and Betaproteobacteria increased in their relative abundances. Thus, at the end of 

the experiment, the abundance of Bacteroidetes was higher in soils under Retama than in soils 

from gaps while the abundance of Firmicutes was higher in gaps than in soil under Retama shrubs. 

There were no differences at the end of the experiment between soils initially watered with alive or 

sterile inoculum except for the relative abundances of Betaproteobacteria that increased even 

more in soils watered with sterile than with alive inoculum and Deltaproteobacteria that decreased 

in soils with sterile inoculum irrespective of the soil origin (Fig. 2.6). Among minor phyla, the 

relative abundance of Verrucomicrobia increased in alive soils from gaps at the end compared to 

the start of the experiment while the abundance of Cyanobacteria was higher in alive than in sterile 

soils irrespective of soil origin (data not shown). There were no differences in the relative 

abundance of other minor phyla. Abundance of unclassified bacteria was lowest in soils from 

Retama shrubs at the end of the experiment irrespective of inoculum type (data not shown). 

Bacterial diversity (Shannon’s index) was 5.85 ± 0.13. Microbial diversity was higher in soils from 

large Retama shrubs (6.09 ± 0.16) at the start of the experiment than in the other soils either at the 

start or at the end of the experiment (F1,12= 5,28, p=0.04).  
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Fig. 2.6. Results from generalized linear mixed models of mean relative abundance (± 1 SE) of the most 
abundant bacterial taxonomic groups, i.e. phyla Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria, 
classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria (within 
Proteobacteria phylum). Light grey bars represent soil collected from gaps (G) and dark grey bars represent 
soil from under large Retama shrubs (LR) watered with either alive (Ai) or sterile inoculum (Si). Soil was 
collected at the start (T0) and at the end of the experiment (T5). Different letters within a bacterial group 
indicate significant differences (p < 0.05) among treatments after DGC test; n = 3 microcosms. 

 

2.7. DISCUSSION 

 

Our data show once again that Retama sphaerocarpa shrubs are strong facilitators of plant 

communities in their understory, and disentangle some of the mechanisms involved in the process. 

We found that soil microorganisms affect seed germination, with effects ranging from positive to 

negative depending on species identity, soil characteristics, and microhabitat. Both plant growth 

and abundance were strongly affected by soil origin, with positive or neutral effects of microhabitat. 

The effect of soil microorganisms on plant growth and abundance was no evident. Overall, our 

results suggest that soil properties mediated facilitation in this system.  
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2.7.1. The positive effect of Retama soils on seed germination and plant performance 

 

Our data show that soil from under Retama shrubs positively affected seed germination, biomass, 

and abundance of Lagurus, Sisymbrium and Stipa. Compared to gaps, soils from under Retama 

shrubs usually show a higher moisture (Pugnaire et al. 2004), have higher organic matter and 

nutrient content as well as higher silt and clay content. Accretion of soil organic matter under 

Retama soils increases water holding capacity, buffer soil temperature changes (Moro et al. 1997, 

Pugnaire et al. 2004), and increases soil oxygenation (Porta-Casanellas et al. 2003) which 

promoted seed germination and plant growth. Moreover, different chemical properties from 

Retama soils compared to gap soils also promoted seed germination and plant performance. For 

example, an increase in soil N content related to active N fixation from Retama shrubs (Rodríguez-

Echeverría and Pérez-Fernández 2003) or changes in microbial activity that promote the release of 

available N for plants (Tortora et al. 2007), as well as an increase in anion content (Roem et al. 

2002) might have promoted seed germination and plant performance in Retama soils. Added to 

this, the positive effect of Retama soil properties on plant performance at the end of the experiment 

also included the effect of the particular soil microbial community that was established in these 

soils along the experiment.  

 

2.7.2. The effect of soil microorganisms on seed germination was species specific 

 

Microbial communities associated to Retama soils and gaps were different, affecting seed 

germination in different ways, and were critical to determine the emergence of a specific 

understory community in each soil.  

 

Germination of Lagurus, a species whose typical microhabitat is Retama understories (Pugnaire et 

al. 1996b), was, accordingly to its preferred natural microhabitat, positively affected by Retama soil 

microorganisms, while Sisymbrium, which prefers gaps (Pugnaire and Lázaro 2000), germinated 

more in soils from under Retama with alive inoculum than in soils from gaps. Stipa is a species 

mainly found in gaps (Boeken et al. 2004) but, interestingly, microorganisms from gap soils 

negatively affected its germination. Differences in seed germination of each species were strongly 

linked to differences between the microbial communities associated to soils from under Retama 

shrubs or to gaps. 
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Soils under Retama shrubs had, at the beginning of the experiment, higher abundance of 

Alphaproteobacteria and Gammaproteobacteria than soils from gaps, as well as higher abundance 

of key groups within these classes. For example, members of the abundant Rhizobium and 

Bradyrhizobium genera (Alphaproteobacteria) establish symbiotic root associations with legumes, 

as Retama, having a key role in atmospheric nitrogen fixation (Kersters et al. 2006). Similarly, free-

living nitrogen fixers such as Azomonas (Kersters et al. 2006) or  Pseudomonas 

(Gammaproteobacteria class) are known plant growth promoters (Saharan and Nehra 2011). On 

the other hand, members of Actinobacteria, commonly found in gaps (Suela Silva et al. 2013) are 

considered to be drought-resistant (Köberl et al. 2013), and in our experiment they were more 

abundant in gaps than in Retama soils. 

 

Although most research on the effect of soil microbial communities on plants has not analyzed the 

effect of soil microorganisms on seed germination and the functions and identities of most seed-

associated bacteria are currently unknown (Lopez-Velasco et al. 2013), it is known that the seed 

testa is affected by soil bacteria (Buyer et al. 1999). In turn, soil bacteria are affected by seed 

exudates and their components (Nelson 2004). Soil microorganisms from under Retama shrubs 

established positive seed-microbe interactions that promoted seed germination in Lagurus and 

Sisymbrium, while soil microorganisms from under small Retama shrubs or from gaps established 

negative seed-microbe interactions with Stipa, hindering its germination. This low germination of 

Stipa with soil microorganisms from gaps, its preferred habitat, could be due to several reasons. 

Among them, the presence of soil pathogens (Van der Putten et al. 2013), which produce enzymes 

and phytotoxines that can kill seeds before germination (Kremer 1993) or inhibit germination of 

viable seeds (Roberts and Feast 1972). In addition, some soil microorganisms promote seed 

dormancy (Miransari and Smith 2014) allowing seeds to wait for better conditions to germinate. 

Although data on seed-microbe interactions are still very scarce (Coombs and Franco 2003), our 

results showed that these associations could range from positive to negative depending on species 

identity and that these seed-microbe interactions were influenced by the particular properties of 

each soil.  

 

Apart from the role of interactions between plants and soil microorganisms in determining the 

outcome of plant-plant interactions (Pendergast et al 2013; Rodriguez-Echeverría et al. 2013), 

competitive interactions among plants are also important. Thus, although soil microorganisms from 

under Retama shrubs facilitated germination of Sisymbrium, competition among species under 
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Retama canopies is quite intense (Schöb et al. 2013) and may exclude this species from under 

Retama shrubs limiting its development and explaining why this species is naturally found in gaps.  

 

2.7.3. Soil microorganisms may contribute to the positive effect of soil on 

plant performance  

 

Five months after sowing, the effect of soil microorganisms on plant performance was neutral or 

not evident, probably due to the fact that microbes were able to colonize soils initially inoculated 

with either sterile or alive inocula, and conformed soil microbial communities that were more 

homogeneous in their composition than soil microbial communities at the beginning of the 

experiment. Although at the end of the experiment we observed differences in composition 

between soil communities that received either sterile or alive inocula, the relative abundance of 

main microbial groups was similar among microcosms, and only showed differences in 

Betaproteobacteria and Deltaproteobacteria, irrespective of soil origin.  

 

Microbial communities changed their composition in alive soils from both gap and large Retama 

shrubs between the beginning and the end of the experiment, likely because of microbial 

colonization and changes in weather (Fierer et al. 2010) in addition to modifications induced by 

plants over time (Van der Putten et al. 2013). 

 

At the end of the experiment, microbial communities in Retama soils that received either alive or 

sterile inocula at the beginning of the experiment were more similar among them than microbial 

communities from gaps that received either alive or sterile inoculum 5 months earlier, suggesting a 

strong effect of soil origin properties on final microbial composition. At the end of the experiment, 

members of Bacteroidetes were more abundant in Retama soils than in soils from gaps. Bacteria 

in this phylum have the ability to rapidly explore organic matter (Acosta-Martinez et al., 2010), and 

are associated to high soil C availability as that in Retama soils. As suggested by Hortal et al. 

(2013), an increase in Bacteroidetes could have stimulated plant growth in soils from Retama 

shrubs. On the other hand, the abundance of Firmicutes was higher in gaps than in Retama soils, 

which corresponds with their ability to survive extreme environmental conditions and stand low 

substrate availability (Acosta-Martínez et al. 2010) as in gaps. 
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2.7.4. Positive and neutral effect of microhabitat on seed germination and plant 

performance 

 

Microclimate under Retama positively affected seed germination and plant abundance since 

Retama canopies buffer high temperatures, decrease incident irradiance (Moro et al. 1997), and 

decrease soil water evaporation (Domingo et al. 1999) through shade. However, there was an 

overall neutral effect of microhabitat on aboveground plant biomass, and the better properties of 

soils under Retama shrubs appeared as the main responsible of the higher plant biomass. 

 

2.8. CONCLUSIONS 

 

We conclude that soil origin, microhabitat and soil microorganisms play a role in determining plant 

community structure under the nurse shrub species. The effect of soil microorganisms from 

Retama shrubs on seed germination ranged from positive to neutral to negative depending on 

plant species identity, while soil properties and microhabitat amelioration under Retama shrubs 

promoted seed germination of all species. The abundance and growth of plants were more 

affected by soil properties and the microbial community than by microhabitat under Retama 

shrubs. Thus, our results showed that soil and its microorganisms are major drivers of facilitation 

processes in this arid environment. 
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2.9. APPENDIX 

 

 

 

Fig. S2.1. Results from generalized mix model of mean number of Lagurus, Sisymbrium and Stipa  
germinated seeds in gaps or under small and large Retama shrubs, and growing on soils from gaps, small 
or large Retama shrubs. Ai= alive inoculum, Si = sterile inoculum. Data are mean ± 1 SE, n = 8. Symbols 
with different letters indicate significant differences among treatments after post-hoc comparisons at a 
significance level of 0.05. 
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Fig. S2.2. Results of generalized mix model of mean number of plants established per microcosm in gaps 
and under small or large Retama shrubs after 5 months from sowing (total of 300 seeds per microcosm). 
Data are mean ± 1 SE, n = 8. Symbols with different letters indicate significant differences among 
treatments after post-hoc comparisons at a significance level of 0.05. 
 

 

Fig. S2.3 Hierarchical cluster analysis of the OTUs of bacterial community in soils collected from gaps (G) 

and from under large Retama shrubs (LR) watered with alive (Ai) or sterile (Si) inoculum at the beginning 

(T0) and end of the experiment (T5) using multivariate mean comparisons. Cut off criterion obtained with 

the gDGC test is indicated with a vertical line. Different letters indicate groups statistically differing at a 

significance level of 0.05.  
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Fixed factors        Chi-square df p-value 

(a) Number of germinated seeds 

Microhabitat (M)                       22.5 2 <0.0001 
Soil Origin (So)                  16.44 2 0.0003 
Inoculum (I)                    1.87 1 0.1717 
Plant Species (Ps)          56.98 2 <0.0001 
M x So          78.75 4 <0.0001 
M x I              0.53 2 0.768 
M x Ps                37.17 4 <0.0001 
So x I         14.47 2 0.0007 
So x Ps           26.94 4 <0.0001 
I x Ps              39.81 2 <0.0001 
M x So x I 24.03 4 0.0001 
M x So x Ps    70.23 8 <0.0001 
M x I x Ps       24.01 4 0.0001 
So x I x Ps 16.31 4 0.0026 
M x So x I x Ps 41.75 8 <0.0001 
    
(b) Number of plants 
M                     16.45 2 0.0003 
So                  62.73 2 <0.0001 
I                    0.03 1 0.861 
Ps                       914.14 2 <0.0001 
Number of neighbors 806.76 1 <0.0001 
M x So           2.88 4 0.5774 
M x I              7.10E-04 2 0.9996 
M x Ps                8.35 4 0.0797 
So x I         3.9 2 0.1423 
So x Ps           25.93 4 <0.0001 
I x Ps              0.55 2 0.7596 
M x So x I 7.22 4 0.1249 
M x So x Ps    10.39 8 0.2386 
M x I x Ps       3.43 4 0.4891 
So x I x Ps 1.94 4 0.7468 
M x So x I x Ps 9.3 8 0.3177 
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Fixed-factors     F df p-value 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S2.1. Results from generalized linear mix models on seed germination twenty days after sowing (a) 
and number of plants established at the end of the experiment (b); and general linear mixed model of 
aboveground biomass (c) at the end of the experiment (five months after sowing). Microhabitat (M), Soil 
Origin (So), Soil microbial inoculum (I) and Plant Species (Ps) and their interactions were considered fixed 
factors. All significant results are marked in bold. 
 
