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Abstract 

 

This review will describe the recent advances in the synthesis of C-nucleosides with inhibitory activity of 

inosine monophosphate dehydrogenase (IMPDH), a key enzyme in the biosynthesis of guanine 

nucleotides. The review will cover synthetic approaches of structural analogues showing modifications in 

the furanose ring as well as in the heterocyclic base. Heterocyclic sugar nucleoside analogues in which 

the furanose ring has been replaced by a different heterocyclic ring including aza analogues, 

thioanalogues as well as dioxolanyl and isoxazolidinyl analogues are also considered. 
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Introduction 

Inosine monophosphate dehydrogenase (IMPDH) is a key enzyme in the biosynthesis of guanine 

nucleotides and, thus, pivotal for cell growth. In particular, it is the responsible of transforming inosine 

monophosphate (IMP) 1 into xanthosine monophosphate (XMP) 2, which is subsequently transformed 

into guanosine monophosphate (GMP) 3 by the action of GMP-synthetase (Scheme 1).  

 

Scheme 1. Biosynthesis of guanine nucleotides 

 

IMPDH was first suggested as a potential target for cancer chemotherapy by Weber and co-workers[1] 

after it was shown that the activity of IMPDH was amplified in a variety of tumors and rapidly 

proliferating tissues. The Biology of IMPDH including structure, mechanism and inhibition has been 

studied in detail [2] and several reviews have been focused on IMPDH as a drug target[3] in cancer, [4] 

antiviral,[5] immunosuppressive[6]
 
and antimicrobial chemotherapy. [7]  

Typically, there are two classes of IMPDH inhibitors,[8] i.e. non-nucleoside inhibitors such as 

mycophenolic acid (MPA) 4 and nucleoside inhibitors. Among the latter are mizoribine 5 and ribavirin 6. 

These nucleoside inhibitors produce IMPDH inhibition via their anabolite 5’-monophosphates. Whereas 

non-nucleoside inhibitors bind at the NAD site of the enzyme, the nucleoside analogues bind at the 

substrate site.[9] Nuclear magnetic resonance and molecular modeling studies on 4[10] indicated that 

MPA is capable of binding to the nicotinamide site of the enzyme mimicking the NAD
+
 inverse 

regulation.[11] The mechanism of action of ribavirin has been studied in combination with interferon-α 

(IFNα).[12] Crystal structure of IMPDH in complex with ribavirin demonstrates that 6 targets the 

substrate binding site.[13] 
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Figure 1. IMPDH inhibitors 

 

C-nucleosides, like tiazofurin 7 or benzamide riboside 10, also inhibit IMPDH but through a different 

mechanism of action to that observed for N-nucleosides 5 and 6. Tiazofurin 7 inhibits IMPDH after its 

previous activation through phosphorylation and adenylation to form the corresponding dinucleotide 

TAD, 9 an analogue of NAD (Scheme 2). Similarly, benzamide riboside 10 is converted into the active 

metabolite BAD 11. [14] In fact, the identification of the active site of the enzyme [15] and selectivity 

studies with enzymes from different species,[16] confirmed that nicotinamide adenine dinucleotide 

(NAD) analogues containing C-nucleosides bind at the NAD site of IMPDH and, thus, they can act as 

competitive inhibitors of the enzyme.[17] In this respect the action of nicotinamide mononucleotide 

adenylyltransferase (NMNAT) is crucial since this enzyme is the responsible of catalyzing the metabolic 

conversion of tiazofurin (and its analogues) into its active form tiazofurin adenine dinucleotide (TAD). 

[18] Notably, pyridine C-nucleosides such as C-nicotinamide riboside are not metabolized into the 

adenylated derivatives and thus, they do not exhibit any inhibitory activity.[19] 

 



Post-print of Current Trends in Medicinal Chemistry, 2014, 14, 1212-1224 

4 
 

 

Scheme 2. Activation of tiazofurin as IMPDH inhibitor 

 

