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Transforming growth factor �-induced protein (TGFBIp) has been linked to

several corneal dystrophies as certain point mutations in the protein may give

rise to a progressive accumulation of insoluble protein material in the human

cornea. Little is known about the biological functions of this extracellular

protein, which is expressed in various tissues throughout the human body.

However, it has been found to interact with a number of extracellular matrix

macromolecules such as collagens and proteoglycans. Structural information

about TGFBIp might prove to be a valuable tool in the elucidation of its

function and its role in corneal dystrophies caused by mutations in the TGFBI

gene. A simple method for the purification of wild-type and mutant forms of

recombinant human TGFBIp from human cells under native conditions is

presented here. Moreover, the crystallization and preliminary X-ray analysis of

TGFBIp are reported.

1. Introduction

Transforming growth factor �-induced protein (TGFBIp) is a 75 kDa

683-amino-acid residue protein (SwissProt sequence database access

code Q15582) that is encoded by the TGFBI gene. TGFBIp is com-

posed of an N-terminal secretion-signal sequence (residues 1–23), an

N-terminal Cys-rich region (EMI) and four consecutive repeats that

show some sequence similarity to Drosophila fasciclin-1 (FAS1; Clout

& Hohenester, 2003). In addition, the ‘classic’ integrin-recognition

motif, Arg-Gly-Asp (RGD), is located close to the C-terminus of

TGFBIp (residues 642–644).

Size-exclusion chromatography and mass spectrometry show that

TGFBIp exists as a monomer in solution, with no post-translational

modifications, when purified from human corneas (Andersen et al.,

2004). Detailed structural information is not known for full-length

TGFBIp, but the three-dimensional structure of the Drosophila

fasciclin-1 FAS1 domain has been solved (Clout et al., 2003) and

revealed an overall globular shape containing seven �-strands and

five �-helices.

Two amino-acid residue stretches within FAS1 domains (H1 and

H2) are highly conserved in proteins from both eukaryotes and pro-

karyotes (Kawamoto et al., 1998). The sequence identity between the

FAS1 domains of TGFBIp and fasciclin-1 is approximately 20% and

accordingly it has been suggested that the overall fold might be

similar (Clout & Hohenester, 2003). Apart from TGFBIp, only three

other human proteins are known to contain FAS1 domains: periostin

(Horiuchi et al., 1999; Takeshita et al., 1993), stabilin-1 and stabilin-2

(Adachi & Tsujimoto, 2002; Politz et al., 2002; Tamura et al., 2003).

FAS1-containing proteins are known to be involved in cell adhesion

and several copies of these domains are often found within each

protein (Hortsch & Goodman, 1990), as is the case for TGFBIp.

Extracellular TGFBIp is found in a wide range of tissues, including

the cornea (Escribano et al., 1994; Rawe et al., 1997), skin (LeBaron et

al., 1995), bone (Kitahama et al., 2000), tendon (Ferguson et al., 2003;

Ohno et al., 2002), endometrium (Carson et al., 2002) and kidney (Lee

et al., 2003). The biological function of TGFBIp remains unclear, but

more than 30 mutations in the TGFBI gene have been shown to cause
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protein aggregates in an array of different corneal dystrophies

(Klintworth, 2003; Kannabiran & Klintworth, 2006). These autosomal

dominant diseases are characterized by a progressive abnormal

accumulation of protein in the corneal stroma, which eventually leads

to visual impairment (Klintworth, 2003). The resulting phenotypes

can be divided into four groups: granular corneal dystrophies

(GCDs), which are characterized by crystalloid amorphous aggre-

gates, lattice corneal dystrophy (LCD) type 1 and its variants, with

amyloid deposition in the cornea, a combination of GCD deposits

with amyloid deposition (GCD type II) and Thiel–Behnke corneal

dystrophy (TBCD), in which curly fibres are deposited in the

superficial cornea (Klintworth, 2003). Although TGFBIp has been

shown to co-localize with protein deposits in TGFBI-linked corneal

dystrophies (Streeten et al., 1999), the composition of the protein

aggregates remains to be characterized in detail.

