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ABSTRACT 

The persistent uncertainty that looms over the search for solutions to health problems 

offers important conceptual insights for the study of technological change. This paper 

explores the notion of hybridization, namely the embodiment of multiple competing 

operational principles within a single medical device, as strategy to deal with the 

practical shortcomings due to said uncertainty. The history of the development of the 

hybrid artificial disk affords the elaboration of an alternative view of hybridization and, 

at the same time, the articulation of a dualism between medical science as area of basic 

research (e.g. what disease is) and as practical knowledge (e.g. how disease can be 

tackled). 

1. INTRODUCTION 

Over the last two decades scholars of technological change ventured in the study of 

innovation in the health-care realm. Seen through the lenses of this novel approach 
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medical innovation has been removed from the shadow of the ‘linear model’ framework 

that dominated science and technology studies in the early 1960s and cast under a new 

light. In a nutshell medical innovation is now understood as the outcome of a long-term 

learning process and analysed with a view to appreciate the incremental nature of a 

process unfolding in real time and under the uncertainty that typically, at least within 

innovation studies, underlies the translation of cognitive abilities into effective routines 

[1, 2]. The explicit recognition of temporality calls attention to path-dependence and the 

associated effects of advancing technological paradigms in locally familiar directions 

under the dual penumbra of positive increasing returns as well as the risk of lock-in 

within dynamically inferior configurations [3, 4]. In this view the growth and 

application of knowledge are bound, for good or for bad, to the “grip of history” (see [5] 

for a review). It follows, paraphrasing Simon [8], that the search for effective diagnostic 

and therapeutic avenues entails the pursuit of clearly defined goals through 

‘procedurally uncertain’ routes [9,10]. 

This paper seeks to draw on and contribute this debate by analyzing the hybridization of 

a medical device, namely the artificial disk that is implanted surgically to alleviate from 

the painful symptoms of Degenerative Disk Disease - a leading cause of back pain and 

disability worldwide. This case study affords the opportunity to explore the conceptual 

underpinnings of hybridization (viz. embodiment of competing operational principles 

within a single device) understood here as evolutionary response to persistent 

uncertainty about both the nature of disease and the comparative clinical performance of 

available therapeutic solutions. The analysis of the long-term development of the hybrid 

artificial disk elucidates broader aspects of medical innovation and, in so doing, 

contributes various strands of scholarly debate. First, the present paper suggests a novel 

perspective on hybridization, namely that making ‘available’ different operational 
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principles within a single device allows leaving some room for adjustments should 

future reconfigurations be warranted by enhanced scientific understanding [11]. This 

nuanced view of engineering epistemology [12] overcomes narrow interpretations of the 

concept of technological paradigm observed in past literature[13], in particular for what 

concerns the incommensurability of competing principles [14]. Second, the case study 

shows that different approaches to know-how can be effectively combined and 

compensate, at least partially, for limited know-what. Last but not least the paper makes 

an important addition to the growing catalogue of case studies on the dynamics of 

innovation in medicine [15, 16, 17, 18, 19, 20] by restating forcefully the sheer variety 

of routes through which the process emerges and develops in this realm. 

The remainder of the paper is organized as follows. Section 2 articulates the main 

conceptual elements of an evolutionary framework for knowledge growth and 

hybridization in medicine. Section 3 offers an overview of the scientific, clinical and 

technical aspects of uncertainty in Arthroplasty, the surgical implantation of a device to 

alleviate from the painful symptoms of Degenerative Disk Disease. Section 4 analyses 

in detail the development of the hybrid artificial disk and illustrates the fundamental 

relationship between hybridization and uncertainty. The last Section concludes and 

summarizes. 

2. BACKGROUND 

2.1 –UNCERTAINTY AND MEDICAL INNOVATION 

Commenting on the characteristics of innovation in medicine Richard Nelson [7, 21] 

argues that clinical routines are often implemented out of direct observation and in the 

face of imperfect understanding of the workings of disease. That is, the complex 

biochemistry of the body can at best guide the search process but the activities that are 
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ultimately adopted in the clinics stem from recursive application in the course of 

providing patient care. What is more, clinical procedures not necessarily based on solid 

understanding of disease unpredictably reveal promising directions for basic scientific 

research.
1
 In other cases observation of particular symptoms delimits the design space 

of therapeutics even though little is known about the aetiology of disease. In all these 

circumstances scientific instrumentation is crucial to enabling replicable 

experimentation for validating or refuting any particular solution [22]. 

The suggested functional separation between basic scientific knowledge – aimed at 

elucidating ‘know-what’ – and practical knowledge – viz. know-how for problem 

solving – places this perspective far from the traditional tenet of studies on health 

technology diffusion [7, 23, 24]. In recent years a stream of work along this alternative 

approach elucidated important nuances of the division between scientific and practical 

knowledge in medicine. Therein a central role is assigned to practical know-how 

besides standard clinical and surgical practices and aimed at improving the design and 

use of implantable devices such as the intra-ocular lens [15], the stents for coronary 

artery disease [16] and the Left Ventricular Assist Device-LVAD [20]. What is common 

across these accounts of technical change in medicine is the blending of technical know-

how on the properties of the materials or the mechanic behavior of implantable devices
2
 

with clinical know-how (Figure 1). The latter, in turn, embodies the intertwining of 

                                                           
1
 A paradigmatic case is the pioneering research on glaucoma carried out by Von Graefe in the mid XIX 

Century. He noticed that patients suffering congestive glaucoma experienced remarkable reduction of 

corneal ulceration after the iridectomy, which is a surgical incision aimed at reducing excess pressure 

within the eye. These clinical experiments led Von Graefe to conjecture a causative association between 

the congested appearance of the eye and the hypersecretion of aqueous humor which, eventually, became 

the basis for the Intra Ocular Pressure paradigm, a long-standing clinical framework for glaucoma  

diagnosis and treatment [17:38, 18]. This is a clear instance in which a clinical practice based on the 

explorative assessment of a surgical incision preceded and guided successive scientific inquiry. 
2
 For example, the durability of polyurethanes, of biological compatibility of acrylic glass and of rigidity 

of PVC have been crucial for the development of the LVAD, the intra-ocular lenses and the balloon 

catheter, respectively [20, 15, 16]. 
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clinical (interventional) procedures
3
, viz. surgical approaches, which make device 

implantation physically possible and, more relevant to our case, testing in a clinical 

setting, via experimental trials or regular surgical use, which provides crucial feedback 

about the unpredictable and complex interaction between technology and the human 

body [25].
4
 

This perspective suggest a connection between research on medical innovation and 

particular episodes in the history of engineering brought to the general attention by the 

works of Constant [26] and Vincenti [27]. The bridging concept is that of an 

autonomous professional epistemology, that is, a body of technical know-how not 

subservient or derivative of science. This engineering epistemology
5
 instead blends the 

concept of scientific paradigms by Kuhn [29, 14, 30] with the notion that technological 

knowledge stems from recursive practice in design and testing. The outlined framework 

falls squarely in the variation-selection model of Vincenti [27, 31]: design activities 

spur a variety of solutions in the face of uncertainty about “what works” [32] while 

testing activities act as selection operators. In turn these design-testing dynamics create 

knowledge that is corroborated in practice but need not be necessarily grounded in a 

proven scientific notion [33]. This evolutionary view captures the essence of the 

division of medical know-how (when dealing with implantable devices) between 

                                                           
3
 The National Institute for Health and Clinical Excellence (NICE) defines the ‘interventional procedure’ 

as a “treatment that involves … making a cut or a hole to gain access to the inside of a patient's body”. 