 
  

(c) Aboveground biomass 

M                     0.58 2/21 0.5674 
So                17.19 2/105 <0.0001 
I                     0.07 1/105 0.7934 
Ps                       54.4 2/250 <0.0001 
Number of neighbors 12.58 1/250 0.0005 
M x So           1.82 4/105 0.1312 
M x I              0.67 2/105 0.5163 
M x Ps                5.89 4/250 0.0002 
So x I         1.74 2/105 0.18 
So x Ps           2.38 4/250 0.0521 
I x Ps              1 2/250 0.3707 
M x So x I 1.21 4/105 0.3107 
M x So x Ps    2.52 8/250 0.0118 
M x I x Ps      1.03 4/250 0.3933 
So x I x Ps 0.56 4/250 0.6906 
M x So x I x Ps 1.68 8/250 0.1026 
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3. INTERACTIONS AMONG SOIL, PLANTS, AND MICROORGANISMS DRIVE 

SECONDARY SUCCESSION IN A DRY ENVIRONMENT 

 

 

 

Lozano Y.M., et al., (in press) Interactions among soil, plants, and microorganisms drive 

secondary succession in a dry environment. Soil Biology & Biochemistry (2014) 
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3.1. ABSTRACT 

 

Secondary succession studies have mainly focused on plants, but little is known about the fate of 

soil microbial communities and their relationship with plant succession after disturbance, 

particularly in dry ecosystems. We examined changes in soil properties and of plant and soil 

microbial communities across a chronosequence of abandoned arable fields that included five 

successional stages according to time of abandonment stretching near a century. We 

hypothesized the existence of a parallel secondary succession above- and below-ground and 

explored the possible linkages between plant and microbial communities as well as the role of 

changes in soil properties over the successional gradient. Soil microbial communities were 

characterized by PLFAs analysis, enzymatic activities, and pyrosequencing of the 16S rDNA. We 

found clear patterns of plant and microbial secondary succession characterized by an increase in 

organic C, NH4
+, and silt content as well as in soil microbial biomass and activity along the 

successional stages, linked to an increase in plant productivity and diversity. Plant and microbial 

composition were significantly different among successional stages, although no distinct microbial 

communities were observed in the two initial stages, suggesting that microbial succession may lag 

behind plant succession. However, the degree of change in the composition of soil microbial 

communities and plant communities across our chronosequence evidenced that above- and 

below-ground secondary succession developed with similar patterns and correlated with changes 

in multiple ecosystem functions such as increases in above-and below-ground productivity, 

diversity and nutrient accumulation as plant and microbial succession progressed. 
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3.2. INTRODUCTION  

 

Plant secondary succession has been considered as a process of little applicability in arid 

environments (Cramer and Hobbs 2007) or even non-occurring (Rowlands 1980). Several reports 

have shown that plant secondary succession does actually occur in these extreme habitats (e.g. 

Bonet 2004, Scott and Morgan 2012) but our knowledge on secondary processes in arid 

environments is still poor, especially in comparison to more temperate regions (Abella 2010) where 

plant succession often shows a relatively rapid and predictable trajectory in species diversity and 

composition (e.g., Foster and Tilman 2000). 

 

Soil microbial communities also change over time as it has been shown in different environments, 

from soils deglaciated only 20 years ago (Nemergut et al. 2007), to of ca. 77000 years old inland 

dunes (Tarlera et al. 2008). Changes in microbial community composition with time are influenced 

by factors such as carbon inputs, plant-microbial interactions (Tarlera et al. 2008) competition 

(Nemergut et al. 2007), soil variables such as pH, C, N and P concentrations (Banning et al. 2011) 

or land use history (Jangid et al. 2011). It has been suggested that plant community composition 

and soil chemistry explain different parts of the variation in soil microbial communities (Mitchell et 

al. 2012), but still little is known about the links between below-ground and above-ground 

succession processes.  

 

The few existing studies on secondary succession in arid ecosystems have almost exclusively 

focused on the dynamics of plant communities, with little attention to soil microorganisms. 

However, interactions between plants and soil microorganisms may have important consequences 

for plant community dynamics, becoming key factors for community assemblage and ecosystem 

functioning (Kardol et al. 2013). We know that soil organisms influence plant community 

composition (Van der Putten et al. 2013), affecting plant performance either positively (Bever 2003, 

Rodríguez-Echeverría et al. 2013) or negatively (Klironomos 2002); and that plants in turn 

influence microbial communities and drive changes in physico-chemical soil properties (Van der 

Putten et al. 2013). Published reports on soil microbial changes with time concerned temperate 

ecosystems but never, to our knowledge, dry environments. Such reports, however, lacked enough 

information (e.g., microbial biomass, activity and composition) to help explain such variations. 
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3.3. OBJECTIVES 

 

Our specific objectives were 1) to characterize changes in plant communities, soil properties and 

soil microbial communities at different times after agricultural abandonment, and evaluate whether 

changes follow a successional pattern; 2) to elucidate whether changes in plant and microbial 

community mirrored each other and; 3) to explore linkages among soil properties and plant and 

microbial communities along the chronosequence. 

 

3.4. HYPOTHESIS 

 

We hypothesized the existence of a parallel secondary succession above- and below-ground and 

we expected to find a process of succession in below-ground soil communities intimately linked to 

above-ground plant succession in plants. 

 

3.5. METHODS 

 

3.5.1. Study area 

 

The field site was located at Llanos de Rueda (37.05º N, 2.22º W, 503 m altitude) a flat piedmont 

of approximately 120 ha in the Tabernas Basin, Almería, Spain. The climate is semiarid with a 

mean annual precipitation of 235 mm, mild winter temperatures (mean minimum temperature of 

4.1ºC) and hot summers (average maximum temperature of 34.7ºC) (Lázaro et al. 2001). Extreme 

air temperatures above 45ºC and below freezing temperatures are not uncommon in the hottest 

and coldest months, respectively (Spanish National Meteorological Institute 2012). Soil parent 

material is a gypsum siltstone. Soils are orthic solonchacks with inclusions of calcic regosols, 

characterized by very low water holding capacity, low organic matter content, moderately alkaline 

pH (8.5) and low electrical conductivity (Pérez Pujalte et al. 1987).  

 

The plant community is a sparse and short shrubland with low cover dominated by shrubs like 

Artemisia barrelieri (Besser), Hammada articulata (Moq.) O. Bolòs & Vigo, Helianthemun 

almeriense (Pau), Salsola oppositifolia (Desf.), Thymelaea hirsuta (L.) Endl, and perennial grasses 

as Stipa tenacissima (L.) and Lygeum spartum (L.) Kunth (Peinado et al. 1992).  
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3.5.2. Chronosequence selection 

 

To define the chronosequence we used information from three different sources, (i) land use maps 

of the study area from 1928 (scale 1:25000) and 1949 (scale 1:5000) (Geographic and Cadastral 

Institute of Spain); (ii) orthophotos from 1956, 2000 and 2009, registered in the Environmental 

Information Network of Andalucía (REDIAM) with spatial reference ETRS89_30 and a geometric 

resolution of 1.0 m (years 1956 and 2009) or 0.5 m (year 2000) (Fig. 3.1); and (iii) direct field 

assessment performed in 2012. 

 

Both land use maps and orthophotos were digitized with ArcGIS 10.0 (ESRI, Redlands, California, 

USA) using clustering analysis to group objects with similar features. Objects were attributed to 

land uses taking into account shadow tone, color, shape, texture features and geometric resolution 

(Mitchell 1999). Attributed land uses were checked by field assessment, available information in 

the literature, historical records from the Almería Historic Archive, and confirmed by interviews with 

people with first-hand knowledge of the area. 

 

All digitized maps were overlapped in order to identify changes in land use. We recorded areas 

used as croplands anytime in the past and recorded their dates of abandonment (Fig. S3.1). Each 

of the identified areas was assigned into one of the following five categories according to the date 

of abandonment, i.e. the last 3, 12, 56, 63 years and >84 years or native grasslands. The most 

recently abandoned fields were marginally cultivated to sustain game bird populations, while 

traditional agricultural use consisted on non-irrigated crops for human subsistence. We considered 

native grasslands as the endpoint of succession, and grouped in this category any areas not 

cultivated after 1928 (i.e. areas abandoned more than 84 years ago).  
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Fig. 3.1. Orthophotos of the study area in 1956 (a), 2000 (b), and 2009 (c). The boundary limits of the field 

site are shown in red. 

 

  

(a)

(b)

(c)
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Five 30 m2 plots were randomly selected in each identified stage, giving a total of 25 plots. All plots 

were located as close as possible (maximum distance of 1 Km), and shared similar soil, climatic 

conditions and topographic position.  

 

3.5.3. Plant community composition and soil sampling 

 

We surveyed plant communities in May 2012 using transects. In each of the 25 plots we randomly 

placed five transects 25 m in length. We identified species found along transects and measured 

the length of intercepted segments (i.e. the transect length occupied by a given species). For each 

perennial species we calculated the percent cover by transect and then the average percent cover 

by plot. We also recorded the number of individuals for each perennial species in each plot as the 

sum of individuals recorded in the five transects per plot, and assessed plant diversity using the 

Shannon’s diversity index. All taxa were identified to species level. 

 

Seven soil cores, 4.5 cm in diameter and 10 cm deep, were collected at regular distances along 

each transect, combined, homogenized and sieved through 2 mm mesh to form one composite soil 

sample per plot. Each of the 25 composite soil samples collected was divided in two subsamples, 

one (approximately 100 g) was stored at -20ºC for soil microbial molecular analyses following and 

Tscherko et al. (2005), Hortal et al. (2013), and the other (approximately 400 g) was kept at 4ºC for 

physical and chemical analyses. Samples were processed within four weeks after collection. 

 

3.5.4. Soil analyses  

 

Soil electrical conductivity (EC) and pH were measured in each soil sample using a 1/10 (w/v) 

aqueous solution with a conductivity- and pH-meters (Crison, BA, Spain), respectively. Total soil 

carbon (C), organic C after removal of inorganic carbon with HCL 2N (Schumacher 2002), and 

total nitrogen (N) content were determined using a C/N analyzer (LECO Truspec, MI, USA). Anion 

phosphate (PO4
3-), nitrate (NO3

-), and sulphate (SO4
2-) concentrations in water extract (1:10 

soil:water) were analized by HPLC (Metrohm, HE, Switzerland). Soil ammonium content (NH4
+) 

was calculated from the urease activity (below). Percentage of clay, sand and silt were measured 

by granulometry. 
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3.5.5. Bacterial composition: pyrosequencing 

 

DNA was extracted from 0.25 g of homogenized soil from each of the 25 soil samples using the 

PowerSoil® DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, USA) following the 

manufacturer’s directions. Following Hortal et al. (2013) a 16S rDNA gene fragment corresponding 

to V1 and V2 regions was amplified. The forward primer (5´-

CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNNNNAGAGTTTGATCMTGGCTCAG-3´) 

contain Roche pyrosequencing adapter A (underlined), a Roche recommended 10 bp barcode 

sequence (NNNNNNNNNN) used to tag each sample and the bacterial primer 27F. The reverse 

primer (5´-CCTATCCCCTGTGTGCCTTGGCAGTCTCAGGCTGCCTCCCGTAGGAGT-3´) 

contained the Roche pyrosequencing adapter B (underlined) and the primer 338R. Each sample 

was amplified in triplicate, pooled, purified and DNA concentration determined following Hortal et 

al. (2013). An equimolar pool was prepared and pyrosequenced in a Roche Genome Sequencer 

FLX System (Roche, Basel, Switzerland) using 454 Titanium chemistry at Lifesequencing lab 

(Valencia, Spain). 

 

Sequences were trimmed for primers, quality filtered and demultiplexed using the pyrosequencing 

pipeline tools from the Ribosomal Database Project (RDP, Michigan State Univ., USA). Sequences 

shorter than 150 bp, with quality scores <20 or containing any unresolved nucleotides were 

removed from the dataset. We used Acacia software version 1.52 (Bragg et al. 2012) for 

pyrosequencing noise removal using default parameters for error correction. Chimeras were 

identified using Decipher’s Find chimeras tool (Wright et al. 2012) and removed from the dataset. 