Due to the possibility of targeting both NAD- and substrate-binding sites there is a wide range of 

scaffolds suitable to be considered IMPDH inhibitors. [20] In particular, C-nucleosides have enormous 

potential in the development of novel IMPDH inhibitors and, consequently, a number of synthetic 

approaches have been developed towards their preparation. In this review, we focus our attention on C-

nucleosides with different heterocyclic units linked to the ribose moiety. The members of this family of 

compounds are considered analogues of tiazofurin 7 and in addition to such product include: i) two-

heteroatom containing heterocyclic analogues (selenazofurin 12, oxazofurin 13 and imidazofurin 14), and 

ii) one-heteroatom containing heterocyclic analogues (thiophenfurin 15, selenophenfurin 16 and 

furanfurin 17). Also, C-nucleosides in which the ribose moiety has been replaced by a different 

heterocyclic ring – the so-called heterocyclic-sugar nucleoside analogues-[21] will be discussed. Among 

these compounds are aza-tiazofurin 18, thionucleosides 19-21, dioxolanyl tiazofurin 22 and isoxazolidinyl 

nucleosides 23 and 24 (Figure 2). 
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Figure 2. Tiazofurin analogues 

 

The chemical synthesis of nucleoside analogues is a subject of interest in the framework of medicinal 

chemistry. [22] Although several reviews have been reported elsewhere regarding the biological activity 

of compounds 7 and 12-23, [7-8,23] chemical synthesis is only discussed partially.[17,24] This review 

provides the reader with an overview of the chemical synthesis of those C-nucleosides. In the case of 

tiazofurin and their pentose-containing analogues only methodologies developed during the last decade 

will be considered.  

 

2. Tiazofurin and sugar-containing analogues 

Tiazofurin was first synthesized by Robins and co-workers in 1977. [25] Since then, several synthetic 

approaches have been reported, [26] most of them based on construction of the thiazole ring by 

cyclocondensation of cysteine ethyl ester 28 with a sugar-derived nitrile 27, further oxidation of the 

resulting Δ
2
-thiazoline 26, deprotection and transformation of the ester 25 into the amide moiety as 

illustrated in the retrosynthetic analysis depicted in Scheme 3. 
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Scheme 3. Retrosynthetic analysis of tiazofurin 

 

An inherent problem to this general approach is the oxidation step of intermediate 26, which 

depending on the oxidation conditions can lead to undesired furan-derived byproducts. Also, in this 

approach the use of toxic oxidants like mercury salts should be avoided. 

Alternatively, the thiazole ring can also be constructed from the corresponding thioester 29 by 

condensation with ethyl-2-amino-2-cyanoacetate (30) with subsequent elimination of the resulting amino 

group at C-5 of the thiazole ring. [27] However, this approach involves the use of hydrogen sulfide which 

is environmentally unsafe when used on large-scale production. 

Ramasamy and co-workers reported [26,28] the synthesis of tiazofurin 7 starting from 1-cyano 

protected D-ribose (31) (Scheme 4). Condensation with 28 afforded thiazole 32 which was successfully 

oxidized with manganese (IV) oxide to give 33. Further deprotection of the hydroxyl group and treatment 

with methanolic ammonia afforded tiazofurin 7 in 79% overall yield from 31. The methodology did not 

required chromatographic purification therefore being highly suitable for large scale preparation. 
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Scheme 4. Reagents and conditions: (i) 28·HCl, Et3N. (ii) MnO2, benzene, reflux. (iii) 90% TFA, then 

MeOH, NH3. 

 

The same approach was employed by Dowden and co-workers [29] who started from the tri-O-

benzoylateD-1-cyano-D-ribose 34 thus avoiding the final deprotection step since benzoyl groups are 

eliminated simultaneously during the conversion of the ester moiety into the amide function (Scheme 5). 

The oxidation step was carried out with bromotrichloromethane in the presence of DBU. 

 

Scheme 5. Reagents and conditions: (i) 28·HCl, Et3N. (ii) BrCCl3, DBU, CH2Cl2, 0 ºC. (iii) MeOH, NH3, 

rt, 20 h. 