From http://guidance.nice.org.uk/IP , retrieved 29 January 2001. 
4
 In a study on coronary artery disease Mina et al. [16] highlight the pivotal role of the Benestent and 

Stent Restenosis clinical trials of the early 1990s. These provided persuasive evidence of the advantages 

of stenting as opposed to ‘simple’ balloon angioplasty. Similarly Morlacchi and Nelson [20] emphasize a 

multi-center trial carried out in the late 1960s that confirmed the clinical use of Left Ventricular Artificial 

Device in supporting the circulation of patients for longer periods compared to temporary blood pumps. 

In the case of the intraocular lens, Metcalfe et al. [15:1290] underline the clinical studies of the early 

1970s that showed dramatic reduction in time lost by the patient using phaco-emulsification, “the 

technique that transformed cataract surgery”. 
5
 We understand here epistemology in the Popperian sense: “the central problem of epistemology has 

always been and still is the problem of the growth of knowledge” ([28], quoted in [27:17]).  

http://guidance.nice.org.uk/IP
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clinical and design knowledge
6
: design of medical devices is mainly concerned with 

“purely” technological dimensions such as the properties of implantable artifacts while 

testing are crucial to guarantee safety and efficacy in the clinical realm (Figure 1). 

  

- Figure 1 - 

It is important to distinguish between the clinical environment and the particular 

operative conditions of laboratory trials on synthetic or cadaveric models. In the latter 

the complexity of the body-technology relationship is reduced to facilitate development 

activities in a nested variation-selection sub-process [24, 27].
7
 On the other hand the 

“testing regime” [19] of the laboratory environment does not reproduce “real-world” 

selection [32, 33]. Indeed both the FDA and the Notified Bodies of the European 

Commission in Europe mandate that new-to-the-world implantable surgical devices are 

tested clinically on humans – under special experimental exemptions – before approval 

[35]. 

Previous studies about implantable devices deal with the consequences of uncertainty at 

the level of know-what, that is, of scientific understanding of disease. Therein practical 

knowledge is described as unfolding along an almost autonomous trajectory based upon 

the variation-selection model of generation and testing of new device designs with 

minimal guidance from the scientific knowledge of aetiology.
8
 In these instances the 

results from clinical testing play an important role in the evolution of practical ways to 

tackle disease (see footnote 4). The case study of the intervertebral artificial disc 

                                                           
6
 We are grateful to Paul David for pointing this out during a session of the Stanford Science, Technology 

and Society Seminar Series. 
7
 In the nested hierarchy of variation-selection processes a further level is in the “mind experiments” 

carried out by engineers [34]. 
8
 For example, Morlacchi and Nelson [20:512] comment about the intra-ocular lenses case that the 

“breakthrough was not dependent upon any significant improvement in basic understanding of cataracts 

or the workings of the eye”. 
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presented here affords the opportunity to focus on dual uncertainty, not only about 

understanding of disease but also about clinical testing for which there are hitherto no 

univocal performance criteria. This analysis elucidates the emergence of design 

strategies in the process of experimenting with new operational principles when the 

testing part of the variation-selection model is limited by clinical uncertainty. In the 

remainder of the paper it will be argued that hybridization of medical devices is one of 

such strategies. 

 

2.2 – HYBRIDIZATION: EVOLUTIONARY RESPONSE TO UNCERTAINTY 

 

A look at previous literature reveals different postures on hybridization. The first stems 

from a wealth of recent empirical studies on hybrid vehicles. Dijk and Yarime [36] 

associate corporate strategies to different forms of firm behavior such as “pioneer”, 

“slow follower” or “skeptical”; Avadikyan and Llerena [37] elaborate a real options 

approach to study the investment behavior on hybrid cars. Common across these 

contributions is the emphasis on the strategic aspects related to hybridization while little 

attention is paid to the design activities involved in the development of those 

technologies.  

Next to this is a strand of studies that considers the relationships between different 

elements of technological systems.  A classic reference is Sahal’s [38, 39] work on the 

symbiosis between different elements of technological systems such as the 

programmable calculating machine and the solid-state technology of the electronic 

computer. In a similar vein, a study on the Smart House case by Peine [40] elaborates 

on the notion of technological systems as environments where different paradigms can 
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coexist, like those associated to information technology and the construction industry. 

Pistorious and Utterback [41:72] add an interesting nuance to the debate by 

conceptualizing different kinds of symbiosis and hinting to a special form of symbiotic 

relationship as ‘hybridization’ – referred, though, not to the relationship between 

complementary elements (like construction and ICTs within a Smart House) but rather 

between competing operational principles that fulfill the same function. Under this 

perspective hybridization is understood as epiphenomenon occurring over the transition 

of technological systems through different paradigms. These transitions take the form of 

niche evolution. Similar hints emerge from accounts of gas turbines portrayed as 

auxiliary device of steam turbines [42], or from studies on navigation technology where 

steam engines are depicted as auxiliary devices for the consolidated sailing ships design 

[43]. In all these cases hybridization is a temporary symbiosis between an incumbent 

technology and a new one, with the latter improving the performance of the former [41].  

At times the new technology further develops within the niche like steamships which 

eventually eliminated sails; other times the symbiotic relationship reverses the 

functional relation like in the case of co-generated power stations where gas turbines 

became the main component and steam turbines the auxiliary device. 

The present study proposes a different view of hybridization not grounded in the niche 

dynamics of technological systems but, rather, connected to the concept of operational 

principles.
9
 The latter, according to Murmann and Frenken [44: 939] facilitate the 

systematization of a set of artifacts into general product classes on the basis of “the kind 

of knowledge a human designer must have in order to build a technological device that 

works on the physical world in a desired way”. It is clear that hybrid technologies have 