Sequences were aligned using the Aligner tool from the RDP pipeline. Aligned sequences were 

clustered into operational taxonomic units (OTUs) defined at 97% similarity cutoff using the 

complete linkage clustering tool of the RDP pipeline. Taxonomic assignation of sequences was 

performed using the RDP naïve Bayesian classifier trained on the 16S training set 9 (Wang et al. 

2007) at a confidence level of 80 %, and relative abundances of the different phyla, classes, 

subclasses and order per each of the 25 samples were calculated. 

 

3.5.6. Microbial biomass and activity  

 

Phospholipids fatty acids (PLFAs) were analyzed following Hortal et al. (2013). The Gram+ specific 

fatty acids i15:0, i16:0, a15:0, i17:0, a17:0 and the Gram- specific fatty acids 16:1ω, 18:1ω9c, 

18:1ω9t, cy17:0, cy19:0 were taken as a measure of the ratio between the Gram+ and Gram- 
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bacterial biomass. Fatty acids i15:0, i16:0, 18:1ω9c, 18:1ω9t, cy17:0 and cy19:0 were chosen to 

represent the bacterial biomass and 18:2ω6 was taken to indicate fungal biomass (Dungait et al. 

2011). 

 

Soil basal microbial respiration was analyzed by placing 15 g of soil moistened to 40–50% of its 

water holding capacity (water potential: -0.055 MPa) in hermetically sealed flasks and incubated 

for 24 days at 28°C. We measured the CO2 accumulated in the air every day for the first 10 days 

and then weekly using an infrared gas analyzer (Toray PG-100, Toray Engineering Co. Ltd., 

Japan). Results were added to give a cumulative amount of CO2 released after 24 days of 

incubation, and basal respiration was expressed as mg CO2–C kg-1 soil day-1. Soil dehydrogenase 

activity was determined on 1 g of soil, and the reduction of p-iodonitrotetrazolium chloride (INT) to 

p-iodonitrotetrazolium formazan (INTF) was measured by a modification of the method reported by 

Vonmersi and Schinner (1991) and was expressed as µg INTF g-1 soil h-1. Urease activity was 

determined as the NH4+ released in the hydrolytic reaction using urea as substrate and borate 

buffer (pH 10) (Kandeler and Gerber 1988). Alkaline phosphatase and β-glucosidase activities 

were determined following methods modified by Lucas-Borja et al. (2011), adding 2 ml of modified 

universal buffer (MUB) pH 11 and 0.5 ml of 0.115 M p-nitrophenyl phosphate (for the phosphatase 

assay) or 2 ml of MUB pH 6 and 0.5 ml of 0.025 M p-nitrophenyl phosphate β-D-glucopiranoside 

(for β-glucosidase assay) to 0.5 g of soil. The mixtures were then incubated at 37ºC for 1 h and, 

after that; enzymatic reactions were stopped by cooling on ice for 15 min. Then, 0.5 ml of 0.5 M 

CaCl2 and 2 ml of 0.5 M NaOH (for phosphatase) or 2 ml of 0.1 M Tris–

hydroxymethylaminomethane–sodium hydroxide (THAM-NaOH) pH 12 (for β-glucosidase) were 

added. Substrates were added before (in samples) and after (in controls) the addition of CaCl2, 

NaOH and THAM. Microbial activity per unit of biomass was calculated using the ratio of basal 

respiration to total PLFAs.  

 

3.5.7. Statistical analyses 

 

Differences in plant cover, plant diversity, soil properties, microbial activity (basal respiration and 

enzymatic activities), microbial biomass (PLFAs groups), bacterial diversity, and relative 

abundance of bacterial taxa along successional stages were evaluated using general linear 

models. Significance was established at p<0.05. Post-hoc comparisons were performed using 

Fisher’s LSD test. Results are presented as mean values ±1 SE throughout the text. Similarity 

among treatments in plant community composition (perennial plant species) or bacterial 
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community composition (with OTUs showing at least 5 reads in the overall dataset) were analyzed 

with Non-metric multidimensional scaling (NMDS) using Bray-Curtis similarity index, and 

differences among chronosequence stages were evaluated performing NPMANOVA with 9999 

permutations using Past v 2.12 software (Hammer et al. 2001). The correlation between the first 

coordinates of each NMDS on microbial and plant community composition was analysed using 

Pearson’s coefficient. Shannon’s diversity index (H’) of OTUs per sample was calculated with Past 

software after excluding singletons (OTUs only showing 1 read in the overall dataset) to reduce the 

overestimation of diversity (Tedersoo et al. 2010). We performed hierarchical cluster analyses of 

the relative abundance of bacterial community genera in each treatment using Bray-Curtis 

similarity index. We also performed a principal component analysis (PCA) and correlation matrix 

analysis of plant cover, soil properties, plant and microbial composition, microbial biomass and 

activity. Data were analyzed with InfoStat (Di Rienzo et al. 2013).  

 

3.6. RESULTS 

 

3.6.1. Plant community composition  

 

Plant cover significantly increased with increasing time of abandonment, ranging from 0.39% just 

after agriculture cessation to 79.50% in native grasslands (Table 3.1). Diversity of perennial 

species showed a similar trend, and increased with increasing time of abandonment (Table 3.1). A 

total of 20 perennial species were found along the different stages. In each successional stage 

(ranked in increasing time since abandonment) we found 4, 9, 12, 15 and 17 species, respectively 

(Table 3.1). 

 

The set of dominant perennial species changed over time (Table 3.1). Launaea fragilis and 

Cynodon dactylon were the dominant species during the first successional stage (3 years). In the 

second (12 years), Thymelaea hirsuta became dominant along with Artemisia barrelieri. In the 56 

years stage, Artemisia barrelieri was highly dominant, covering 17.96%, which represented more 

than half the total cover (25.92%). Salsola oppositifolia and Hammada articulata were the 

dominant species in the 63 years stage. In native grasslands, the grass species Stipa tenacissima 

and Lygeum spartum, and the shrub species Helianthemun almeriense and Anthyllis cytisoides 

were dominant. Ordination of plant communities (Fig. 3.2a) showed clear differences among 

successional stages in species composition (F4,20=17.46, p<0.001, NPMANOVA). 

 



CHAPTER 3. INTERACTIONS AMONG SOIL, PLANTS, AND MICROORGANISMS DRIVE SECONDARY SUCCESSION 
 

80 
 

3.6.2. Soil properties 

 

Differences in soil chemistry and texture were observed along the successional gradient (Table 

3.2). Several parameters, i.e. soil EC, NH4
+/NO3

- ratio, organic C, NH4
+, and silt contents increased 

gradually along the chronosequence while soil NO3
- content decreased in the first three 

successional stages and then remained steady. Total N and NO2 content were higher in native 

grasslands than in the other previous stages. On the contrary, soil SO4
2- and sand content 

decreased towards the latest successional stages. No significant differences were found regarding 

C/N ratio, C and clay content. Mean soil pH values ranged 8.32-8.73. Soil PO4
3- content was very 

low in all samples, well under the detection threshold of the HPLC. 

 

 

Fig. 3.2. Ordination of plant (cover of different perennial species) (a) and soil bacterial communities (OTUs 
abundance) (b) along successional stages by non-metric multidimensional scaling using Bray-Curtis 
similarity index. Only OTUs with at least 5 reads were included in the analysis. Field plots are coded by 
successional stage: Square (3 years), diamond (12 years), cross (56 years), circle (63 years) and solid 
square (native grassland). Stress value = 0.13 (a), 0.15 (b). 
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3.6.3. Microbial biomass and activity  

 

We found an overall increase in microbial biomass with increasing time since abandonment (Table 

3.3). Total microbial biomass showed the lowest values at the first (3 years) and second (12 years) 

stages and constantly increased afterwards. Fungal PLFAs were intermediate at 3 years, low at 12 

years stage and high after 56 years of abandonment. Lowest values of bacterial biomass were 

also found at the 12 years stage, while the highest values were recorded in native grasslands. The 

highest ratio of fungi/bacteria was recorded 56 years after abandonment while the lowest values 

corresponded to the first two successional stages. There were no significant differences in the ratio 

Gram+ / Gram- across successional stages. We also found an overall increase in soil microbial 

activity with increasing time since abandonment, with the highest values of phosphatase, β-

glucosidase and urease activities recorded in native grasslands (Table 3.3). Soil basal respiration 

was significantly higher after 56 years of abandonment than in the first 12 years of abandonment. 

Dehydrogenase activity was similar across successional stages. 
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3.6.4. Soil bacterial community composition 

 

We obtained a total of 71524 sequences after filtering and removing chimeras. The mean number 

of retained sequences per sample was 2860 ± 135 (mean ± SE), with no significant differences 

among successional stages (F4,20=2.09, p=0.12, ANOVA). Average length of retained sequences 

was 322 ± 0.23 bp. The slope of rarefaction curves was similar for all samples regardless of the 

treatment (Fig. S3.1). Sequences mostly belonged to five different phyla, Actinobacteria, 

Acidobacteria, Proteobacteria, Bacteroidetes and Gemmatimonadetes. Other minor phyla (with 

relative abundance lower than 1%) were Chloroflexi, Firmicutes, Armatimonadetes, Cyanobacteria, 

Nitrospira and TM7. 

 

Relative abundances of the different taxa differed among successional stages (Fig. 3.3). 

Actinobacteridae decreased in the last two successional stages and Bacteroidetes and 

Deltaproteobacteria showed the lowest relative abundance in native grasslands. On the contrary, 

Acidobacteria increased in the last two successional stages and Gemmatimonadetes showed the 

highest relative abundance in native grasslands. Betaproteobacteria was higher at the intermediate 

(56 years) stage than at the stages immediately before and after (12 and the 63 years). Among 

minor phyla, Firmicutes decreased with time while relative abundance of both Cyanobacteria and 

Armatimonadetes were significantly higher at the 12 and 63 years stage than at the others (data 

not shown). There were no significant changes in the relative abundance of Acidimicrobidae, 

Rubrobacteridae (subclasses within Actinobacteria), Alphaproteobacteria, Gammaproteobacteria, 

Chloroflexi, Nitrospira, TM7 or unclassified bacteria. Bacterial diversity (Shannon’s index) was 6.68 

± 0.02, without significant differences among successional stages. 
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Fig. 3.3. Mean relative abundance (± 1 SE) of bacterial taxonomic groups, i.e. phyla Bacteroidetes, 
Gemmatimonadetes and Acidobacteria, classes Deltaproteobacteria, Betaproteobacteria, 
Alphaproteobacteria and Gammaproteobacteria (within Proteobacteria phylum), subclasses 
Acidimicrobidae, Rubrobacteridae and Actinobacteridae (within Actinobacteria phylum) along different 
successional stages. Different letters within a bacterial group indicate significant differences (p < 0.05) 
among treatments after Fisher’s LSD test; n=5. 
 

We identified 10034 distinct operational taxonomic units (OTUs) at 97% similarity. Ordination of 

(OTUs) (Fig. 3.2b) with a minimum of 5 reads within the overall dataset (3108) and cluster 

hierarchical analysis of relative abundance of bacterial genera (>1%; Fig. S3.2) showed marked 

differences in bacterial community composition among successional stages (F4,20=2.02, p<0.001, 

NPMANOVA), except for the first two which were similar. Same results were obtained when 

including all reads (data not shown).  

 

3.6.5. Linkages among soil properties, plant and microbial communities  

 

Ordination based on specific composition of both plant and microbial communities (Fig. 3.2a,b) 

showed that communities belonging to the same succesional stage clustered and that there were 

clear differences among successional stages, mainly spreading along coordinate 1. There was a 

strong correlation between coordinates 1 of microbial and plant communities’ NMDS suggesting 

that both communities changed in parallel with time of land abandonment (r= 0.79; p<0.001). 
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Ordination of samples by PCA based on plant community composition, soil properties, microbial 

composition, biomass and activity showed a clear separation of successional stages along the first 

axis (Fig. 3.4), with the first two axes explaining 53.4% of total variance. The ordination stressed 

the trends observed in Tables 3.2 and 3.3, showing a strong and positive correlation of some soil 

properties, microbial activity and biomass with increasing time after abandonment. Of particular 

interest, we found positive correlations among the increase in plant cover with time, organic carbon 

and NH4
+ contents, EC, silt content, microbial biomass, enzymatic activities, the relative 

abundance of the microbial groups Gemmatimonadetes and Acidobacteria and plant cover of the 

species Stipa and Anthyllis. On the other hand, sand content was positively correlated with the 

relative abundance of Bacteroidetes and Deltaproteobacteria while SO4
2- content was positively 

correlated with the relative abundance of Actinobacteridae. (Fig 3.4, Table S3.1). 