 

The lack of specifity and cytoxycity found for tiazofurin during phase II and III clinical trials [30] 

prompted the search of structural analogues, especially those with variations in the furanose ring. In this 

context, analogues with xylo [31] and arabino configurations have been prepared [32] and their structural 

features studied. [33]  

Also 5’-, [25,34] 3’- [35] and 2’-substituted [36] derivatives have been reported but none showed 

significant biological activity. On the other hand, Popsavin and co-workers reported [37] a divergent 

synthesis of 3’-fluoro and 3’-acetamido analogues 43 and 44 from intermediate 36 -easily available from 

D-glucose-, [38] which showed potent cytotoxic activity against leukemia and colon adenocarcinoma. The 

synthetic approach illustrated in Scheme 6 is based on the formation of the corresponding anomeric 

cyanides 39 and 40. The construction of the thiazole ring was made through the Hantzsch’s condensation 

of thioamides 41 and 42 with ethyl bromopyruvate.  
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Scheme 6. Reagents and conditions: (i) Bu4NF, THF, -18 ºC, 22 h. (ii) NaN3, DMSO, THF, rt, 24 h then 

PtO2, Ac2O, AcOH, rt, 21 h. (iii) 9:1 TFA-6M HCl, 4 ºC, 6 days. (iv) NH2OH·HCl, NaOAc, EtOH, rt, 2 h. 

(v) MsCl, Py, -15 ºC, 1.5 h. (vi) H2S, DMAP, EtOH, rt, 4 h. (vii) BrCH2COCO2Et, EtOH, 80 ºC, 50 min. 

(viii) NH3, MeOH, rt, 8 days. 

 

The same authors reported [39] the synthesis of analogues 46 and 47 by using the same methodology 

and starting from 2-azido derivative 45 (Scheme 7). Structural analogues 49 and 50 with hexan- and 

dodecanamido fuctionalities at C2’ have also been synthesized from 48 [40] and 3’-amino xylo derivative 

52 from 51. [41] 
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Scheme 7. Synthesis of tiazofurin analogues  

 

2’,3’-Anhidro tiazofurin 54 was synthesized from 53 in 6 steps and 13.9 overall yield. [42] Starting 

from aldehyde 55 -easily available from 53 by acidic hydrolysis- the homologated cyanide 56 was 

prepared in three steps and 47% overall yield. After formation of thioamide 57 the condensation with 

ethyl bromo pyruvate afforded a 3:2 mixture of anomers 58, Methanolic ammoniolysis of these isomers 

furnished in one step the homologated anhydro analogues 59 (Scheme 8). [43] 
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Scheme 8. Reagents and conditions: (i) NaBH4, MeOH, 0 ºC, 40 min, then rt, 40 min. (ii) Tf2O, Py, 

CH2Cl2, -10 ºC, 0.5 h, then rt, 0.5 h. (iii) NaCN, DMF, rt, 1.5 h. (iv) H2S, Py, rt, 14 days. (v) 

BrCH2COCO2Et, EtOH, 80 ºC, 50 min. (vi) NH3, MeOH, rt, 8 days. 

 

Starting from diacetone-D-glucose, Chun and co-workers reported [44] the synthesis of key 

intermediate 60 in 9 steps and 15% overall yield (Scheme 9). Further construction of the thiazole ring was 

carried out through condensation with L-cysteine ethyl ester hydrochloride followed by oxidation with 

bromotrichloromethane in DBU. Concomitant ammoniolysis of benzoyl esters and formation of the amide 

group furnished azido analogue 61 which upon hydrogenation at atmospheric pressure provided the 3’-

amino derivative 62 (Scheme 9). 
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Scheme 9. Reagents and conditions: (i) 28·HCl, Et3N, MeOH, rt, 2 h. (ii) BrCCl3, DBU, CH2Cl2, 0 ºC, 16 

h. (iii) MeOH, NH3, rt, 24 h. (iv) H2, PD-C, EtOH, rt, 14 h. 

 

The 3’-deoxy-3’-hydroxymethyl branched derivative 67 was prepared by Chu and co-workers [45] 

from hydroxymethyl sugar 63, easily available from D-xylose. [46] After obtention of tri-O-benzoyl 

derivative 64 through conventional carbohydrate chemistry the cyano group was installed at the anomeric 

position by reaction of trimethylsilyl cyanide with the corresponding 1-acetoxy derivative 65. The 

construction of the thiazole ring was achieved as usual by reaction with L-cysteine and using 

bromotrichloromethane in DBU as oxidizing system of the intermediate oxazoline (Scheme 10). [45]  

 

Scheme 10. Reagents and conditions: (i) BzCl, pyridine, rt, 16 h. (ii) 1% HCl in MeOH, rt, 3 h. (iii) 

BzCl, pyridine, rt, 16 h. (iv) AcOH/Ac2O/H2SO4, 0 ºC, 0.5 h. (v) TMSCN, SnCl4, CH2Cl2, reflux, 3 h. (vi) 

L-cysteine ethyl ester hydrochloride, Et3N, MeOH, 2 h. (vii) DBU, BrCCl3, CH2Cl2, 0ºC, 16 h. (viii) 

NH3/MeOH, RT, 18 h. 