                                                           
9
 For example, the principle underpinning human flight proposed by Cawley in 1809 was to “separate lift 

from propulsion by using a fixed wing and propelling it forward with motor power” – put another way, 

moving a rigid surface through resisting air provides the upward force necessary to counter gravitational 

force.  
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hitherto been portrayed mostly as intermediate steps in the process of adjusting existing 

technologies systems to novel emergent criteria through niche evolution [43]. Our 

empirical analysis of the evolution of the artificial intervertebral disk expands on this 

while, at the same time, accounting for functionality and uncertainty. To begin with, we 

argue that technological systems are a special kind of artifacts, complex enough to 

contain different niches. The analysis of hybridization presented here focuses on a 

simple artifact, as opposed to large distributed and multi-component systems such as 

those for transport or electricity, with a view to illustrate the how functionally 

competing operational principles come to coexist outside of traditional frameworks such 

as niche dynamics. Secondly the niche perspective is often associated to energy-

generation systems (e.g. for transport or manufacturing) where “demonstration effects” 

are easier to conceive and measure [45, 46].
10

 In the case of the intervertebral artificial 

disc the absence of clear results about clinical performance implies that hybridization is 

a sound and persistent design strategy. This proposition resonates with Mokyr’s [11] 

suggestion that making “available” different operational principles within a single 

device to minimize and manage uncertainty.
11

 The rationale is: if it works and until new 

problems come to surface jointly adopting several operational principles suffices and 

allows leaving room for future reconfigurations, perhaps after the veal of uncertainty 

has been lifted.
12

 Stated differently, the traditional view of hybridization as temporal 

                                                           
10

 One of such “demonstrations” was a bet about the performance of the first full-scale working railway 

steam locomotive in Pennydarren, in 1804 [47]. Looking at more recent cases, Islas [45:134] mentions 

gas turbines being introduced in the energy system of airplanes as a special application that allowed 35% 

improvements in output power. A related concept in the literature on techno-economic paradigms is the 

“big-bang” at root of long wave developments. Pérez [48] for example claims “big-bangs” coincide with 

demonstrated performance improvements in the application of energy to transport or manufacturing 

activities. 
11

 Mokyr acknowledges that the set of “available” operational principles in the face of changing 

environment is “not a just a set of blueprints that firms and individuals can pick and choose from freely, 

but an underlying knowledge set, far more complex and multidimensional” [11:131]. 
12

 Our concept of hybridization differs slightly from the “availability” concept of Mokyr who uses “junk” 

DNA as an example. DNA contains big parts of “junk” code, in the sense of not having any apparent 

function in the fenotype. But when environmental conditions change these DNA parts turn out to be 
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symbiosis within a niche in conditional logic language would go: “If the new 

operational principle has demonstrated its competence in one element of the system, 

then use it”; in the view proposed here instead hybridization has a more general flavor 

and is functionally biased by uncertainty: “if you do not know which operational 

principle is better, then choose all”.  

 

We believe that this nuanced view of engineering epistemology [12, 49, 40] overcomes 

narrow interpretations of the concept of technological paradigm. In fact rather than 

accepting incommensurability of competing principles along the canonical terms 

suggested by Kuhn [14] our view highlights the potential benefits stemming from the 

combination of different approaches to know-how towards a single solution, a medical 

device in this case. Thus contrasting Kuhn we suggest that “proponents of competing 

paradigms may practice their trades in the” same world [14: 150]. The evolutionary 

nature of this particular technical solution resonates with Stark´s [50: 164] insight on the 

generative role of diversity whereby “rivaling performance criteria […] contribute[s] to 

adaptability by preserving a more diverse organizational gene pool”.
13

 Let us now frame 

the analysis of hybridization in the case of the artificial disc. 

 

3. UNCERTAINTY AND THE ARTIFICIAL DISC 

In section 2.1 we sketched the contours of a framework where variation in design was a 

response to uncertainty. This section illustrates how in the case of artificial disc 

                                                                                                                                                                          
“useful”: “The human gene uses only about 1 percent of the DNA; the rest seems to fulfill no obvious 

function, but changes in it may at some point in the future become useful” [11:123, note 7]. In the view 

presented here the operational principles joined in the hybrid device are seen as having more than purely 

random possibilities of success. 
13

 We thank an anonymous referee for calling our attention to this work. 
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uncertainty refers not only to fundamental know-what about disease but also to know-

how on clinical testing that is essential for the selection of the devices. 

The appearance of the artificial disc in spinal surgery marks a significant step of 

scientific, social and economic importance in modern medicine. This prosthesis device 

is implanted in the spine to treat Degenerative disc disease (DDD), a physiological 

affection of the discs between vertebrae. The latter is recognized as the main cause of 

back pain and disability among adults in the United States whose associated costs have 

been estimated around £ 1.6bn in the UK [51] and $26 billion in the US [52].
14

 

After an experimental phase in the late 1960s a surgical  technique to implant the 

artificial disk appeared in Europe around the late 1980s under the name of arthroplasty. 

This became an alternative to arthrodesis, or osseous fusion – the gold standard for the 

treatment of DDD consisting in the replacement of the disc with an osseous bridge 

between adjacent vertebrae (Figure 2).
15

 Though not yet at a mature stage the market for 

artificial discs has experienced considerable growth and is estimated to reach 3 billion 

dollars volume and to progressively overtake arthrodesis as standard clinical practice 

[54, 55]. 

 

- Insert Figure 2 around here. 

 

                                                           
14

 The significance of DDD is well outlined in an editorial by Weiner [53:474]: “Despite the significant 

improvements in the treatment of many pathologic processes witnessed over the past century, some 

particularly difficult medical problems persist. These problems are characterized by unclear underlying 

etiologies and less than desirable outcomes of treatment in the face of considerable intellectual and 

financial investment. Examples include (…) degenerative disc disease. This latter problem (…) is 

particularly important given the societal repercussions – disability, work absenteeism, and health care 

costs (in the billions of dollars) associated with it are considered at ‘crisis’ level.” 
15

 The physiology of DDD in the lumbar and the cervical area are very similar, and so are the prostheses. 



 

12 

 

A look at the specialized scholarly literature suggests wide diversity of views about the 

nature and the pathogenesis of DDD [56].
16

 There is a kinematic theory strongly 

focused on the movements of the spinal disc which does not take into account the forces 

that produce the motion. On the other hand there is a dynamic theory that is mostly 

concerned with the combined effect of motion and loads.
17

 According to the former, 

back pain is a consequence of abnormal movements in the disc affected by DDD, and 

artificial disc replacement restores normal mobility [57]. According to the latter theory 

the dynamic properties of the anatomic disc, and specifically the load absorption of the 

cartilaginous articulation, play a crucial role in triggering the disease. To mimic 

anatomic load absorption, this theory goes, the artificial disc should reproduce the 

viscoelastic properties of a healthy disc. Both kinematic and dynamic theories about the 

sources of back pain signal intervertebral fusion or arthrodesis as an inappropriate 

surgical treatment for DDD, as they argue that the rigid nature of the bone bridge may 

trigger biomechanical alterations which ultimately can cause degeneration in the 

adjacent discs (the so-called ‘adjacent disc degeneration syndrome’) and the need for 

further surgery [58]. 

Although early hints at the dynamic aspect of disc functionality date back to the early 

1970s [59], uncertainty persists about the actual importance of load absorption. 

Difficulties in measuring load absorption both in vivo and in laboratory environments 

are the main cause of chronic paucity of data about the properties of the intervertebral 

disc [60:347]. To the best of our knowledge, only one laboratory study set out to 

                                                           
16

 Besides the biomechanical explanation a purely chemical explanation refers to the pain-provoking 

chemical changes of the discs during the degeneration process [56]. 
17

 An extreme version of this has been proposed by Mulholand [57], namely that loads are the only 

biomechanical cause of pain in the disc, and that movement related causes are “a myth” that has 

dominated spinal biomechanics for the last 30 years.  
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analyze the impact of load absorption by means of invasive force sensors installed in a 

cadaveric model of spine units [61]
18

. 