 

 

 

 
Fig. 3.4 Principal component analysis of plant cover, soil properties (electrical conductivity [EC], clay, sand, 
silt, SO4

-2, NO3
-, NH4

+ pH, total nitrogen [N], organic carbon [OC], total carbon [C]), microbial composition 
(Actinobacteridae, Bacteroidetes, Deltaproteobacteria, Betaproteobacteria, Acidobacteria, and 
Gemmatimonadetes), total microbial biomass (M Biomass), microbial activity (Urease, Phosphatase, β-
glucosidase, basal respiration [BR]) and plant composition (Thymelaea hirsuta, Artemisia barrelieri, 
Hammada articulata, Salsola oppositifolia, Anthyllis cytisoides and Stipa tenacissima), along the 
successional stages. The first two PCA axes explain 53.4 % of total variance. Field plots coded as in Fig. 
3.1. 
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3.7. DISCUSSION 

 

Our results evidence that secondary succession in arid environments did occur both below- and 

above-ground, in a process characterized by changes in soil microbial composition, biomass and 

activity that mirrored changes in plant species composition, diversity and cover. Plant and 

microbial communities changed with time of abandonment increasing ecosystem functions such as 

above- and below-ground productivity, diversity and soil nutrient accumulation as succession 

progressed. 

 

3.7.1. Plant and microbial secondary succession 

 

Plant communities in this semiarid environment undergo a secondary succession process 

characterized by an increase in species richness, diversity and productivity. Our results show a 

continuous increase in both species diversity and cover, in agreement with Bonet (2004). By 

contrast, other studies in dry environments have reported an initial increase in species richness 

and plant cover which remained steady or even decreased afterwards (e.g. Dana and Mota 2006, 

Otto et al. 2006, Scott and Morgan 2012). The continuous increase recorded in our field site may 

reflect that, although 84 years were enough to observe clear patterns of secondary succession, 

most likely they were not enough to re-assemble the native community due to extreme climatic 

conditions. 

 

Our data also evidenced a clear pattern of succession in soil microbial communities including 

changes in species composition, biomass and activity. While Kuramae et al. (2011) showed a large 

overlap of microbial communities with no clear separation between successional stages in a 

chronosequence in chalk grasslands, our data show changes with time in relative abundance of 

several microbial groups. Microbial succession in our field site was also characterized by an 

increase in both fungal and bacterial biomass as well as in microbial activity over time, as reported 

for agricultural (Jangid et al. 2011) and moorland systems (Mitchell et al. 2012).  

 

Our results showed that changes in composition of plant and microbial communities displayed a 

similar pattern along the successional stages (the multidimensional space in the ordination 

analyses). We found clear separation in plant and soil microbial communities among different 

successional stages, suggesting a successional process in both plant and microbial communities, 

and that both followed a similar path. Moreover, the set of 25 plot values in the first axes of the 
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nMDS of plant and soil communities were strongly correlated. That is, the degree of change in the 

composition of the soil microbial community with time mirrored that of the plant community, 

suggesting that plant and microbial successions might follow parallel processes. 

 

3.7.2. Relationships among plant, microbial succession and soil properties  

 

Our results showed that as both plant and microbial succession progressed, net primary 

productivity (measured through plant cover), soil microbial biomass and activity, and C and N 

content increased. In particular, plant and microbial succession in our field site were linked to an 

increase in soil organic C, NH4
+ and silt contents. The increase in plant cover with time enhances 

the accretion of organic material such as litter and roots in soils, and consequently favours the 

accumulation of soil organic C (Pugnaire et al. 2004, Yang et al. 2009). Soil organic C reduces soil 

temperature amplitudes, increases soil water holding capacity and thus can enhance soil moisture 

under perennial plants (Chancellor et al. 1994, Duchaufour 1995). In addition, the increase in plant 

cover usually allows for better microclimatic conditions (temperature and soil moisture) under 

shrub canopies (Pugnaire et al. 2004), overall improving soil conditions. 

 

Better soil conditions, promoted by the increase in plant cover, positively affected microbial 

communities in terms of biomass and activity, as reported for primary succession (Tscherko et al. 

2005). Plant cover, through its effects on soil organic C and microclimatic conditions, promoted 

microbial growth and hence microbial biomass (Tortora et al. 2007). Plant cover may have also 

promoted higher soil respiration rates in later successional stages compared to initial stages where 

cover was lowest, in agreement with Conant et al. (2004) who suggested that soil respiration in 

semiarid areas is affected by temperature and soil moisture. The increase in phosphatase with 

time could be attributable to soil microbes trying to obtain the scarce phosphorus from organic 

sources (Tarafdar and Claassen 1988), while soil urease and β–glucosidase levels could be 

explained by an increase in plant residues and organic carbon returned to soil along the 

successional chronosequence. 

 

Cover of dominant plant species in the last two successional stages, Stipa and Anthyillis, were 

positively correlated with microbial biomass, enzymatic activities silt, organic C contents and an 

abundance increase of Gemmatimonadetes and Acidobacteria. These results suggest that plant 

identity affects microbial biomass and community composition by modifying soil properties. 

Kowalchuk et al. (2002), and Martínez-García et al. (2011) found that plant species identity 
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determined the type of microorganisms found in the rhizosphere. Acidobacteria abundance 

increased with successional time as reported elsewhere (Tarlera et al. 2008) and 

Gemmatimonadetes were more abundant in native grasslands than in the other successional 

stages, as in other undisturbed and non-grazed semiarid pastures (Acosta-Martínez et al. 2010). 

Our results suggest that bacterial community composition and biomass were significantly affected 

by soil particle size, as reported by Sessitsch et al. (2001) who found higher biomass and 

abundance of Acidobacteria microbes in silt and clay than in sandy soils, while other microbial 

groups such as Actinobacteria were negatively correlated with silt content, as in our case. 

Agricultural practices may cause an accelerated loss of soil silt due to leaching (Urich 2002) and 

thus may indirectly increase the amount of sand in soils. However, plant colonization during 

secondary succession allows for an increase in soil retention thanks to a larger amount of roots 

(Carrick and Krüger 2007) and soil organic carbon, overall promoting the accretion (and retention) 

of silt particles in the soil. 

 

Actinobacteria was the most abundant phylum across successional stages, and our results also 

showed an abundance of Actinobacteridae higher in the initial stages than in the last ones. 

Actinobacteria were positively correlated with SO4-2 as reported by Jiang et al. (2010) in freshwater 

ecosystem. Members of Actinobacteria play an important role in cycling soil organic compounds 

and have evident impact on soil N and C. Species of Streptomyces, for example, were commonly 

found in our field site. They are known to be drought resistant (Köberl et al. 2013), can use many 

organic carbon compounds (Schlatter et al. 2013), and, although their role is likely minor relative to 

fungi (Rayner and Boddy 1988), they have a role in wood decomposition (Bontemps et al. 2013). 

The dominance by Actinobacteria in the first and intermediate stages correlates with their ability to 

colonize bare soil (Suela Silva et al. 2013), while their decrease at latter stages agrees with reports 

showing that Actinobacteridae are less abundant under shrubs than in patches without vegetation 

(Hortal et al. 2013). 

 

On the contrary, Bacteroidetes and Deltaproteobacteria were less abundant in native grasslands 

than in early successional stages. Although Bacteroidetes exhibit copiotrophic attributes (Fierer et 

al. 2007) and Mixococcales (our most common Deltaproteobacteria order) inhabit soils on 

decaying organic material (Kersters et al. 2006) we did not find any positive correlation with soil 

organic carbon. Their abundance however was positively correlated with sand content. Soil texture 

is determinant in bacterial community structure (Girvan et al. 2003) and could explain changes in 

abundance of both groups here.  
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Agricultural practices (with large inputs of N into the system) also strongly affect biogeochemical 

cycles (Austin et al. 2006a) and, consequently, the trajectory of secondary succession. We 

recorded a decrease in NO3
- content with successional time linked to land abandonment, with a 

parallel increase in NH4
+ content and plant cover. Although Austin et al. (2006b) negatively 

correlated NH4
+ with plant cover in arid Patagonia systems, our data show that larger levels of 

NH4
+ could potentially positively affect C storage by plants (increasing net primary productivity), 

probably as many species prefer NH4
+ as nitrogen source (Boudsocq et al. 2012). Opposite to 

McLendon and Redente (1992), who suggested that in semiarid ecosystems succession could be 

controlled by N limitation, our data show increasing N availability with time.  

 

3.7.3. Microbial succession follows plant succession  

 

Although our results suggest that plant and microbial succession processes developed in parallel, 

they also suggest that plant succession proceeded faster than microbial succession. We recorded 

changes in plant cover and diversity in the two first successional stages but not changes in soil 

microbial composition, suggesting that microbial succession might lag behind plant succession. 

Although it is assumed that plant and soil communities vary over similar time-scales (Bever 2003), 

the starting point of plant and microbial communities differs in abandoned agricultural fields. While 

plant secondary succession usually starts from disturbed, nude soil easy to colonize, microbial 

secondary succession starts from an established microbial community already present in former 

agricultural fields. Thus, the influence of plants on the established soil microbial community might 

have been low during the first successional stages when plant cover was low. This result contrasts 

to what happened in a temperate grassland (Kuramae et al. 2011), where the first stages but not 

intermediate and late stages showed microbial variation. As argued above, the increase in plant 

cover along the chronosequence would have influenced soil microbial community through the input 

of soil nutrients and organic C, buffering of temperature, improved soil moisture conditions, and 

accretion of small soil particles. As time since land abandonment increased, microbial communities 

might also have influenced plant performance either positively (Rodríguez-Echeverría et al. 2013) 

or negatively (Klironomos 2002) thereby establishing a feedback among plant and soil microbial 

communities as succession progressed. 

 

 

 



CHAPTER 3. INTERACTIONS AMONG SOIL, PLANTS, AND MICROORGANISMS DRIVE SECONDARY SUCCESSION 
 

92 
 

3.8. CONCLUSIONS 

 

Our data suggest that abandoned agricultural fields in this dry ecosystem undergo processes of 

secondary succession both below- and above-ground characterized by changes in soil properties, 

plant cover, microbial biomass and activity, plant and microbial community composition. The timing 

of changes in plant and microbial community composition suggest that microbial succession may 

follow plant succession. Thus, we suggest that secondary succession in dry environments is driven 

by the interaction between plants and soil microbial communities, and both their interplay and 

consequences warrant more attention.  

  



CHAPTER 3. INTERACTIONS AMONG SOIL, PLANTS, AND MICROORGANISMS DRIVE SECONDARY SUCCESSION 
 

93 
 

3.9. APPENDIX 

 

 
 
Figure S3.1 Rarefaction curves for each successional stage. R1-R5 indicate number of replicates (n=5). 
Operational taxonomic units (OTUs) were defined at 97% of similarity.  
 