 

The isodedoxy analogue of tiazofurin has been prepared from dideoxyribose 68 (Scheme 11). [47] 

Reaction of 68 with potassium cyanide afforded nitrile 69 which was transformed into thioamide 70 by 
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the action of hydrogen sulfide. Condensation of 70 with ethyl bromopyruvate and treatment with 

methanolic ammonia afforded the analogue 71. 

 

Scheme 11. Reagents and conditions: (i) KCN, [18]-crown-6, DMF, 24 h, 95º. (ii) H2S, EtOH, Et3N, 8 h. 

(iii) BrCH2COCO2Et, EtOH, reflux. (iv) NH3, MeOH. 

 

Other sugar-analogues of tiazofurin including acyclic, [48] oxetane [49] and pyranosyl [50]  

derivatives have also been reported in the past but either low chemical yields were obtained in their 

synthesis or no significant biological activity was found. 

A similar approach to that employed for preparing tiazofurin and analogues with structural 

modifications in the furanose ring can be employed in the synthesis of analogues with heteroatoms 

different from sulfur in the heterocyclic base. As an example, the reaction of known imidate 72 with 

hydrogen selenide furnished methyl selenoate 73. Condensation of 73 with ethyl 2-amino-2-cyanoacetate 

30 afforded intermediate 74, which was further converted into selenazofurin 12 through elimination of the 

amino group and formation of the amide functionality (Scheme 12). [51]  

 

Scheme 12. Reagents and conditions: (i) H2Se, MeOH, Dowex-50W-X8, -22ºC. (ii) 30, MeOH, rt, 30 

min. (iii) 18:12:31 HCl-H2O-50% H3PO4, NaNO2, 0ºC to rt, 1h. (iv) NH3, MeOH, 22ºC, 24 h. 

 

Oxazofurin 13 was prepared by condensation of 30 with acyl chloride 75 in pyridine and further 

aciD-induced cyclization to provide intermediate 76. Compound 76 was obtained in only 12% yield due 

to the formation of undesired elimination products in both condensation and cyclization steps. 
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Elimination of the amino group of the oxazole ring was carried out over protected 76 to give 77. Finally, 

deprotection of the benzoyl groups and formation of the amide furnished the target analogue 13 in 5 steps 

and 4.6% overall yield (Scheme 13). [52] 

 

Scheme 13. Reagents and conditions: (i) 30, pyridine, rt, 3 h. (ii) HCl (g), dry acetone, 4ºC, 22 h (iii) 

HCl-H2O-50% H3PO4, NaNO2, -20ºC, 4 h. (iv) 10% NH4OH, rt, 6.5 h. 

 

A more expeditious synthesis of 13 was achieved through the reaction of nitrile 34 with ethyl α-

formyldiazoacetate 78 in the presence of rhodium (II) acetate. However, also in this case, the yield of the 

reaction was considerably low and other reaction conditions did not improve the result. Concomitant 

amide formation and deprotection in 79 provided oxazofurin 13 in 2 steps but 6.5% overall yield (Scheme 

14). [53] 

 

Scheme 14. Reagents and conditions: (i) Rh(OAc)2, 85ºC, 15 h. (ii) NH3, EtOH, rt, 35 h. 

 

Imidazofurin 14 was obtained in two steps from imidate 72. [54] Condensation of 72 with 2-amino-

3,3-diethoxypropionate hydrochloride 80 gave a mixture of the desired product 81 and byproduct 82 

(Scheme 15). Treatment of this mixture with methanolic ammonia and further chromatographic 

separation furnished 14 in 30.6% overall yield (2 steps). The obtention of byproducts could be avoided by 

working with protected (O-benzylated) products. Under such conditions imidazofurin 14 was obtained in 

35% overall yield. 
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Scheme 15. Reagents and conditions: (i) anh. MeOH, rt, 27 h. (ii) NH3, MeOH, rt, 6.5 h. (iii) PD-C, 

HCOONH4, MeOH, reflux, 1.5. 