Deficient knowledge on the workings of the natural disk affects also the design of the 

artificial device that is supposed to replace it. The history of DDD treatment is in fact a 

tale of how this uncertainty has become a focusing device for designing a clinical 

solution. The first artificial disk to be adopted for clinical use was built on what we refer 

to as ‘hip-like’ operational principle, a ball-and-socket mechanism developed originally 

for hip prostheses by Sir John Charnley in the 1960s [62]. The principle underlying this 

device, substituting the hip articulation with a prosthetic implant, is one of the most 

successful surgical inventions of recent times as confirm the widespread adoption for 

the treatment of other articulations, such as knee and shoulder
19

. These developments 

were pivotal in bolstering both orthopaedic surgery and the implants industry [64]. The 

SB Charité hip-like artificial disc for the spine was the first to be commercialized in 

1987 in Europe and, after 2004, in the US. These artificial discs feature rigid contact 

surfaces in the form of a ball-and-socket articulation made of material akin that of hip 

prostheses, i.e. metal or relatively rigid plastic such as UHMWPE (Figure 3). Although 

these discs enhance mobility of the intervertebral segment, their rigid surfaces prevent 

effective load absorption [60]. 

 

- Insert Figure 3. 

                                                           
18

 In the words of an artificial disc designer: “You cannot put a sensor in an in vivo environment to 

measure load absorption. And that means that, at best, you can only have in vitro data for this property in 

the healthy, degenerated and artificial disc. And you cannot trust only in -vitro data since these are highly 

dependent on the specific design of the laboratory experiment”. Furthermore, laboratory experiments 

simply cannot reproduce some conditions of the in vivo environment: “The dynamic load-response 

behavior of the anatomic disc could depend even of the hour of the day, and you cannot reproduce that 

with cadaveric specimens”. This stresses the crucial importance of clinical testing in the variation-

selection process of adoption of new designs of implantable devices, pointed in Section 2.1 of this paper. 
19

 This “lineage development” [63] of a technology outside its original domain of application is typical of 

technological evolution. We thank an anonymous referee for pointing this out. 
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The alternative operational principle to ‘hip-like’ is the ‘mimetic’, adopted first in 

Europe in 2007 while still awaiting approval in the US. Although mimetic discs are late 

entrants in clinical use numerous R&D projects contributed to perfect this operational 

principle especially in the US [65]. Mimetic-type artificial discs are designed to 

replicate the articulation of the anatomical disc not only for what concerns movement 

but also for load absorption (Figure 4). As anticipated earlier however since the 

effective impact of load absorption for both natural and artificial discs has not been 

established with certainty, opinions concerning these operational principles go both 

ways. Advocates of the hip-like disc maintain that the absorption of load in the 

anatomical disc (if it exists) is irrelevant and that prosthetic restoration of movement 

suffices [66]. Conversely advocates of the mimetic disc argue that disregarding load 

absorption generates biomechanical problems and painful symptoms that often end up 

with further surgery [58].  

 

- Insert Figure 4 

 

Besides this basic uncertainty concerning load absorption, there is also a fundamental 

uncertainty about the differential clinical performance of the mimetic and the hip-like 

discs. To the best of our knowledge, no clinical or laboratory study of any type has so 

far been set to compare the performance of the two principles of artificial disc. This is 

possibly because specialists are preoccupied by an even bigger task, that is, proving the 

efficacy and safety of the whole artificial disc rationale compared with the surgical gold 

standard of arthrodesis, or bone fusion of two vertebrae through the intervertebral space 
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(see Figure 1). This task has been proved difficult: in the randomized studies carried out 

so far and, although disability and quality of life scores tip in favor of arthroplasty, no 

evidence can be said to support conclusively either procedure.
20

 

 

Thus, there are two fundamental uncertainties derived from testing. The first stems from 

the difficulty of measuring load absorption in the disc – be it healthy, diseased or 

artificial. And, second, a lack of tests aimed at measuring the comparative performance 

of different operational principles of disc prosthesis. The contested terrain here is the 

comparison with arthrodesis which continues to attract resources and attention.  

In our view these two fundamental uncertainties triggered different responses 

concerning the variety of artificial designs. The first response paved the way to the 

mimetic/hip-like variants, since uncertainty about the concrete amount of load 

absorption stands behind the decision to either incorporate this property in the device 

configuration (mimetic) or not (hip-like design). The second response adds the hybrid 

design to the mimetic/hip-like repertoire, and relates to testing uncertainty about the 

clinical differential performance of these two competing principles. In next section we 

propose this uncertainty is crucial in the rationale of the hybrid design. 

 

4. HYBRIDIZATION AND THE ARTIFICIAL DISC 

4.1 – A case study about the hybrid disc  

                                                           
20

 In its evidence-based guidance for the use of the artificial disc of both 2009 and 2010, the National 

Institute for Health and Clinical Excellence (NICE) identifies 5 randomized controlled trials comparing 

the efficacy of artificial disc and fusion. In 4 of 5 of these studies the differences were non-significant at 

the end of the follow-up. This circumstance affected the launch of the artificial disc in US in 2005, where 

many insurance companies, as well as Medicare and Medicaid, initially authorized only very limited or no 

reimbursement at all for performing the procedure in the United States “due to the lack of good evidence 

of long-term clinical benefit and safety” [67:329] even after the FDA approved trials. Although 

reimbursement of artificial disc is now broader, this issue is still one of the most important hurdles in the 

adoption of this technology in US. 
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This section outlines the basic design principles and the steps that led to the definition 

of the Bryan artificial disc, the only hybrid device that has been approved for clinical 

use.
21

 Let us begin by noting that the dualism between the hip-like and mimetic 

operational principles is a recurrent theme in the specialized medical literature. A 

survey article by Bono and Garfin [56] refers to ‘articulated non-elastic discs’ and 

‘elastic discs (with load absorption)’. Also Lee and Goel [58] mention ‘kinematic discs’ 

and ‘kinematic and absorption of load discs’ while Szpalski et al. [65] talk about 

‘artifacts destined to restore the kinematic functions’ and ‘… to restore the viscoelastic 

functions’ respectively. Interestingly only the latter study acknowledges that the history 

of the artificial disc features ‘some devices [that] attempt to combine both principles’ 

[65:S67]. Hints at hybridization can be found also in patent n. US5314477 that mentions 

the possibility of a “combination of these two research routes” in the design of the 

artificial disc, and in patent n. US7563286 whose classification of disk devices includes 

a hybrid category with different design principles. 