 
 

 

 

 

 

56 years

0 1000 2000 3000 4000

N
u

m
b

e
r 

o
f 
O

T
U

s

0

200

400

600

800

1000

1200

1400

1600

1800

R1

R2 

R3 

R4 

R5 

3 years

0 1000 2000 3000 4000

N
u
m

b
e

r 
o

f 
O

T
U

s

0

200

400

600

800

1000

1200

1400

1600

1800

R1

R2

R3

R4

R5

12 years

0 1000 2000 3000 4000
0

200

400

600

800

1000

1200

1400

1600

1800

R1

R2

R3

R4

R5

63 years

0 1000 2000 3000 4000
0

200

400

600

800

1000

1200

1400

1600

1800

R1

R2

R3

R4

R5

Number of reads
>84 years

Number of reads

0 1000 2000 3000 4000
0

200

400

600

800

1000

1200

1400

1600

1800

R1

R2

R3

R4

R5

N
u

m
b
e
r 

o
f 
O

T
U

s



CHAPTER 3. INTERACTIONS AMONG SOIL, PLANTS, AND MICROORGANISMS DRIVE SECONDARY SUCCESSION 
 

94 
 

 

 

Figure S3.2. Hierarchical cluster analysis of the relative abundance of bacterial community genera in each 
treatment using Bray-Curtis similarity index. Cut off criterion is indicated with a vertical line. Cophenetic 
correlation=0.94. 
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4.1. ABSTRACT 

 

Causes of arrested succession, i.e., when few species dominate the community in such a way that 

succession seems stopped or delayed beyond reasonable time periods, are still unclear although a 

role for soil microbial communities is suspected in this phenomenon. The tussock grass Lygeum 

spartum frequently dominates extensive areas of abandoned fields in what seems arrested 

succession in an arid environment. We evaluated whether the competitive ability of this species is 

linked to its associated soil microbial community and soil properties or whether it is a consequence 

of the plant´s life strategy. We grew plants of this species along with individuals of Salsola 

oppositifolia, a shrub dominant in late successional stages, to release intra- and inter-specific 

interactions on sterile soil inoculated with either alive or sterile soil extracts collected under each of 

the two species. We established three parallel experiments according to different life history stages 

using seeds, saplings, and young adult individuals. At harvest, soil nutrient content and shoot 

mass were determined and microbial communities were characterized by pyrosequencing of the 

16S rDNA. We found that both soil microbial communities and soil properties associated to 

Lygeum did not prevent but rather facilitated Salsola establishment. The competitive ability of 

Lygeum was linked to a positive effect of its own soil extracts on saplings and adult individuals and 

to a high and quick germination rate of Lygeum seeds in contrast to the slow pace and low 

germination rate of Salsola seeds. In conclusion, soil properties and soil microbial communities 

associated to Lygeum have an important influence on seed germination and initial growth of 

Lygeum individuals. Added to its clonal growth strategy, positive feedbacks with soil 

microroganisms allow for a quick dominance of this species and apparent arrested succession. 
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4.2. INTRODUCTION  

 

Plant secondary succession takes place after disturbance, from tropical to temperate, and from 

savanna to artic or desert ecosystems (De Mera and Orellana 2007). Although for years it was 

thought that succession did not occur in arid environments due to extreme climatic conditions 

(Muller 1940, Rowlands 1980), several reports have shown that plant succession does also occur 

in such environments (Bonet 2004, Scott and Morgan 2012, Chapter III of this thesis). Arrested or 

truncated succession, which occurs when some species dominate the community in such a way 

that succession seems stopped or delayed beyond reasonable time periods (Young and Peffer 

2010) has been described in tropical (Griscom and Ashton 2003, Boyes et al. 2011), temperate 

(Hill and Silander 2001, Mallik 2003), Mediterranean (Acácio et al. 2007),  and arid (Walker et al. 

2007) ecosystems.  

 
Although the causes of strong dominance of a species could be manifold, species that lead to 

arrested succession show in most cases rapid vegetative spread (Royo and Carson 2006) and 

long lifespan (Young and Peffer 2010) that help them to become dominant in the plant community 

for long periods of time. Their dominance could also be enhanced as other species undergo 

dispersal limitation (Jordano and Godoy 2002) or seedling mortality due to herbivory (Boyes et al. 

2011). Soil microorganisms could also play a role in this process as they can promote or hinder 

seed germination and plant performance (chapter II). While negative feedback associations, 

influenced by the accumulation of soil pathogens, enhance succession (Van Der Putten et al. 

1993) avoiding the extreme dominance of a few species, soil microorganisms could establish 

positive feedback associations with plants contributing to their persistence over time (Bever 2003) 

as with late successional species (Kardol et al. 2006). These and other factors facilitate the 

extreme dominance of a single species and may cause arrested succession. 

 

Different plant species are known to cause arrested succession in different ecosystems. For 

example, ferns as Dennstaedtia punctilobula in temperate environments (Hill and Silander 2001), 

bamboo species such as Guadua sarcocarpa in tropical systems (Griscom and Ashton 2003), 

Cistus species in Mediterranean environments (Miranda et al. 2004) and many other herbaceous 

and shrub species like Acanthus pubescens or Isoglossa woodii (Chapman et al. 1999, Griffiths et 

al. 2007). In addition, species that exhibit clonal growth are often involved in arrested succession 

(Royo and Carson 2006) as they form structures such as creeping stems, root suckers or rhizomes 

(Stuefer et al. 2001). Such clonal growth promote high stem and foliage densities that reduce light 
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(Pugnaire and Haase 1996, Griffiths et al. 2007) which, added to their ability to invade space and 

form dense thickets, prevent the establishment of other species. 

 

Plant secondary succession in extreme conditions such as arid environments (Bonnet 2004, Scott 

and Morgan 2012, Chapter III) is characterized by a change in species dominance. For example, in 

arid SE Spain Thymelaea hirsuta (L.) dominates early successional stages, Artemisia barrelieri 

(Besser), Salsola oppositifolia (Desf.) and Hammada articulata (Moq.) O. Bolòs & Vigo in 

intermediate stages and Stipa tenacissima (L.) in late stages (Chapter III). However, there are also 

abandoned fields that do not undergo secondary succession and are dominated by a single plant 

species for long time periods. Although many factors could influence this phenomenon, we know 

that high soil salinity (Hasegawa et al., 2000), low nutrient content (Roem et al. 2002), soil 

microorganisms (Van der Putten 2013, Chapter II) as well as different competition strategies 

(Tilman 1982, Went 1973) prevent survival of some species while favor other species leading to 

arrested succession. 

 

The perennial tussock grass, Lygeum spartum (L.) Kunth (Lygeum hereafter), is a species typically 

abundant in areas of high soil salinity in SE Spain where frequently dominates extensive areas of 

abandoned fields for long periods of time, decreasing plant diversity. This species is well adapted 

to high soil salinity, high irradiance and temperatures, as well as to low water holding capacity and 

organic matter content (Pérez Pujalte et al. 1987, Lázaro et al. 2001). Under similar microclimatic 

conditions, the halophytic species Salsola oppositifolia (Salsola hereafter), a shrub dominant in late 

successional stages (chapter III), can be found at some points growing along Lygeum individuals 

(Peinado et al., 1992). Here, we evaluated whether the competitive ability of the dominant tussock 

grass species, Lygeum spartum, in interaction with Salsola oppositifolia depends on soil 

properties, on its associated soil microbial community, or is rather just a consequence of its 

functional strategy.  

 

4.3. OBJECTIVES 

 

By growing Lygeum and Salsola from seeds and using saplings and young adults in either intra- or 

inter-specific interaction we tested whether 1) the soil microbial community associated to Lygeum 

positively affected seed germination and plant growth; 2) the soil microbial community associated 

to Lygeum had a negative effect on Salsola germination and shoot mass; 3) factors such as soil 
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nutrients, salinity or texture promoted Lygeum establishment but prevented Salsola establishment; 

and finally, 4) to what extent Lygeum life history strategies determined its competitive success.  

 

4.4. HYPOTHESES 

 

We hypothesized that soil properties and soil microorganisms naturally associated to Lygeum 

would positively affect germination rate, establishment and growth of this species, and that they 

would negatively affect individuals of other plant species such as Salsola. We also expected that 

rapid seed germination mediated by soil microorganisms and clonal growth would explain the 

extreme dominance of Lygeum in large patches of these arid environments. Ultimately, we 

expected that both soil microorganisms and plant strategies would explain arrested succession in 

this environment. 

 

4.5. METHODS 

 

4.5.1. Field site and species 

 

We selected two native perennial species occurring in semiarid environments in south-east Spain. 

Lygeum spartum (L.) Kunth is a rhizomatous tussock grass (Nedjimi 2013) well adapted to extreme 

conditions of aridity, salinity, and high temperatures which is widespread over uncultivated land 

and abandoned fields in these arid ecosystems (Pugnaire and Haase 1996, Nedjimi 2013). Salsola 

oppositifolia (Desf.) is a succulent evergreen Chenopodiaceae shrub typical of the same extreme 

conditions as Lygeum, which successfully colonizes disturbed areas (Peinado et al. 1992, 

Pugnaire et al. 2004) and dominate advanced stages of succession (See chapter III). Seeds, 

saplings, and young adult (hereafter adults) individuals of these species used in these experiments 

were provided by Viveros Muzalé (Murcia, Spain). 

 

4.5.2. Soil sampling and inoculum preparation  

 

In March 2013 we collected soil from Llanos de Rueda (37.05º N, 2.22º W, 503 m altitude) in the 

Tabernas Basin, Almería, Spain from the top 10 cm under the canopy of 30 randomly selected 

Lygeum tussocks and 30 Salsola shrubs in a ~3 ha homogeneous plot. Soil samples collected 

under the same plant species were combined, homogenised and sieved through 5-mm mesh to 

give a 170 kg composite soil sample per soil origin (i.e. collected under Lygeum or under Salsola 
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canopies). Pooling soil samples within soil type reduces variability but allows testing for differences 

between soil types, and could be considered as technical replicates (Kardol et al. 2006, Ayres et 

al. 2009, Meisner et al. 2013, Rodríguez-Echeverría et al. 2013). 136 out of these 170 Kg were 

autoclaved during 20 min at 120 ºC to kill all soil biota and then used as microcosms substrate.  

 

Following standard procedures (Kardol et al. 2007, Meisner et al. 2013, Pendergast et al. 2013, 

Gundale et al. 2014), we took apart the other 34 kg from each soil origin to prepare 2 types of 

inoculum; 17 kg were left intact to prepare the “alive” soil inoculum and the remaining 17 kg were 

autoclaved at 120 ºC during 20 min to prepare the sterile soil inoculum. Each soil subsample was 

stirred in distilled, autoclaved water in a proportion 1:2 (v:v) and then filtered through a 0.5 mm 

sieve to remove soil particles but allowing the passing of fungal spores, hyphae, soil bacteria and 

microfauna (Van de Voorde et al. 2012). These two types of inocula (sterile and alive) per soil 

origin (under Lygeum or Salsola canopies) were used to inoculate soil microcosms. Soil samples 

were stored at 4 ºC for a maximum of 1 month for physical and chemical analyses (Cernohlavkova 

et al. 2009) and at -80 ºC for soil microbial molecular analyses.  

 

4.5.3. Experimental design  

 

Growth chamber experiments: seeds and saplings  
 

In March 2013, we established two similar experiments in a controlled growth chamber, one with 

seeds and another with ca. 3-month old saplings (Fig. 4.1). For both experiments, we filled half the 

microcosms (17 cm in diameter, 18 cm tall pots, 1 L in volume) with soil from each of the two 

autoclaved soil origins (under Lygeum or Salsola) mixed with perlite in a proportion 1:1 (v:v) to 

avoid soil compaction. We then supplied half the microcosms of each soil type with one of the two 

inocula (alive or sterile). The volume of soil inoculum added to each microcosm was adjusted to 

20% (v:v), i.e., 200 ml per microcosm. The design included two levels of plant-plant interaction per 

species, intra- and inter-specific (i.e., Salsola+Salsola, Lygeum+Lygeum and Lygeum+Salsola) 

totalling 96 microcosms (3 plant interaction levels x 2 soil origin x 2 inocula x 8 replicates) per 

experiment. 

 

For the seed experiment, we randomly sowed 11 seeds of each species in the inter-specific 

interaction treatment and 22 seeds of the same species in the intra-specific interaction treatment to 

keep constant the number of seeds per microcosm. Seeds were previously surface-sterilized with 
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ethanol 75% for 2 minutes and washed with sterile water for 1 minute. Seeded microcosms were 

kept in the dark for the first five days. For the experiment with saplings, we grew two individuals of 

the same or different species in each microcosm according to the different plant interaction 

treatments. Plants of both species had similar height and above-ground mass at the start of the 

experiment, Lygeum plants having 5 stems. Throughout the experiments, the day light period was 

set at 13 h, and the temperature regime at 25/18 ºC day/night with relative humidity of ~70%. 

Microcosms were watered once a week with 100 ml distilled water and were kept for 5 months.  

 

 

Fig. 4.1. Growth chamber experiment: Saplings grown in microcosms 

 

Greenhouse experiment: Adult plants 
 

Simultaneously to the growth chamber experiments, we established a similar experiment with adult 

individuals (~1 year old) in a greenhouse under natural temperature and radiation conditions. We 

used pairs of microcosms (23 cm diameter pots, 21 cm in height; 4 L in volume) each filled with 

one of the two autoclaved soil origins and watered with one of the two inocula, alive or sterile, in a 

factorial design (Fig. 4.2). The volume of soil inoculum added to each microcosm was adjusted to 

20% (v:v), i.e., 800 ml per microcosm. The experimental design was the same as the above 

chamber experiments but with 7 replicates, giving a total of 84 microcosms (3 plant interaction 

levels x 2 soil origin x 2 inocula x 7 replicates). Plants of both species had similar height and 

above-ground mass at the start of the experiment, and all Lygeum plants had 10 stems. Mean 

daily temperature during the course of the experiment was 25 ºC and relative humidity ca. 70%. 

Microcosms were watered twice a week with 500 ml of distilled water and were kept for 5 months. 
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4.5.4. Harvesting and soil sampling 

 

All microcosms were randomly distributed and their position shifted twice a week to homogenize 

environmental conditions along the experiment. All saplings or adult plants dead within the first 

week of the experiment were replaced. 

 

In the seed experiment, the number of germinated seeds was recorded 15 days after sowing and 

at the end of the experiment. After 5 months, all plants (germinated from seeds, saplings, and adult 

individuals) were harvested, and shoot dry mass determined after drying at 70 ºC during 48 h. 