 

The synthesis of pyrazole-containing derivatives have also been described. Treatment of glycosyl 

enaminone 84, easily available from D-ribose, [55] with semicarbazide hydrochloride afforded β-D-

ribofuranosyl pyrazole 85 in 51% chemical yield. Any attempt of deprotecting benzoyl groups in 85 also 

led to decarbamoylation of the pyrazole ring and thus, the deprotected pyrazole analogue could not be 

obtained. On the other hand, acidic hydrolysis of 84 furnished 86 which upon reaction with semicarbazide 

hydrochloride led to 87. Cyclization of this compound in TFA and further deprotection with 10% aqueous 

ammonia furnished the analogue 88 in 25% overall yield (4 steps from 84) (Scheme 16). [56] 
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Scheme 16. Reagents and conditions: (i) dioxane, NH2NHCONH2·HCl, r.t., 4 days. (ii) 

MeOH, HCl, r.t., 15 h. (iii) EtOH, NH2NHCONH2·HCl, r.t., 5 h. (iv) TFA, r.t., 30 min. (v) aq NH4OH, 

refrigerator, 3 days. 

 

Tiazofurin analogues containing one heteroatom in the base moiety, i.e. thiophenfurin 15, 

selenophenfurin 16 and furanfurin 17 can be accessed following the same approach. Franchetti and co-

workers reported [57] the condensation of the corresponding 3-(ethoxycarbonyl) heterocycle with tetra-O-

acetyl-β-D-ribofuranose in the presence of tin (IV) chloride. The reaction afforded 2- and 5-regioisomers 

as mixture of α and β anomers. [58] After chromatographic separation of the desired isomer the benzoyl 

groups were removed with sodium ethoxide in ethanol and the ester functionality transformed into the 

amide by treatment with 30% aqueous ammonium hydroxide (Scheme 17). 
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Scheme 17. Reagents and conditions: (i) SnCl4, 1,2-dichloroethane. (ii) NaOEt, EtOH. (iii) 30% NH4OH. 

 

Other analogues containing disubstituted amides at the heterocyclic ring have been prepared in the 

case of furanfurin. [59] Analogues 15-17 have also been employed for preparing the corresponding 

dinucleotides, isosteric NAD analogues. [60] The synthesis was carried out by imidazole-catalyzed 

coupling of the corresponding monophosphates with AMP (Scheme 18) 

 

Scheme 18. Reagents and conditions: (i) POCl3, (MeO)3PO, H2O, 10ºC, 14 h then 2 M TEAB. (ii) AMP, 

carbonyldiimidazole, Bu3N, DMF, rt, 3 days. 

 

3. Heterocyclic sugar analogues 

The synthesis of azatiazofurin 18 started from α-L-lyxopyranoside 93. Activation of the free hydroxyl 

group with trimethylsilyl triflate, displacement with sodium azide and further catalytic hydrogenation 

resulted in aminosugar 94. Acid hydrolysis, followed by rearrangement and acetylation provided key 

intermediate 95, which was cyanylated to give nitrile 96. Treatment of this compound with hydrogen 

sulfide and ethylbromopyruvate followed by simultaneous deprotection and amide formation furnished 18 

in 8 steps and 2% overall yield from 93 (Scheme 19). [61] 
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Scheme 19. Reagents and conditions: (i) Tf2O, DMAP, pyridine, CH2Cl2. (ii) NaN3, DMF, rt, 3 h. (iii) 

H2, PD-C, EtOH, 50 psi, 16 h. (iv) AcOH, H2O, 68ºC, 2.5 h, then Ac2O, AcOH, H2SO4, 4ºC, 2 days. (v) 

TMSCN, BF3·Et2O, 40ºC, 1h. (vi) H2S, DMAP, rt, 2 days then BrCH2COCO2Et, MeCN, 0ºC, 1 h, then rt, 

overnight. (vii) NH3, MeOH, 0ºC, 5 days. 