To appreciate the hybridization trajectory we take a look at the circumstances 

underpinning the development of the Bryan artificial disc. The clinical origins of this 

venture are mentioned in a published interview with Dr. Bryan, a spine surgeon [68]: 

“In North West there is a very young population which is very active in outdoor 

activities, whether mountain climbing, topping trees, fishing and so on. Many young 

people present to us with … early degenerative changes in their spine and get operated 

with the usual operating procedure. Then these people are coming to us after 5/6 years 

and in a significant number of them, we find ourselves re-operating… So I have been 

                                                           
21

 The technical specifications presented here have been validated through interviews with four experts. 

One of them was involved in the development of the Bryan disc in late 1990s; another was involved as a 

design engineer in one of the most important mimetic projects of the late 1980s, the Acroflex artificial 

disc. The other experts are R&D engineers currently working in new artificial disc developments, one 

hip-like and the other mimetic. 
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thinking of this for many years”. Seeking engineering advice, Bryan joined forces with 

Alex Kuntzle, a mechanical engineer from the metallurgic industry. After a patent 

application in 1994 they sought venture capital to fund Spinal Dynamics a start-up to 

develop a spinal disk device. The company was subsequently acquired by Medtronic 

Sofamor Danek (MSD) for 269.5 million US dollars at the beginning of the 2000s. The 

Bryan disc received approval for clinical use for Europe in 2001 and in 2009 for the US 

[69, 70]. It has been estimated that up to 2010 the Bryan disc has been used in about 

35000 surgeries. 

The thrust of this venture, Dr. Bryan claimed, was seeking “to change the nature of the 

joint from an arthrodial joint to restore something similar to diarthrodial joint” [68:8].
22

 

While this statement refers to a hip-like principle, Dr. Bryan also claims that the 

artificial disc should provide “cushion as the normal vertebral disc” [68:8], the latter 

being a distinctive property of mimetic design. To confirm this, patent No. US7025787 

(by Bryan, Kuntzler et al owned by Medtronic) claims that the implant “should also 

provide elasticity and damping sufficient to absorb shocks and stresses imposed on it in 

a manner similar to that of the natural disc”.
23

 Patent No. 7025787 (2002) presents the 

salient features of the Bryan artificial hybrid device: one elastomer
24

 and two small 

metal plates that act as disc-bone interface to ensure stability. These specifications 

suggest close similarity with the mimetic Acroflex disc (Patent No. US5071437) (see 

left-hand side of Figure 5) the outcome of an important venture in the orthopaedic 

implants industry in the1980s.  

 

                                                           
22

 Diarthrodial joints (or synovial joints), such as hip or knee, joints are freely moveable; Arthrodial joints 

(or cartilaginous joint), as the spinal disc, only allow for limited movements. 
23

 In this patent also is stated that the goal of the invention is to transform a natural arthrodial joint like the 

spinal disc in an artificial diarthrodial joint.  
24

 Elastomer refers to materials with mechanical properties (e.g. hysteresis) similar to rubber.  
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- Insert Figure 5. 

 

Early tests of this device highlighted both in the laboratory and in human trials repeated 

failures of the elastomer, the component that is expected to provide load absorption and 

motion [65, 67]. This occurrence proved crucial for the conception of the Bryan Disc 

whose layout features an important variation compared to the basic mimetic 

configuration: the small plates are allowed to rotate around the elastomer thus creating a 

ball-and-socket articulation similar to hip-like discs (Figure 5, right-hand side). The 

mimetic operational principle instead features small plates joined to the elastomers, in a 

‘sandwich configuration’ that does not allow rotation (Figure 5, left-hand side). The 

existence of elements of both operational principles in the design of the Bryan disc is 

also signalled by the citations of US -the first patent associated to the Bryan disc- which 

include both mimetic (as US4911718) and hip-like (DE3023353) patented designs. 

The Bryan disc, it is worth stressing, was conceived against the backdrop of a debate 

about the performance of the sandwich configuration of the mimetic principle and the 

initial positive performance of the hip-like device. As a matter of fact, hip-like disks 

gained momentum in the early 1990s after diffusion of negative results of experimental 

clinical trials with the Acroflex disc [71] and of positive feedback from non-randomized 

trials of the SB Charité disc – a lumbar hip-like design [72].
25

 Shortly afterwards the 

Frenchay hospital in Bristol, UK, one of the most prestigious centres in the world for 

                                                           
25

 There are institutional differences between the clinical results coming from Acroflex and SB Charite’s 

first human implantations in the late 1980s. The former project was carried out by Acromed an US-based 

company which applied for a special IDE (Investigation Device Exemption) required by FDA to conduct 

experimental clinical trials on humans. SB Charité – developed by Waldemar Link, a German company – 

was implanted before the 1993 European regulation requiring similar trials for new devices [35]. The 

results reported in the early 1990s for SB Charité do not come from official experimental trials but from 

regular clinical use in Germany, Netherlands and France. In 2000, Waldemar Link started the FDA trials 

required for the regular implantation of SB Charité in US. In any case, both in the hip-like and mimetic 

designs results of the early 1990s involved human clinical testing, which is the selection part of the 

variation-selection process of new device emergence we are interested in. 
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neck surgery announced positive experimental results on humans with a cervical hip-

like prosthesis [73]. 

 

- Insert Figure 6 around here. 

 

Let us offer a functional analysis of the technical aspects involved in the evolution of 

the hybrid disk. Figure 7 represents the design trajectories of hip-like, mimetic and 

hybrid principles. To highlight design characteristics we refer to what Ulrich [74] calls 

the “iota level”, viz. the individual pieces. 

 

- Insert Figure 7 around here (figure 7 at the end of the paper). 

 

Early prototypes of the artificial disk featured steel (Fenström; Reitz and Joubert) or 

silicone spheres (Nachemson; Fassio and Ginestie) aimed at improving mobility and 

load absorption (the silicone spheres) or mobility only (the stainless steel devices). It 

soon became clear that the spheres were not suited to reproduce the properties of 

cylindrical discs in supporting adjacent vertebrae (Figure 8). Bono and Garfin [56:147S] 

distinctively refer to those failures as lessons learned for future developments. One 

route in this problem sequence entailed the addition of two intervertebral plates between 

the ball and the adjacent vertebrae to improve stability [56; 54].
26

 In this second 

generation of hip-like artificial discs the ball-and-socket articulation is the component 

that affords mobility to the intervertebral space. In Figure 7, the ‘SB Charité’ and 

                                                           
26

 The addition of components to overcome the limitations of primitive and crude original prototypes is a 

typical phenomenon of early phases of technical invention. Arthur [75] describes it as “structural 

deepening”. 
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‘ProDisc’ labels in the upper part coincide with the most representative designs among 

hip-like artificial discs. Subsequently additional problems guided the incremental 

transformation of the design to improve the performance of the ball-and-socket 

articulation (‘Prestige’ and ‘Maverick’ labels in upper part of Figure 7). In the mimetic 

principle (bottom part of Figure 7) two additional plates were attached to an 

intermediate elastomer to create the sandwich configuration that provides both mobility 

and load absorption. But the elastic layer impairs the stability of the implant, as 

demonstrated by repeated and unexpected failures in clinical testing of the Acroflex 

disc
27

 which was followed by general distrust on this configuration. As mentioned 

earlier the mimetic design has the elastomer and the plate joined in the same mould, a 

feature that disregards relative rotation. This constraint creates excessive load on the 

elastomer with the risk of structural failure of the device [76]. The hybrid model 

appeared in the mid-1990s (central part of Figure 7) joins the ball-and-socket and the 

elastomer elements in a single device, thus providing mobility and load absorption like 

the mimetic principle but in a different way, since the vertebral plates are not joined to 

the elastomer but articulated in a ball-and-socket joint. As a result the mimetic kind of 

failure of the elastomer is overcome by the hybrid design of the Bryan Disc.
28

 