Samples of soil from each microcosm were collected in the centre (seed experiment) or in the 

space between the two individuals (saplings and adult experiments) and stored at 4 ºC for a 

maximum of 1 month for physical and chemical analyses. A subsample of soil from the adults 

experiment was also stored at -80 ºC for microbial molecular analyses. 

 

 

Fig 4.2. Greenhouse experiment: Adult plants grown in microcosms. 

 

4.5.5. Soil chemical and physical analyses 

 

Several soil properties were measured in Lygeum and from Salsola soils after inoculation with 

either alive or sterile inocula at the start of the experiment (n=3). Soil electrical conductivity (EC) 

and pH were measured using a 1/10 (w/v) water solution with a conductivity- and pH-meter 

(Crison, BA, Spain), respectively. Total soil carbon (C), organic C after removal of inorganic carbon 

with HCL 2N (Schumacher 2002), and total nitrogen (N) content were determined using a C/N 

analyzer (LECO Truspec, MI, USA). Anion phosphate (PO4
3-), nitrate (NO3

-), nitrite (NO2
-) and 

sulphate (SO4
2-) concentrations in water extract (1:10 soil:water) were analyzed by HPLC 
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(Metrohm, HE, Switzerland). Percent of clay, sand and silt were measured by the Robinson 

method (Porta-Casanellas et al. 1985). 

 

4.5.6. Soil bacterial community composition 

 

Molecular analyses were performed on soil samples collected in the field under Lygeum or Salsola 

individuals that were sterilized and then watered with their respective alive inoculum at the start of 

the experiment (2 soil origin x 1 inoculum x 3 replicates) as well as on soil samples collected in the 

microcosms 5 months after the inoculation and set up of the experiment (3 plant interaction levels 

x 2 soil origin x 2 inocula x 3 replicates). DNA was extracted from 0.25 g of homogenized soil from 

each of the 42 soil samples using the PowerSoil® DNA Isolation Kit (MO BIO Laboratories, Inc., 

Carlsbad, USA) following the manufacturer’s instructions. The V3-V6 regions of the bacterial 16S 

rDNA gene were amplified using primers 357F with Roche adaptor B 

(5`CTATCCCCTGTGTGCCTTGGCAGTCTCAGCCTACGGGAGGCAGCAG 3`) and 926 Rb (5` 

CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNNNNNNCCGTCAATTYMTTTRAGT 3`) 

that included Roche adaptor A and 12 base-pair barcode (Sim et al. 2012). Each sample was 

amplified in quadruplicate to reduce random mispriming bias (Polz and Cavanaugh 1998). 

Amplicons were combined in a single tube in equimolar concentrations and the pooled amplicon 

mixture was purified twice (AMPure XP kit, Agencourt, Takeley, United Kingdom). DNA 

concentration was quantified using the PicoGreen® assay (Sim et al. 2012). This pool was 

prepared and pyrosequenced in a Roche Genome Sequencer FLX System (Roche, Basel, 

Switzerland) using 454 Titanium chemistry at Lifesequencing lab (Valencia, Spain). 

 

Sequences were trimmed for primers, quality filtered and demultiplexed using the pyrosequencing 

pipeline tools from the Ribosomal Database Project (RDP, Michigan State Univ., USA). Sequences 

shorter than 150 bp, with quality scores <20 or containing any unresolved nucleotides were 

removed from the dataset. We used Acacia software version 1.52 (Bragg et al., 2012) (Bragg et al. 

2012)(Bragg et al. 2012)(Bragg et al. 2012)for pyrosequencing noise removal using default 

parameters for error correction. We established a minimum average quality threshold of 30 and all 

sequences were trimmed to a maximum length of 570 bp. Chimeras were identified using Uchime 

tool (Edgar et al., 2011) from RDP pipeline and removed from the dataset. Retained sequences 

were aligned using the Aligner tool from the RDP pipeline and then were clustered into operational 

taxonomic units (OTUs) defined at 97% similarity cutoff using the complete linkage clustering tool 

of the RDP pipeline. Taxonomic assignation of sequences was performed using the RDP naïve 
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Bayesian classifier (Wang et al., 2007) at a confidence level of 80 %, and relative abundances of 

the different phyla, classes, subclasses, orders and main genera per each of the 42 samples were 

calculated. 

 

4.5.7. Statistical analyses 

 

For each of the experiments (with seeds, saplings and adult individuals), differences among 

treatments were analyzed using interaction (intra- and inter-specific), soil origin (from Lygeum and 

Salsola) and inoculum (alive and sterile) as fixed effects. At the end of the seed experiment, shoot 

mass was analyzed with General Linear Models using the ratio of germination (i.e., number of 

seedlings at the end of experiment / number of sowed seeds) as covariate. For the experiments 

with saplings and adult plants, we accounted for the spatial correlation between the two individuals 

in the same microcosm and corrected the model using a compound symmetry correlation structure 

(corCompSymm). Violations of normality and homoscedasticity were checked for the three 

experiments. Heterocedasticity was corrected according to variance distribution using VarIdent for 

saplings and VarExp for adult plants. VarIdent represents a variance structure with different 

variances for different strata (Gałecki and Burzykowski 2013) while VarExp represents exponential 

variation of the residual variance (Pinheiro and Bates 2000). To select the most parsimonious 

model with the lowest AIC, we compared the models through likelihood ratio and graphical 

inspection of their residues distribution. The model fit was calculated using the restricted maximum 

likelihood (REML) criterion.  

 

The number of germinated seeds and the total number of seedlings that survived till the end of the 

seed germination experiment were analyzed using Generalized Linear Model (GLM) with a 

binomial distribution with a logistic link function and the maximum likelihood criterion. Total number 

of seeds sown (22) and number of Lygeum seeds sown (11) were used as trials for germination 

and seedling survival analyses, respectively. The same GLM was used to check for differences in 

the relative abundance of microbial groups using 100 as trial. Significance was established at 

p<0.05. Post-hoc comparisons were performed using DGC (Di Rienzo et al. 2002) or Fisher test. 

All data were analyzed for each plant species separately with InfoStat Statistical Software (Di 

Rienzo et al. 2013). Results shown throughout the text and figures are mean values ± 1 SE.  

 

Similarity on bacterial community composition among samples (with OTUs showing at least 5 

reads in the overall dataset) was analyzed with principal coordinates analysis (PCoA) using Bray-
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Curtis similarity index, and differences among treatments were evaluated performing NPMANOVA 

with 9999 permutations using Past v 2.12 software (Hammer et al. 2001). Shannon’s diversity 

index of OTUs per sample was calculated with Past software after excluding singletons (OTUs only 

showing 1 read in the overall dataset) to reduce the overestimation of diversity (Tedersoo et al. 

2010). We also performed a principal component analysis (PCA) and Pearson correlation 

coefficient matrix analysis of soil properties and microbial composition.  

 

4.6. RESULTS 

 

4.6.1. Seed germination  

 

Salsola seed germination either under intra- or inter-specific interaction was minimum. We 

recorded less than 0.02 ± 0.2 and 0.08 ± 0.6 germinated seeds per pot, equivalent to 99-97% of 

pots without any germinated seed (intra- and inter-specific, respectively). We thus did not consider 

Salsola for further analyses on seed germination but took into account the presence of Salsola 

seeds in microcosms to analyse germination rates of Lygeum seeds. 

 

Fifteen days after sowing, Lygeum seed germination was highest in soils from Lygeum when only 

seeds of Lygeum were present (intra-specific sowing) and in sterile Salsola soils under inter-

specific interaction. In contrast, the lowest Lygeum seed germination was found in alive Salsola 

soils under inter-specific interaction (Fig. 4.3a). Five months after sowing, the highest number of 

Lygeum individuals was again found on sterile Salsola soil under the inter-specific treatment while 

no differences were found in other treatments (Fig 4.3b). Under inter-specific interaction, Lygeum 

shoot mass was higher on Lygeum soil with alive inoculum than in other soils and inocula 

combinations. However, under intra-specific interaction, Lygeum shoot mass was higher on sterile 

than on alive Lygeum soil or any Salsola soil inocula (Fig 4.3c, Table S4.1). 
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Saplings experiment 

 

Salsola individuals showed higher shoot mass than Lygeum individuals under both intra- and inter-

specific interactions, with an average shoot mass of 0.98 ± 0.04 g vs. 0.66 ± 0.04 g, respectively. 

The statistical interaction between soil origin and plant interaction level had a significant effect on 

shoot mass (Table S4.1). Under both plant interaction levels, shoot mass of Salsola was higher on 

soils from Lygeum than from Salsola irrespective of soil inoculum, but were particularly higher 

under inter-specific interaction (Fig 4.4a). 

 

Shoot mass of Lygeum saplings was influenced by the interaction among soil origin, inoculum and 

plant interaction level (Table S4.2). Under intra-specific interaction, Lygeum plants showed higher 

shoot mass in soils from Lygeum than in soils from Salsola, being higher with alive than with sterile 

inoculum in each soil origin, respectively. On the contrary, under inter-specific interaction, shoot 

mass was similar in soils from Lygeum irrespective of the inoculum. Thus, shoot mass in 

microcosms with alive inoculum from Lygeum soils was higher under intra- than under inter-

specific plant interaction. In both plant interaction levels, shoot mass was lowest in soils from 

Salsola watered with sterile inoculum (Fig. 4.4b). 

 

 

 

Fig. 4.4. Shoot mass (g) of sapling Salsola individuals grown in either soils from Lygeum or Salsola under 
intra- (SA+SA) or inter-specific (SA+LY(SA)) interaction (a); and shoot mass of sapling Lygeum individuals 
grown in soils from either Lygeum or Salsola with alive (Ai) or sterile (Si) inocula under intra- (LY+LY) or 
inter-specific (LY+SA(LY)) interaction (b). Data are means ± 1 SE, n = 8. Symbols with different letters 
indicate significant differences among treatments after DGC comparisons at a significance level of 0.05.
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4.6.2. Adult plants 

 

Similar to the sapling experiment, adult Salsola plants showed a higher shoot mass than Lygeum 

plants in either treatment, with average shoot mass of 10.59 ± 0.42 g and 4.53 ± 0.42 g in intra- 

and inter-specific interaction, respectively. Soil inoculum and soil origin along with plant interaction 

level significantly affected shoot mass of Salsola individuals (Table S4.2). Regarding soil origin, 

shoot mass was higher in soils from Lygeum with alive inoculum than with sterile inoculum, and in 

soils from Salsola with any inocula (Fig. 4.5a). Under intra-specific interaction, shoot mass was 

higher with alive than with sterile inoculum while no differences between inocula were found under 

inter-specific interaction (Fig. 4.5b). 

 

Shoot mass of adult Lygeum individuals was influenced by the interaction among soil origin, soil 

inoculum and interaction treatment (Table S4.2), showing higher shoot mass under intra-specific 

than under inter-specific interaction. Under intra-specific interaction there were differences 

between alive soil inocula so that shoot mass was higher in alive soil inoculum from Lygeum than 

from Salsola soils, with intermediate values with sterile inocula. Under inter-specific interaction, 

and similar to saplings individuals, the lowest shoot mass was observed in sterile soil inoculum 

from Salsola soils with no differences among the other treatments (Fig. 4.5c). 

 

In general, soils from Lygeum with either alive or sterile inoculum positively affected growth of 

saplings and adult Lygeum individuals compared to soils from Salsola, with a positive effect of 

alive soil inoculum being more evident in saplings than in adult plants and under intra-specific 

interaction (Fig 4.4b, 4.5c). Alive Salsola inoculum also had a positive effect on shoot mass of 

saplings and adult Lygeum individuals compared to sterile Salsola inoculum, in particular under 

inter-specific interaction. On the contrary, in Salsola individuals the effect was opposite; i.e., shoot 

mass of Salsola plants was higher in soils from Lygeum than in soils from Salsola and, in the later, 

adult Salsola plants grew more with sterile than with alive Salsola inoculum (Fig S4.1). 

 

4.6.3. Soil properties  

 

We recorded differences in soil chemistry and texture between soils from Lygeum and from 

Salsola irrespective of whether they were inoculated with alive or sterile inoculum (Table 4.1). Soil 

C, organic C, total N, EC, SO4
-2, and silt content were higher in Lygeum soils than in Salsola soils, 
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while pH and sand content were higher in Salsola soils than in Lygeum soils. No differences were 

found regarding NO2
- and clay content. Soil PO4

3- and NO3
- were very low, well under the detection 

threshold of the HPLC.  