 

Novel aza analogues of tiazofurin have been prepared for their evaluation as antiviral agents (Scheme 

20). [62] The synthesis of intermediate nitrile 99 was carried out from γ-nitroaldehyde 97 which was 

prepared in multigram scale. Cyclization of 97 afforded pyrrolidine 98 which was transformed into 99 by 

treatment with N-chlrosuccinimide to generate an intermediate cyclic imine that was immediately 

cyanylated with hydrogen cyanide in the presence of Hünig’s base. The cyanation step took place with 

98% chemical yield. In the case of using trimethylsilyl cyanide in the presence of cesium fluoride the 

yield dropped to 65%. The construction of the thiazole ring was made through condensation of nitrile 99 

with L-cysteine ethyl ester and subsequent oxidation with manganese (IV) oxide. Three different 

analogues 102a-c were prepared by treating 100 with ethanolic ammonia, hydroxylamine and hydrazine 

monohydrate followed by acidic hydrolysis with hydrochloric acid in methanol. 
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Scheme 20. Reagents and conditions: (i) Al–HgCl2, THF–H2O, rt, 3 hours. (ii) NCS, THF, rt, 2 hours; 

(iii) DBU, CH2Cl2, rt, 3 hours. (iv) 2M HCN in DIPE, rt, 24 hours. (v) (CF3CO) 2O, Py, DMAP, 0◦C, 2 

hours. (vi) L-cysteine ethyl ester · HCl, TEA, MeOH, rt, 1.5 hours. (vii) DBU, BrCl3, CH2Cl2, 0◦C, 24 

hours. (viii) for 101a: aq NH3, EtOH, rt, 72 hours; for 101b: NH2OH·HCl, EtONa, EtOH, rt, 24 hours; for 

101c: NH2NH2·H2O, EtOH, rt, 24 hours. (ix) conc. HCl, MeOH/H2O, rt, 1–3 days. 

 

Thiotiazofurin 19 was prepared from 1,2-di-O-acetyl-4-thioribofuranose 103. After obtention of the 

anomeric bromide 106 through conventional carbohydrate chemistry, nitrile 107 was obtained by 

treatment of 106 with mercury (ii) cyanide. The thiazole ring was formed by condensation with L-cysteine 

ethyl ester and oxidation with bromotrichloromethane in DBU. Deprotection and amide formation 

afforded 19 in 8 steps and 40.5% overall yield from 103 (Scheme 21). [63] 
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Scheme 21. Reagents and conditions: (i) (phenylthio)trimethylsilane, SnCl4 CH2Cl2, -10ºC, 10 h. (ii) 

MeOH, NH3, rt, overnight, then TBSCl, DMF, imidazole, rt, overnight. (iii) Hg(OAc)2, AcOH, rt, 14 h. 

(iv) TMSBr, CH2Cl2, rt, 27 h. (v) Hg(CN)2, MeCN, rt, 22 h. (vi) L-cysteine ethyl ester · HCl, i-PrEt2N, 

1,2-dichloroethane, rt, 5 days. (vii) DBU, CBrCl3, CH2Cl2, rt, 6 h. (viii) NH3, MeOH, rt, 9 h. 

 

Optically active dioxolanyl analogue 112 was synthesized through condensation of thiazole 100 with 

chiral diol 111 in an acidic medium (Scheme 22). [64] Compound 110 was prepared in a one-pot 

procedure from 2,2-diethoxyacetamide 108 via reaction with P4S10 and condensation with ethyl 

bromopyruvate. 

 

Scheme 22. Reagents and conditions: (i) P4S10, dioxane,  r.t., 30 min. (ii) ethyl bromopyruvate, EtOH, 

reflux, 5h. (iii) NH3, MeOH, r.t., l h. (iv) benzene, TsOH, reflux, 3h. (v) n-Bu4NF, THF, r.t., lh. 

 

Racemic 112 was also prepared by forming first the dioxolane ring and then constructing the thiazole 

ring by the same methodology, i.e. condensation of a thioamide with ethyl bromomopyruvate (Scheme 



Post-print of Current Trends in Medicinal Chemistry, 2014, 14, 1212-1224 

20 
 

23). [65]  Compound 116 was preferentially obtained as the undesired trans-isomer. After formation of 

the thiazole ring, deprotection and amidation, the cis-dioxolane 112 was isolated in only 5% overall yield. 