 

- Insert Figure 8. 
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 The failures of the Acroflex were repeated as this device was tested in humans in three cohorts, in 

1988-1989, 1993-1994 and 1998-2000 [67]. They were unexpected “given that the device was extensively 

tested in the laboratory and had easily withstood the range of described normal in vivo loads on the … 

intervertebral disc” [76:248S]. This again (see footnote 18) stresses empirically the differences between 

laboratory and human clinical testing we assume in Section 2.1 variation-selection model.  
28

 The mimetic principle experienced a renaissance with 3 designs recently adopted for clinical use in 

Europe after 2008, and currently under analysis with experimental clinical tests for adoption in the US. 

[77]. This revival is due to the introduction of additives (polycarbonates) in the elastomers, a modification 

that seeks to improve the mechanical performance of elastomers and minimize the effect of the load 

constraints of the sandwich configuration (designs ‘M6’ and ‘Freedom’ in the lower-right corner of 

Figure 7). 
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The hybridization of the artificial disk entailed a number of incremental ameliorative 

efforts. Part 70 in Figure 6 indicates a membrane attached to vertebral plates whose 

function is preventing migration of plastic particles from the hip-like articulation. The 

latter was a key salient since the particles provoked allergic reactions and resulted in 

systematic failure of hip implants. The adoption of special plastic support (UHMWPE) 

addressed this particular problem and consolidated hip substitution into one of the most 

successful surgical procedures worldwide. At the same time UHMWPE is a rigid plastic 

incapable of providing significant load absorption [60]. To accommodate this operating 

principle the Bryan hybrid design needed a more elastic material. Polyurethane, one 

candidate, raised concerns about the biocompatibility of the particles which were 

expected to provoke negative response compared to UHMWPE [78]. The Bryan design 

was eventually further modified by the inclusion of an isolating membrane that avoids 

the deleterious effect of polyurethane (Figure 9). Clearly the extra design efforts entail a 

growth in the complexity of the device, a familiar characteristic of hybridization 

according to other studies such as for example the hybrid car [36]. 

 

- Insert Figure 9 around here. 

 

 

The Bryan disc hit the European market in 2001
29

 followed shortly afterwards by a 

number of hip-like discs. Sales data reported by Biondo and Lown [69] show that in 

                                                           
29

 Artificial discs are used both in lumbar and cervical surgery. Although the size of the artifacts depends 

on the spinal area the patented designs usually refer to the spinal zone, with no distinction between 

cervical and lumbar prosthesis. In general the development of disc prostheses depends strongly on the 
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2004 the Bryan disc dominated 2/3 of the cervical disc market (2500 surgeries), while 

1/3 was the share of the remaining 3 hip-like designs (1300)
30

. Figure 10 illustrates the 

sales volume of artificial discs worldwide between 2000 and 2004 [69]. It is estimated 

that so far as many as 35000 surgeries have been performed to implant the Bryan Disc, 

mostly in Europe. Although no data about production costs are available it is reasonable 

to expect that the Bryan hybrid device was no cheaper than hip-like disks. Indeed the 

preceding paragraphs suggest the complexity of the Bryan Disc whose design entails 

more components and assemblies compared to the “good old” technologies [79:2] based 

on the articulation concept of the hip prosthesis [62]. This resonates with the 

observation that surgeons are the ultimate decision makers and are strongly oriented by 

product quality. As Lieberman [54:610] points out, in the spinal implants market “price 

has become a secondary determinant of demand, only remotely involved because 

physicians, who function as the principle users, are not the typical final consumer”. 

 

- Insert Figure 10 around here. 

 

Let us sum up the technical configurations outlined this far. As the introductory section 

spells out hybridization is a design strategy aimed at making efficiently “available” all 

the operational principles that can be useful to confront the existing lack of comparative 

performance testing (as we have seen in Section 3) by bundling them together in a 

single artifact. As seen above, the hybrid Bryan device incorporates the known positive 

characteristics of the hip-like disc with the additional potential advantage of catering for 

                                                                                                                                                                          
capabilities of the surgeons involved. Bryan, for example, was mainly concerned with the cervical region. 

At the same time the technological principles of the Bryan disc are applicable both to the cervical and 

lumbar regions: in the patents the artifact is referred to as a “spinal disc endoprosthesis”, with no 

specifications of the anatomic region involved. 
30

 The Bryan disc was the second in a list of 9 lumbar/cervical artificial discs sold worldwide, only below 

the lumbar SB Charité, a hip-like design.  
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load absorption. Table 1 compares synthetically the advantages and the disadvantages of 

the three principles discussed so far. 

  

- Insert Table 1 around here. 

 

4.2 Hybridization through time 

This section illustrates the unfolding and co-existence of multiple trajectories in 

artificial disk technology. We implement connectivity analysis on patent citations data 

[16, 80, 81, 82, 83].
31

 These were collected by means of keyword search
32

 from the 

USPTO database for patents granted until 2008. This returned 201 items which were 

subsequently parsed to extract cross-patent citations. We added citations to patents of 

other kinds of medical products to study the technological antecedents of the selected 

products [16]. Our final database includes 1535 patents and 6130 citations. The 

algorithm “Network of the Evolution of the Top Paths” (proposed by Verspagen [81] 

and applied in [83] and [82]) is used to gather citation sequences among the most 

important patents on the artificial disc which form the top path (labeled with red color in 

Figures 12, 13 and 14). We consider important patents those that result in a product that 

is in use. The top path contains a higher proportion of those patented developments, 

leaving the other branches (labeled with yellow color) to be dead-ends where 

                                                           
31

 We use US patents for our artificial disc search as they are the only ones used in connectivity analysis 

so far. This geographical bias has to be acknowledged), since Europe played an important role in the 

history of the artificial disc. We tried to capture the influence of European developments in our history of 

the artificial disc. However, the large majority of US’ patent shares (160 of the 201) for artificial disc 

seem to belong to a seemingly ‘autonomous’ trajectory. These 160 patents belong to patent families 

associated to a US priority date or to a WIPO priority date applied first in North America.  Also, 112 of 

these 160 patents have European ‘offspring’ indicating that invention activity in the US has been 

influential in Europe while there is no reciprocity in this influence: of the original 201 patents only 41 

have an ex-US origin [84]. 
32

Key words searched in the title and the abstract of the patents: “disc prosthesis”, ‟ artificial disc” and 

“arthroplasty”. 
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technology did not advance [81,83]. Figure 11 offers a synthetic summary of the growth 

of the three operational principles in the network, and depicts the temporal evolution of 

the 53 patents that make up the “network of the evolution of the top paths” algorithm 

shown in Figures 12, 13 and 14. Details of the corroborated validity of connectivity 

analysis applied to artificial disc patents are provided in Barberá et al. [84]. 