 

 
Soil from Lygeum 

 
               Soil from Salsola 

       

Soil 
properties 

Alive 
inoculum 

Sterile inoculum 
 Alive 

inoculum 
Sterile inoculum 

F values 

       
pH 8.38±0.06b 8.54±0.06b  8.64±0.06a 8.59±0.05a 7.71** 

EC (mS/cm) 3.23±0.45a 4.12±0.47a  2.69±0.43b 2.61±0.42b 5.21* 

OC (g kg -1) 7.60±0.33a 6.66±0.33a  3.82±0.33b 3.75±0.33b 103.39*** 

N (g kg -1) 0.77±0.06a 0.68±0.06a  0.38±0.06b 0.21±0.06b 48.57*** 

C (g kg -1) 16.70±0.23a 16.17±0.23a  12.55±0.23b 12.70±0.23b 282.61*** 

NO2
- (mg/kg) 0.12±0.01a 0.14±0.01a  0.12±0.01a 0.12±0.01a 1.09ns 

SO4
2- (mg/kg) 12.35±0.19a 10.17±0.76a  2.55±0.19b 2.17±0.76b 254.72*** 

Sand (%) 78.11±0.74b 75.80±0.77b  81.50±0.71a 81.95±0.68a 43.33*** 

Silt (%) 16.17±0.59a 17.49±0.61a  11.60±0.56b 11.44±0.54b 84.66*** 

Clay (%) 5.71±0.36a 6.72±0.37a  6.90±0.34a 6.61±0.33a 2.40ns 

 

Table 4.1. Properties of soils from Lygeum and Salsola watered with their respective alive and sterile 
inocula at the start of the experiment, including soil electrical conductivity (EC) and organic carbon (OC). 
Value are means ± 1 SE (n=3). Different letters in a row indicate significant differences (p<0.05) after 
Fisher’s LSD test. The last column shows F values of the general linear model and significance (*, **, ***, at 
p<0.05, 0.01, 0.001,respectively; all significant values in bold; ns = non-significant). 
 

4.6.4. Soil bacterial community composition 

 

A total of 130679 sequences were obtained after filtering and removing chimeras. Average length 

of trimmed sequences was 548 ± 6 bp. In order to reduce any bias due to different sequencing 

effort among samples, we randomly selected a maximum of 3000 sequences per sample so that 

40 samples had 2500-3000 sequences with 2 samples (belonging to different treatments) having 

less than 2500 sequences. The mean number of retained sequences per sample was 2797 ± 340 

without significant differences in sequences number among treatments. We identified 15061 

distinct OTUs at 97% similarity in the dataset. Ordination of OTUs with at least 5 reads (3151) 

showed differences on microbial composition between the two soils (from Lygeum and Salsola) 

and between soil inocula (alive vs sterile) irrespective of soil origin, at the end of the experiment 

(F1,35=1.26, p=0.07; F1,35=1.55, p<0.05, NPMANOVA, respectively). Marginal differences were 

found between alive soils from Lygeum and Salsola at the start of the experiment (F1,5=.2.5, p=0.1, 
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NPMANOVA). There were no differences in soil microbiota composition between soils where the 

same plant species or the two target species were present (intra- vs inter-specific interaction) (Fig. 

4.6).  

 

 

Fig. 4.6. Principal coordinates analysis (PCoA) of soil bacterial communities based on operational 
taxonomic units (OTUs) using Bray–Curtis similarity index. Soil collected at the end of the experiment of 
adult plants grown in soils from Lygeum (LY) or Salsola (SA) with their alive (square or Ai) or sterile 
(diamond or Si) inoculum. Asterisks indicate live soil inocula from Lygeum ( ) or Salsola ( ). Soils were 
collected at the start (T0) and at the end (T5) of the experiment. n=9 at the end of the experiment, n=3 at 
the start of the experiment. 

 

Soil bacterial communities were dominated by members of phyla Proteobacteria, Acidobacteria, 

Actinobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Gemmatimonadetes and Chloroflexi 

(Fig. 4.7). Other less abundant phyla (with relative abundance less lower than 1 %) were 

Nitrospira, Verrucomicrobia, Plantomycetes and TM7. Soils from Lygeum and Salsola at the start 

of the experiment differed in relative abundance of several microbial groups. All four classes of 

Proteobacteria plylum were more abundant in Salsola than in Lygeum soils while the relative 

abundance of Acidobacteria was higher in Lygeum than in Salsola soils (Fig. 4.7, 4.8). 
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Fig. 4.7. Mean relative abundance (± 1 SE) of main bacterial taxonomic groups, i.e. phyla Proteobacteria, 
Acidobacteria, Actinobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Gemmatimonadetes and 
Chloroflexi. Soil collected at the end of the experiment in microcosms where adult plants grew in Lygeum 
(LY) (gray bars) or Salsola (SA) soils (white bars), inoculated with their respective alive (Ai) or sterile (Si) 
inoculum. Soils were collected at the start (T0) and at the end (T5) of the experiment. Different letters within 
a bacterial group indicate significant differences (p < 0.05) among treatments after Fisher’s LSD test. n=9 at 
the end of the experiment, n=3 at the start of the experiment. 

 

Ordination of samples by PCA based on soil properties and soil microbial groups at the start of the 

experiment also showed a clear differentiation between Lygeum and Salsola soils along the first 

axis (Fig 4.8), with the first two axes explaining 78.4% of total variance. We observed a correlation 

among different soil properties and soil microbial groups (Fig. 4.8, Table S4.3). Members of 

Actinobacteria were more abundant in Lygeum than in Salsola soils and their abundance was 

positively correlated with the higher content of silt, N, C, organic carbon and SO4
2- in soils from 

Lygeum, while Proteobacteria and Bacteroidetes were more abundant in Salsola than in Lygeum 

soil and their abundance negatively correlated with the above soil parameters.  

 

In each soil, several microbial groups increased in abundance by the end of the experiment 

compared to the start of the experiment (Proteobacteria in Lygeum soils, Acidobacteria and 

Gemmatimonadetes in Salsola soils; and Firmicutes and Cyanobacteria in both) while other groups 
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decreased (Acidobacteria in Lygeum soils and Actinobacteria in both soils). Within Proteobacteria, 

members of Alphaproteobacteria were more abundant in Salsola soils at the start than at the end 

of the experiment or in Lygeum soils while Betaprotebacteria, Deltaproteobacteria and 

Gammaproteobacteria were more abundant in both soils at the end than at the start of the 

experiment (data not shown). The relative abundance of Firmicutes in Lygeum soils at the end of 

the experiment was higher in microcosms initially inoculated with sterile inoculum than in those 

inoculated with alive Lygeum inoculum while in Salsola soils their abundance was lower with sterile 

than with alive inoculum. There were no significant changes in Bacteroidetes, Chloroflexi or any 

minor phyla. Bacterial diversity (Shannon`s index) also differed among treatments (Table S4.4). It 

was higher in alive inoculum at the start (7.19 ± 0.79) than alive or sterile inoculum at the end of 

the experiment (6.05 ± 0.07, 6.41 ± 0.26, respectively), and in Lygeum than in Salsola soils (6.79 

± 0.44 vs 6.31 ± 0.31), and it was lower in Salsola intra-specific interaction (5.92 ± 0.08) than in 

the other plant interaction levels. No interaction among treatments was observed.  

 

 

Fig. 4.8. Principal component analysis of soil properties (electrical conductivity [EC], clay, sand, silt, SO4
-2, 

NO2
-,pH, total nitrogen [N], organic carbon [OC], total carbon [C]) and microbial composition (relative 

abundances of Actinobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Proteobacteria, Cyanobacteria, 
Gemmatimonadetes and Firmicutes). The first two PCA axes explain 78.4 % of total variance. White and 
black squares correspond to samples from Salsola and Lygeum soils, respectively.  

 
 

-5 -3 0 3 5

PC 1 (64.5%)

-5

-3

0

3

5

P
C

 2
 (

1
3

.9
%

)

pH

EC

Sand

Silt

Clay

N
C

OC

NO2

SO4Proteobacteria

Acidobacteria

Actinobacteria

Firmicutes

Cyanobacteria

Bacteroidetes

Gemmatimonadetes

Chloroflexi

pH

EC

Sand

Silt

Clay

N
C

OC

NO2

SO4Proteobacteria

Acidobacteria

Actinobacteria

Firmicutes

Cyanobacteria

Bacteroidetes

Gemmatimonadetes

Chloroflexi

Título



CHAPTER 4. ARRESTED SUCCESSION AS OUTCOME OF THE INTERACTION BETWEEN PLANTS AND SOIL 

MICROORGANISMS 

117 
 

4.7. DISCUSSION 

 

Contrary to our expectations, soil properties and microbial communities associated to Lygeum 

facilitated the development of both Lygeum and Salsola plants. Although Salsola individuals were 

more competitive than Lygeum in the saplings and adult life stages, Lygeum individuals were more 

competitive than Salsola in key initial life stages (seed germination and seedling growth). Our 

results showed that soil properties and soil microbial communities associated to Lygeum had an 

important influence on seed germination and initial growth of Lygeum individuals, playing perhaps 

a role in Lygeum dominance and arrested succession throught positive plant-soil feedbacks. 

 

4.7.1. Positive effect of Lygeum soil properties and microbial communities 

 

Plant growth, especially at initial stages, and seed germination (for Lygeum only) were in general 

higher in Lygeum than in Salsola soils. Lygeum soils were characterized by total C, organic C, N 

and silt contents higher than Salsola soils, therefore contributing to the enhanced plant 

performance in these soils. Lygeum soils also had higher salinity than Salsola soils but, although 

high soil salinity can limit plant performance (Hasegawa et al. 2000), both Lygeum and Salsola, as 

halophytic species, have developed survival strategies under these conditions. These strategies 

include selective ion uptake or accumulation in vacuoles to keep homeostasis or low osmotic 

potential (Flowers et al. 1977, Zhu 2001, Porta-Casanellas et al. 2003) or, in the case of Salsola, 

by notably increasing rooting depth to access deep water storages (Padilla and Pugnaire 2007). 

 

The soil microbial community associated to Lygeum positively affected Lygeum seed germination 

and growth of saplings and adult plants. However, contrary to our hypothesis, Lygeum soil 

microbes did not negatively affect, but instead promoted, Salsola growth. In fact, soil 

microorganisms from Lygeum soils were more positive for Salsola individuals than soil 

microorganisms from under Salsola shrubs. Soil microbial communities from Lygeum and Salsola 

soils showed little differences in composition at the beginning of the experiment but still they 

differed in the relative abundance of certain microbial groups and, most likely, in microbial activity 

and biomass. Soil microbial composition was influenced by soil properties such as texture, soil 

organic C and SO4
2- content. At the beginning of the experiment, Acidobacteria species were more 

abundant in Lygeum than in Salsola soils while Proteobacteria were higher in Salsola than in 

Lygeum soils, a pattern that could be related to soil silt content (Sessitsch et al. 2001). Members of 

the Burkholderiales order (Betaproteobacteria), described as potential plant-growth promoters 
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(Acton 2012) were more abundant in Salsola than in Lygeum soils at the beginning of the 

experiment but, like most members of Proteobacteria, increased their abundance with time in 

Lygeum soils, suggesting positive feedbacks whith these microorganisms. 

 

A similar increase with time in Lygeum soils was observed for members of the Rhodobacter order 

(Alphaproteobacteria), known for their abundance in halophytic environments (Kersters et al. 

2006). Several reports suggest that salinity affects microbial composition (Dupont et al. 2014) and 

that microorganisms inhabiting roots and leaves of halophytic species may contribute significantly 

to lower their stress and increase their salinity tolerance (Ruppel et al. 2013). In fact, halophytic 

species as Salicornia brachiate or Halocnemum strobilaceum are associated with many 

halotolerant microorganisms such as Mesorhizobium or Halomonas (Jha et al. 2012, Shi et al. 

2012). We found that abundance of Mesorhizobium was higher in Lygeum than in Salsola soils, 

and that Halomonas, Bacillus and Enterobacter, which can also be halotolerant (Upadhyay et al. 

2011, Shi et al. 2012), were found only in Lygeum soils. On the contrary, the halotolerant 

Litoribacter and Microbacterium (Upadhyay et al. 2011, Shi et al. 2012) were only found in Salsola 

soils. Therefore, our results show that Salsola and Lygeum soils differ in composition of 

halotolerant microbes, and that these are more abundant and show higher richness in Lygeum 

than in Salsola soils, which may contribute to the better performance of Lygeum and Salsola plants 

in Lygeum soils. Added to microbial composition, higher C and N content in Lygeum than in 

Salsola soils suggested a higher microbial activity and biomass linked with increased nutrient 

availability which may have positively influenced plant growth.  