 

Scheme 23. Reagents and conditions: (i) benzene, TsOH, reflux. (ii) NH3, MeOH, r.t. (iii) H2, PD-C, 

EtOH. (iv) Ac2O, Py, rt. (v) P4S10, dioxane,  r.t. (vi) bromopyruvate, EtOH, reflux.  

 

Dioxolanyl analogues bearing a triazole unit have been prepared by Chu and co-workers. [66] 

Starting from protected D-glyceraldehyde 117 the triazole ring was synthesized via the corresponding 

hydrazine derivative 118 obtained from the reaction of an intermediate anhydride with amidrazonate. 

Construction of the 1,3-dioxolane ring was carried out by condensation the free diol 119 with 2- 

benzoyloxyacetaldehyde dimethyl acetal (Scheme 24). Two isomers were formed in this reaction and 

after chromatographic separation the desired cis isomer 120 was obtained in 51% yield from the diol after 

treatment with methanolic ammonia. The overall yield from D-glyceraldehyde was 17.9% / for 9 steps. 

Enantiomeric ent-118 was also prepared from L-glyceraldehyde ent-117 in 10.8% overall yield (9 steps ). 
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Scheme 24. Reagents and conditions: (i)  KMnO4, KOH, then 0.5 N H2SO4. (ii) ClCOOEt, Et3N, then 

NH4OH. (iii) amidrazonate, [H2N-N=C(NH2)-CO2Et]. (iv) reflux in xylene, 4 h. (v) BnBr, NaH, DMF. 

(vi) CF3CO2H, THF/H2O (2:1), 50 ºC, 8 h. (vii) BzOCH2CH(OMe) 2, p-TsOH, benzene, reflux. (viii) H2, 

PdCl2, EtOH, 50 psi, 6 h. (ix) NH3, MeOH, autoclave, 110 ºC, 24 h. 

 

Following a similar strategy to that illustrated in Scheme 23 for the synthesis of dioxo1any1 ana1ogue 

112, You and co-workers reported [67] the synthesis of a ring-expanded 1,3-dioxane analogue (Scheme 

25). Condensation of 113 with diols 121 afforded 1,3-dioxanes 122. These compounds were transformed 

into 123 which were used for constructing the thiazo1e ring and obtaining, after deprotection and amide 

formation, the analogues 124. 
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Scheme 25. Reagents and conditions: (i)  THF, BF3·Et2O, 24 h. (ii) ClCOOEt, THF, TEA, -20ºC to rt., 30 

min, then NH3 (g), -20ºC to rt., 20 h. (iii) PD-C, H2, MeOH, 10 h. (iv) Ac2O, Py, rt., 12 h. (v) P4S10, 

dioxane, reflux, 1 h. (vi) BrCH2COCO2Et, EtOH, reflux, 2 h. (vii) NH3, MeOH, rt., 3 days. 

 

Several isoxazolidinyl analogues of tiazofurin have been prepared through diverse strategies based on 

1,3-dipolar chemistry of nitrones. The cycloaddition of D-glyceraldehyde-derived nitrone 125 with 

acrylonitrile afforded a 35:50:10:5 mixture of adducts from which the major one 126 was 

chromatographically separated (Scheme 26). [68] Formation of the thiazole ring was achieved by 

condensation with L-cysteine ethyl ester and oxidation with manganese (IV) oxide. The hydroxymethyl 

group was unmasked by acetonide hydrolysis and further oxidation to obtain an intermediate aldehyde 

which was subsequently reduced with sodium borohydride. Final formation of the amide moiety 

furnished the analogue 128 in 23.3% overall yield from nitrone 125 (7 steps). 

 

Scheme 26. Reagents and conditions: (i)  acrylonitrile, reflux, 4 h. (ii) L-cysteine ethyl ester · HCl, TEA, 

MeOH, rt, 3 hours. (iii) MnO2, benzene, reflux, 12 h. (iv) EtOH, pTsOH, 60ºC, 4h. (v) CH2Cl2, aq NaIO4, 

rt, 15 min. (vi) NaBH4, MeOH, 0ºC, 1 h. (vii) NH3, MeOH, rt, 1 h. 