 

- Insert Figure 11 around here. 

 

Looking at the citation network three patent groups stand out: hip-like (squares), 

mimetic (circles) or hybrid (triangles). We previously mentioned that the first phase of 

the evolution of the artificial disc in the US (1973-1987, that is, prior to market 

introduction of the hip-like SB Charité, in Europe) was based on a mimetic design 

principle, labeled with red circles in Figure 12, which were important for early 

laboratory feedback about the simulation of the surgical procedure to hip-like 

developers. As anticipated above negative trial outcomes eventually led to the 

abandonment of mimetic disc projects. In the meantime as early positive outcomes of 

the hip-like operational principle were being published in Europe, US-based companies 

intensified efforts towards hip-like devices such as the Maverick Disc or the Prestige 

Disc. This change of direction can be observed in Figure 14 where the trajectory of the 

US top path diverts from mimetic to hip-like operational principle (red square patents) 

that dominates the top path after 1998. 

Dead-end patents (yellow dots) in Figure 13 are included to illustrate the extent of trial-

and-error during the period 1987-1997. Among these we note mimetic designs (yellow 

circle patents), hip-like designs (yellow square patents) and some hybrid configurations 
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– the three yellow triangles enclosed by a blue dotted circle at the bottom of the figure. 

More specifically, patent No. US5674296 is the first associated to the Bryan disc project 

while US6001130 and US6156067 are continuations-in-part.
33

 Figure 14 shows that this 

exploration in the hybrid terrain does not continue in the top path and turns towards hip-

like patents after 1997.
34

 Hybrid designs continue to flourish in the 1997-2004 phase but 

not in the top path. The figure indicates also various hybrid patents around the top path 

(enclosed in blue dotted ellipses) belonging to three
35

 hybrid development projects (like 

in the Bryan patents, there were several continuations-in-part, so the 1997-2004 stage 

features more hybrid patents than hybrid projects). 

 

- Insert Figure 12, 13 and 14 around here. 

 

The analysis presented here illustrates the transition of inventive activity that led to the 

definition of the Bryan hybrid disk in the mid-1990s. This device emerged in a context 

dominated by the mimetic design between late 1980s and early 1990s and by hip-like 

design in the 1990s. It is worth stressing two important circumstances. It is important to 

clarify that this analysis is limited to inventive activity in the US since European 

developers traditionally favored devices based on the hip-like principle. Furthermore the 

present analysis focuses on the 1973-2004 period, indeed an intense one but certainly 

not the last chapter of the artificial disc technology – or several others for that matter. 

                                                           
33

 Continuations permit an applicant to refill a pending patent application. Continuations-in-part are 

special kind of continuations which includes a substantial portion or all of the parent application and adds 

matter not disclosed in that application, although the benefit of early priority is awarded only for the 

original disclosures contained in the new application [85]. 
34

 The position of the last two hybrid patents in Fig. 11 is due to truncation of the patent data in the last 

years [81] and do not necessarily mean a shift in the importance of hybrid designs. 
35

 One of these projects was finally approved for clinical use as a hip-like design. We include it in the 

hybrid operational principle because the patents associated to the project include, apart from the hip-like 

realization, other designs to include a load absorption effect. 
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The mandatory note of caution therefore is that the technological trajectory under 

analysis is still unfolding and turns and further twists are a possibility.
36

 To be sure over 

the last three years there has been a recent renaissance of mimetic designs that have 

been adopted in Europe and are under pre-approval trials in the US (see footnote 28 and 

lower-right corner of Figure 7). This circumstance is not reflected in our citations map, 

and it raises new thoughts about the adaptability of the hybrid discs: if the mimetic 

renaissance finally confirms the clinical superiority of this operational principle, it is 

reasonable to suppose that the hybrid disc is well-equipped to face the new situation, as 

its configuration presumably allows load absorption.  

 

Transition perspectives sometimes concede little strategic value to hybridization. 

Utterback [86:191], for example, states that “bridging a technological discontinuity by 

having one foot in the past and the other in the future may be a viable solution in short 

run, but the potential success of hybrid strategies is diluted from the outset compared to 

rivals with a single focus”. Therefore viewed from the perspective of mid-1990s state-

of-the-art among US specialists the “past” of artificial disk exploration consisted of a 

series of failed attempts within the mimetic logic while the “future” pointed at the hip-

like design, while nowadays the favor seems to have tipped again for the mimetic 

principle. The essentially adaptive character of hybridization restates its value under 

radical uncertainty. Such a perspective resonates with nuanced views of technological 

expectations that account for the strategic value of other real, common and ‘rational’ 

alternatives and that differ from the inevitability of embracing new technologies during 

technological transitions [87]. As Rosenberg [88] argued long ago, when the speed of 

technological change is high and some future major innovations are deemed plausible, 

                                                           
36

 We thank an anonymous referee for stimulating a thorough reflection on this point. 
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the diffusion rate of the present new technology is delayed since adopters would rather 

wait for future improvements rather than being locked-in within a design that may soon 

turn out to be obsolete or inferior. Accordingly, the case study of the artificial disc 

suggests that persistent and radical uncertainty on the nature of disease poses serious 

limitations to the stability of design standards given that any new discovery may 

undermine the attendant logic of therapy. In such circumstances hybridization is a sound 

strategic response and not just a conservative option whose potential success 

(paraphrasing Utterback [86:191]) “is diluted from the outset compared to rivals with a 

single focus”. This is reflected also in the historical excursus presented above and, in 

particular, the circumstances behind the adoption of the hybrid artificial design among 

US developers in the early 2000s (see triangles enclosed by two blue dotted circles in 

Figure 14, also represented by the labels US7022139, US7067959 in the mid-right part 

of Figure 7).  If indeed the recent renaissance of the mimetic disc driven by the arrival 

of new biomaterials (see footnote 28) holds sway and load absorption design turns out 

to be the ultimate “winner” in this ongoing battle , hybrid designs of the mid-2000s, 

which comprise components theoretically capable of absorbing load (labels 

US7022139, US7067959 in Figure 7), will likely be fitter to the new configuration 

compared to the contemporary hip-like artificial discs (labels ‘Prestige’ and ‘Maverick’ 

in Figure 7) with no absorption capacity. 