 

4.7.2. Soil microbes effects change with plant age and interactions  

 

Our results showed that, overall, soil microorganisms (supplied via alive inocula) associated to 

Lygeum positively affected plant growth in both species, while soil microbes associated to Salsola 

had different effects on Lygeum plants depending on their life stage. Salsola inocula had a 

negative effect on Lygeum seed germination while it had a neutral or positive effect on later stages 

of Lygeum plant development. Therefore, Lygeum seeds germinated better when Salsola soil 

microbes were not present while, later on, Lygeum plants often grew less when Salsola microbes 

were removed. 

 

On Lygeum soils the presence of Salsola seeds negatively affected Lygeum germination 

compared to intra-specific interaction; while on sterile Salsola soils the effect was the opposite, and 
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the maximum Lygeum seed germination rate and establishment did occur under inter-specific 

interaction. It has been suggested that seeds could recognize potential competitors presence and 

defer germination (Renne et al. 2014) a process that may have influenced both Lygeum and 

Salsola germination. Lygeum germination rate and establishment under inter-specific interaction 

were negatively affected by Salsola soil microorganisms and positively by Lygeum soil 

microorganisms, evidencing that changes in relative abundance of microbial groups affected initial 

stages of plant development. Negative plant-soil interactions (Klironomos 2002) also influence 

seed germination and initial growth stages. Contrary to what was found by (Pendergast et al., 

2013) who suggested that plant invasion is promoted by the better development of a species on 

soil of its competitors, we found that both saplings and adult Lygeum individuals grew better on its 

own soil than on Salsola soil. In fact, soil microorganisms associated to Lygeum also facilitated 

Salsola growth evidencing a positive effect of Lygeum soil microorganisms on Salsola plants. 

Thus, the invasive nature of Lygeum plants may be given by its growth strategy and positive plant-

soil feedbacks in own soils.  

 

4.7.3. Soil microbial communities change with time 

 

Although at the beginning of the experiment soil microbial communities associated to Lygeum and 

Salsola soils were quite similar, differences between soil origins increased with time. In the field, 

both soils were collected near the rhizosphere and both shared the same extreme semiarid 

climatic conditions (i.e., high temperatures and irradiation, low precipitation) that likely tended to 

homogenize microbial communities. After five months of experiment, the interactions among 

plants, soil microorganisms, and soil properties led to a clear differentiation between soil microbial 

communities. Most microbial groups increased their abundance with time, while other as 

Acidobacteria in Lygeum soils, or Actinobacteria in both soils, decreased. Soil microbial 

communities could change due to seasonal changes (Lipson et al. 2002) or due to new conditions. 

Moreover, changes in microbial abundance over time could be linked to the plant ability to select 

some microorganisms in the rhizosphere Kowalchuk et al. (2002), and Martínez-García et al. 

(2011), and Rodríguez-Echeverría et al. (2013).  

 

4.7.4. Soil microorganisms and arrested succession 

 

Our results suggest that the lack of species such as Salsola in communities dominated by Lygeum 

is linked to positive plant-soil feedbacks between soil microorganisms and Lygeum, even though 
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soil microbial communities in Lygeum soils and the presence of Lygeum individuals enhanced 

performance of saplings and adult Salsola individuals in inter-specific interaction.  

 

Although seed viability tests showed similar germination rates in both species, Lygeum 

germination rate after 15 days of sowing far exceeded Salsola’s, and benefited more from Lygeum 

than from Salsola soil extracts. We also observed that microorganisms from Salsola soils 

negatively affected Lygeum germination, showing the determinant role of soil communities on the 

initial life stages of plants. Salsola plants grew better in Lygeum than in its own soil, suggesting a 

negative feedback with their own soil microorganisms (Klironomos 2002). Under inter-specific 

competition, Salsola performed better in sterile than in alive soils, likely due to presence of 

pathogens that negatively affected plant growth (Klironomos 2002). This is in agreement with the 

fact that Salsola is a late-successional species (chapter III) and these negative interactions could 

easily promote secondary succession as suggested in chapter III. On the contrary, the positive 

feedbacks observed between Lygeum plants and their soil microbes are typical of late succession 

species (Kardol et al., 2006). Results suggest that the negative effect of Lygeum soils on the 

establishment of Salsola individuals is key to determine the later success of Lygeum individuals as 

adult plants.  

 

Salsola individuals were more competitive than Lygeum individuals under both intra- and inter-

specific interactions. C4 species (Salsola) can reduce photorespiration at high temperatures and 

irradiance, therefore increasing photosynthetic efficiency (Padilla et al. 2009, González and 

Chueca 2010) and water use efficiency above that of C3 species (Lygeum) (Sage 2004, González 

and Chueca 2010). Although Lygeum showed a low competitive success with C4 species such as 

Salsola or C3 species such as Limonium insigne (Armas and Pugnaire 2011), Lygeum success 

ability in initial life stages, its clonal growth strategy and the positive feedbacks with soil 

microorganisms combine to promote its local dominance and play a important role in arrested 

succession. 

 

4.8. CONCLUSIONS 

 

Our results show that Lygeum competitive ability was linked to positive feedback effects of its own 

soil microorganisms, which enhanced seed germination and establishment promoting early 

occupation of space which, in addition to its clonal growth habit, may prompt its dominance over 

time in a seemingly arrested succession. 
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4.9. APPENDIX 

 

 

Fig. S4.1. Shoot mass (g) of saplings and adult plants of Salsola grown under inter-specific (SA+LY(SA)) 
interaction in soils from Lygeum (in black) or Salsola (in white), inoculated with their respective alive (Ai) or 
sterile (Si) inoculum. Data are mean ± 1 SE, n =8 for saplings and 7 microcosms for adult. Symbols with 
different letters indicate significant differences among treatments after post-hoc comparisons at a 
significance level of 0.2 and 0.18, respectively. 
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Source of variation        Chi-square df p-value 

Seed germination : Lygeum  

Number of germinated seeds 

Plant interaction (Pi)                       237.46 1 0.0392 
Soil Origin (So)                  231.31 1 0.0132 
Inoculum (I)                    207.79 1 <0.0001 
Pi x So          118.97 1 <0.0001 
Pi x I              170.20 1 <0.0001 
So x I         136.10 1 <0.0001 
Pi x So x I  118.97 1 <0.0001 
    

Number of plants 

Plant interaction (Pi)                     117.86 1 <0.0001 
Soil Origin (So)                  116.54 1 0.2497 
Inoculum (I)                    115.76 1 0.3784 
Pi x So          113.66 1 0.1472 
Pi x I              105.46 1 0.0042 
So x I         92.56 1 0.0003 
Pi x So x I  84.46 1 0.0044 
    
 F Num df p-value 

 

 

 
 
 
 
 
 
 
 

 

Table S4.1. Results from generalized linear models on seed germination experiment fifteen days after 
sowing and number of plants established at the end of the experiment (five months after sowing), and 
results from general linear mixed models on shoot mass of germinated seeds at the end of the experiment. 
Plant interaction (Pi), Soil Origin (So), Soil microbial inoculum (I) and their interactions were considered 
fixed factors. All significant results are marked in bold. 

   

Shoot mass 

Plant interaction (Pi)                       0.03 1 0.0636 
Soil Origin (So)                  12.86 1 0.0007 
Inoculum (I)                    0.62 1 0.4345 
% Number plants- number of seeds  8.87 1 0.0434 
Pi x So          0.88 1 0.3515 
Pi x I              2.30 1 0.1351 
So x I         0.05 1 0.8317 
Pi x So x I  23.74 1 <0.0001 
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Source of variation        F Num df p-value 

Saplings: Salsola 

Plant interaction (Pi)                        7.40 1 0.01 
Soil Origin (So)                  27.05 1 <0.001 
Inoculum (I)                    0.02 1 0.89 
Pi x So          6.10 1 0.02 
Pi x I              1.89 1 0.17 
So x I         0.03 1 0.87 
Pi x So x I  1.54 1 0.22 
    
Saplings: Lygeum    
    
Plant interaction (Pi)                       7.95  0.01 
Soil Origin (So)                  13.02  0.001 
Inoculum (I)                    6.39  0.01 
Pi x So          2.60  0.11 
Pi x I              2.55  0.11 
So x I 0.32  0.57 
Pi x So x I 3.86  0.05 
    
Adult plants: Salsola 

Plant interaction (Pi)                       14.92 1 0.001 
Soil Origin (So)                  3.83 1 0.05 
Inoculum (I)                    1.05 1 0.31 
Pi x So          0.96 1 0.33 
Pi x I              11.13 1 0.001 
So x I         4.28 1 0.04 
Pi x So x I  1.83 1 0.18 
    
Adult plants: Lygeum    
    
Plant interaction (Pi) 7.66 1 0.01 
Soil origin (So) 4.68 1 0.04 
Inoculum (I) 1.91 1 0.17 
Pi x So 1.69 1 0.20 
Pi x I 1.27 1 0.26 
So x I 0.43 1 0.51 
Pi x So x I 4.29 1 0.04 

 

Table S4.2 Results from general linear models on shoot mass of sapling and adult plants of Lygeum or 
Salsola at the end of the experiments. Plant interaction (Pi), Soil Origin (So), Soil microbial inoculum (I) and 
their interactions were considered fixed factors. All significant results are marked in bold. 
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Source of variation        F df p-value 

Bacterial diversity 

Plant interaction (Pi)                       6.94 2 0.003 
Soil Origin (So)                  3.96 1 0.056 
Inoculum_Time(IT)                    5.70 2 0.008 
Pi x So          1.61 2 0.218 
Pi x IT              2.40 1 0.108 
So x IT         0.50 2 0.590 

 

Table S4.4. Results from general linear models on soil bacterial diversity at the end of the greenhouse 
experiment. Plant interaction (Pi), Soil Origin (So), Inoculum_Time (IT) which integrated each soil inocula 
effect at the start and at the end of the experiment; and their interactions were considered fixed factors. All 
significant results are marked in bold. 
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CONCLUSIONES GENERALES  

 

 El tamaño de copa del arbusto facilitador Retama sphaerocarpa¸ y el suelo bajo su copa 

influyen de manera positiva en el desarrollo de la comunidad de herbáceas que crece a su 

amparo, incrementándose tanto la biomasa como la abundancia de especies cuanto 

mayor sea la copa del arbusto.  

 El origen del suelo (es decir, que provenga de arbustos de Retama grandes, medianos o 

pequeños) determina en gran medida la diversidad y productividad de la comunidad de 

especies facilitadas por Retama, siendo más decisivo que los efectos del microhabitat 

generado por el arbusto. 

 La composición del banco de semillas, la disponibilidad de nutrientes y las interacciones 

entre plantas y comunidades microbianas del suelo afectan el desarrollo de la comunidad 

de herbáceas.  

 Los microorganismos del suelo, las características del suelo y el microhabitat creado por 

la especie facilitadora arbustiva Retama, influyen tanto en la germinación de la comunidad 

de herbáceas bajo la copa del arbusto como en su crecimiento.  

 El efecto de los microorganismos del suelo sobre las tasas de germinación de las 

especies de herbáceas es específico para cada especie, influyendo de forma positiva, 

neutra o negativa según la identidad de cada una. Las tasas de germinación también se 

ven afectadas positivamente por el microhabitat generado por la copa del arbusto 

facilitador y su suelo asociado.  

 El efecto positivo de los suelos bajo el arbusto facilitador sobre el desarrollo de la 

comunidad de herbáceas se mantiene a lo largo del ciclo de vida de la especie 

facilitadora, de modo que el suelo (propiedades físicas, contenido en nutrientes y 

microbiota) es el principal promotor de los procesos de facilitación de Retama 

sphaerocarpa en zonas semiáridas.  

 Tras el abandono de campos dedicados al cultivo, tanto las plantas como las 

comunidades microbianas del suelo siguen un proceso paralelo de sucesión secundaria.  

 La sucesión secundaria en ecosistemas semiáridos está caracterizada por cambios en las 

propiedades del suelo, la cobertura vegetal, la biomasa y la actividad microbiana, así 

como por cambios en la composición de plantas y microorganismos del suelo.  
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 Teniendo en cuenta la velocidad de cambio de la composición de las comunidades 

vegetales y de las comunidades microbianas del suelo, los resultados sugieren que el 

proceso de sucesión microbiana sigue al de la sucesión en plantas.  

 Respecto al proceso de sucesión detenida donde domina Lygeum spartum, la habilidad 

competitiva de Lygeum está vinculada a un efecto positivo de los microorganismos y 

nutrientes del suelo sobre su germinación y desarrollo.  

 La retroalimentación positiva planta-suelo promueve una temprana ocupación del espacio 

que, sumada a la estrategia de crecimiento clonal de Lygeum, facilita su dominancia en el 

tiempo, causando una interrupción del avance sucesional.  

. 
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