 

An enantiomeric unsubstituted derivative of 128 was prepared by the same authors [68] using nitrone 

131 generated in situ. The opposite asymmetric induction exerted by chiral hydroxylamine 127 furnished 

intermediate 132 which was transformed into 133 following the same sequence of reactions illustrated in 

Scheme 26 and finishing with an acidic treatment to eliminate the chiral auxiliary. Thus, the analogue 133 

was obtained in 8 steps and 36% overall yield from aldehyde 129 (Scheme 27). 
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Scheme 27. Reagents and conditions: (i)  acrylonitrile, reflux, 4 h. (ii) L-cysteine ethyl ester · HCl, TEA, 

MeOH, rt, 3 hours. (iii) MnO2, benzene, reflux, 12 h. (iv) EtOH, pTsOH, 60ºC, 4h. (v) CH2Cl2, aq NaIO4, 

rt, 15 min. (vi) NaBH4, MeOH, 0ºC, 1 h. (vii) NH3, MeOH, rt, 1 h. (viii) 1.5% HCl in EtOH, rt, 3 h. 

 

Compounds 128 and 133 presented the thiazole ring in a vicinal position to the oxygen atom of the 

isoxazolidine ring. The corresponding regioisomeric analogue in which the thiazole ring was placed 

vicinal to the nitrogen atom of the isoxazolidine ring was also synthesized. [69] 

Racemic 135 was directly prepared from nitrone 134 synthesized by the Hantzsch's method from 

thioamide 109 and ethyl bromopyruvate. Cycloaddition of 134 with allylic alcohol under a variety of 

conditions furnished mixtures of cis and trans adducts. However, when the reaction was carried out in the 

presence of 1.0 eq of zinc (11) triflate and under microwave irradiation, only the desired cis isomer 135 

was obtained (Scheme 28) 

 

Scheme 28. Reagents and conditions: (i)  ethyl bromopyruvate, EtOH, molecular sieves, reflux, 90 min. 

(ii) NH3, MeOH, r.t., 24 h. (iii) 1 M HCl, reflux, 1 h. (iv) MgSO4, CH2Cl2, BnNHOH, rt, 6h. (v) allylic 

alcohol, CH2Cl2, Zn(OTf)2, MW 90 watt, 160 ºC, 15 min. 
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In order to introduce chirality in the process to obtain optically active derivatives, chiral 

hydroxylamines such as 130 was used to prepare the corresponding nitrones. However, any attempt of 

conducting the reaction in the presence of Lewis acids only afforded complex reaction mixtures of 

various compounds from which it was not possible to separate any adduct in a synthetically useful way. 

On the other hand, the cycloaddition of nitrone 136, obtained as illustrated in Scheme 28, with chiral 

nonracemic monoprotected diol 137 afforded a 4:1 mixture of isomers from which compound 138 was 

separated. After deprotection, diol cleavage and amide formation, compound 128 was obtained in 5 steps 

and 53% overall yield from nitrone 136 (Scheme 29). 

 

Scheme 29. Reagents and conditions: (i)  CH2Cl2, Zn(OTf)2, MW 90 watt, 120 ºC, 2 min. (ii) Bu4NF, 

THF, rt, 3 h. (iii) CH2Cl2, aq NaIO4, rt, 15 min. (iv) NaBH4, MeOH, 0ºC, 1 h.. (v) NH3, MeOH, r.t., 24 h. 

 

The synthesis of thiophenthiofurin 20 and furanthiofurin 21 have been reported by Franchetti and 

coworkers. [70] Compound 20 was prepared by direct glycosylation of tetraacetyl derivative 139 with 

ethyl thiophene-3-carboxylate (140). The reaction gave a mixture of 2- and 5-glycosylated regioisomers 

as α and β anomers in 56% yield. The mixture was treated with methanolic ammonia and the target 20 

was separated by column chromatography (Scheme 30). Similarly, glycosylation of tribenzylated 141 

with furan derivative 142 gave, after deprotection and amide formation, furanthiofurin 21. 
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Scheme 30. Reagents and conditions: (i)  SnCl4, 1,2-dichloroethane, 0ºC, 30 min, rt, 24 h. (ii) NH3, 

MeOH, then NH4OH, rt, 24 h. (iii) TFA, CH2Cl2, 0ºC, 15 min, then warm to rt. (iv) BBr3, CH2Cl2, -78ºC, 

1h. (v) 30% NH4OH, rt, 24h. 
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