 

5. DISCUSSION AND CONCLUDING REMARKS 

This paper adds to the growing body of work on health technologies that received much 

attention among innovation scholars in recent times. The case studied here, the artificial 

disk, illustrates the extent to which design heuristics contribute to devising a remedy to 

a practical problem, back pain, in the absence of definitive knowledge on the nature of 
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the cause (Degenerative Disk Disease) and on the comparative performance of the 

devices designed to alleviate its painful effects. Our analysis shows that search within a 

novel design space under the penumbra of imperfect understanding led to the 

proliferation of competing standards. Far from being the mark of a settled issue the 

recently-emerged artificial hybrid disk is a satisficing [89] solution to minimize the 

impact of the apparition of new therapeutic goals that may, or may not, come to surface 

once the veil of ignorance – concerning the disease and the clinical performance of the 

devices – is lifted. Hybridization of medical device therefore is the visible face of an 

inter-temporal externality between state-of-the-art and knowledge that is not totally 

proven but whose future discovery can be presumed [90]. Consistent with Mokyr’s [11] 

claim that making available different operational principles mitigates the disruptive 

consequences of uncertainty, the prevailing rationale in disk surgery replacement has 

become: “If you do not know which operational principle is better, then choose all”. 

The present study argues that hybridization is an evolutionary strategy in the 

implementation of design solutions to ill-specified health problems. It is evolutionary in 

the sense that variety is generated in the face of uncertainty [91]. The prevailing body of 

practice is therefore understood as a dynamic learning process feeding on and bearing 

upon the broad knowledge bases that make up medical communities wherein operate 

scientists, practitioners, engineers as well as managers and policy makers [21]. Looking 

at this process through the lenses of history reveals that the long-term trajectory of 

medical innovation does not resemble a punctuated succession of alternative paradigms 

but rather an incremental inter-penetration of different problem-solving styles wherein 

emergent courses co-exist with, rather than abruptly replacing, old ones [92]. To 

reiterate, this trajectory emerges as purposeful response to absence of conclusive 
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indications on the nature of disease and consists in balancing “mutually coevolving yet 

not converging paths” [50: p. 26]. 

These issues carry broad relevance for the divide that exists in the problem spaces of 

medical science and practical knowledge. In the case at hand alleviating back pain 

entails, in principle, knowing the nature of the degenerative process in the spinal disk 

and devising a technique to reduce the physical discomfort that it causes. This unity of 

intents however subsides against practical reality. Medical know-what pursues general 

understanding of the neurochemical and physical properties of disk degeneration while 

clinical and design knowledge seek to develop useful artifacts and a set of stable 

routines. As patterns of specialization, research styles and professional goals deepen, 

‘learning what disease is’ and ‘learning how to tackle disease’ unfold along distinct 

problem-solving trajectories. The necessity of offering a clinical response to an ill-

understood disease induces forms of knowledge organization based on practical and 

identifiable problems rather than general chemical or biological principles. 

Dynamics of this kind, Nelson [7] argues, place medical knowledge in the vicinity of 

engineering science more than had hitherto been realized and suggests careful reflection 

about the terms in which scholarly and policy discourses are couched. The foregoing 

analysis elucidates on purportedly complementary and yet perpetually parted domains 

of descriptive and prescriptive knowledge, the former indicating things as they are the 

latter how they should be to attain a desired goal [27]. Descriptive knowledge is 

assessed in terms of correctness, prescriptive knowledge in terms of degrees of success 

or failure; but contrary to descriptive knowledge, prescriptive knowledge is open to 

deliberate adaptations to a prescribed end. By the same token, errors, unintended 

variations and unexpected consequences play a strong role in the progress of medicine. 

A key prerequisite to harness these lessons and overcome translational gaps, that is, 
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bottlenecks that impede effective feedbacks between scientific, clinical and 

technological knowledge is the existence of institutional channels for facilitating the 

transmission of feedbacks. A great deal of hope about broadening the horizons of 

medicine rests in the prospect that these epistemological terrains may be effectively 

bridged. 
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Figure 1. Typology of medical knowledge about implantable devices. 

 

 

 

 

 

 

Figure 2: On the left, the fused vertebrae in an arthrodesis. On the center, the 

degenerated disc is replaced by a prosthesis. Source: US3867728 
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Figure 3. On the left, a hip prosthesis. On the right, a disc prosthesis following the ‘ball-

and-socket’ principle of hip implants (Source: US6986792 and US5755796).  

-  

 

 

 

 

 

 

 

Figure 4. The diagram on the left shows an anatomic intervertebral disc. The diagram in 

the center shows a “mimetic design” based on the reproduction of the viscoelastic 

properties of the anatomical disc, using materials such as synthetic elastomers (Source:  

US6610094). 
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Figure 5. To the left, a classic elastomer/vertebral plates configuration of a mimetic 

patent related with the Acroflex project; to the right, a typical hip-like configuration 

(Source: US5071437).  

 

 

 

 

 

 

 

Figure 6. (Source: US7025787).  Element 99 function is to absorb load, as in mimetic 

operational principle patents. However, instead of being joined to small plates 20 and 

40, they move over them, as in hip-like patents. Element 70 is a membrane designed to 

avoid migration of particles from the movement of the articulation between 99 and 20-

40. 
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Figure 8. A radiography of a Fernstrom ball 3 years after surgery. The steel ball has 

become encrusted in the bones because of the high pressure exerted in the original one-

point contact between vertebrae and ball (source: [56]). 

 

 

 

 

 

 

Figure 9. The Bryan artificial disc. Only the metallic vertebral plates and the external 

membrane can be seen . 
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Figure 10. Sales evolution (in units sold) of artificial discs in 2000-2004. Source: own 

elaboration from data in [69]. 

 

 

 

 

 

 

 

 

Figure 11. Number of granted patent of mimetic, hip-like and hybrid patents in the 

Network of the Evolution of Top Paths. 
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Figure 12: The Network of the Evolution of Top Paths (NETP) 1973-1987 

 

 

 

 

 

 

 

 

 

 

Figure 13: The Network of the Evolution of Top Paths (NETP) 1973-1997 
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Figure 14: The Network of the Evolution of Top Paths (NETP) 1973-2004 
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Design 

elements 

Services Comparative 

advantages 

Comparative 

disadvantages 

Mimetic 

Sandwich 

configuration, 

with a 

constrained 

elstomer. 

Motion and a 

presumable 

amount of load 

absorption. 

A presumable 

amount of load 

absorption   

(Early 90’s) Negative 

experimental clinical 

results of the Acroflex 

disc, with systematic 

failure of the elastomer 

in the sandwich 

configuration.  

Hip-like 

Ball-and-socket 

articulation 

between rigid 

materials. 

Motion (Early 90’s): 

- Positive clinical 

results of the SB 

Charité and 

Frenchay Hospital 

discs.  

- The ball-and-

socket configuration 

avoids the 

constraints in the 

elastomer typical of 

mimetic designs. 

No Load Absorption 

Hybrid 

Ball-and-socket 

articulation 

between an 

elatomer and 2 

metallic plates.  

Motion and a 

presumable 

amount of load 

absorption. 

(Invented in mid 

90’s): - A 

presumable amount 

of load absorption   

- The ball-and-

socket configuration 

avoids the 

constraints in the 

elastomer typical of 

the sandwich 

configuration in 

mimetic designs. 

- 

Table 1: Summary of Artificial Disk Design 
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Figure 7. The evolution of the artificial disc. The red line marks the emergence of each operational principle in clinical use. Source: own elaboration from [67, 

56, 65, 69, 77] 