In the present study, we developed a mammalian expression system

and a purification protocol to produce large amounts of wild-type

recombinant human TGFBIp, as well as of the point mutants R124H,

R124L and R124C that are known to cause GCD type II (Munier et

al., 1997), GCD type III (Mashima et al., 1999) and LCD type I

(Munier et al., 1997), respectively. In addition, the wild-type protein

was crystallized and preliminary X-ray diffraction data were collected

using synchrotron radiation.

2. Materials and methods

2.1. Materials

Unless otherwise stated, chemicals were purchased from Sigma–

Aldrich (St Louis, Missouri, USA). SDS–PAGE molecular-weight

standards were purchased from Bio-Rad Laboratories (Hercules,

California, USA). Chromatographic protein purifications were

performed using fast protein liquid chromatography (FPLC; GE

Healthcare) or an ÄKTAprime (GE Healthcare) system.

2.2. Cloning and expression of TGFBIp

A cDNA clone encoding human TGFBIp (Invitrogen, Carlsbad,

California, USA) was obtained from a human placenta cDNA library

and directionally cloned into the NotI and EcoRV restriction sites of

the pCMV-SPORT6 vector. High-level expression results from the

constitutive CMV (cytomegalovirus) promoter. In order to produce

the R124C, R124L and R124H mutants, three different nucleotide

mutations were introduced (see Table 1). Each mutation was per-

formed with two complementary mutation primers using the Quik-

Change XL site-directed mutagenesis kit from Stratagene (La Jolla,

California, USA) and DpnI from New England Biolabs (Ipswich,

Massachusetts, USA) according to the manufacturer’s instructions.

The TGFBIp clones were used without further modification to

express wild-type and mutant TGFBIp in the human embryonal

kidney fibroblast cell line HEK293. Cells were grown to 60–70%

confluency in 9 cm Petri dishes in Dulbecco’s modified Eagle’s

medium (DMEM) containing 10% bovine calf serum (BCS) for 24 h

prior to transfection. To facilitate efficient transfection, the medium

was supplemented with 25 mM chloroquin for 1 h before transfection

by the calcium phosphate precipitation method (Luthman & Mag-

nusson, 1983). The medium was changed 16 h after transfection and

after another 8 h the cells were transferred to serum-free medium.

The medium was harvested for protein purification from day 2 to day

4 after transfection.

2.3. Purification of wild-type and mutant TGFBIp

Cell-culture medium containing TGFBIp (900–1000 ml) was

successively dialyzed against two volumes of 12 l buffer A (20 mM

Tris–HCl pH 7.45) at 277 K and purified by affinity chromatography

using a heparin Sepharose column (5 ml HiTrap Heparin HP column,

GE Healthcare). The cell-culture medium was applied in batches of

approximately 500 ml and eluted using a linear gradient of buffer A

to buffer B (20 mM Tris–HCl pH 7.45 containing 1 M NaCl) at a flow

rate of 2 ml min�1. The protein elution was monitored at 280 nm and

2 ml fractions were collected. Selected fractions were analyzed by

reducing SDS–PAGE. Fractions containing TGFBIp were pooled and

dialyzed against 2� 2 l buffer A at 277 K. TGFBIp was purified from

the resulting dialysate by anion-exchange chromatography (1 ml

HiTrap Q HP or Mono Q, GE Healthcare) and eluted with a linear

gradient from buffer A to buffer B. Selected fractions were analyzed

by reducing SDS–PAGE and fractions containing TGFBIp were

pooled and stored at 253 K.

All chromatographic steps were performed at room temperature

(298 K) and all samples and buffers were filtered using 0.22 mm

filtration units prior to chromatography.

2.4. SDS–PAGE

SDS–PAGE was performed using 5–15% gradient gels or 10%

uniform gels (10 cm � 10 cm � 1.5 mm) using the glycine/2-amino-

2-methyl-1,3-propanediol/HCl system (Bury, 1981). Unless otherwise

stated, samples were diluted/dissolved in 50 mM Tris–HCl, 150 mM

NaCl pH 7.45. Protein was visualized using Coomassie Brilliant Blue.

2.5. Mass-spectrometric analysis

To determine the molecular weight of purified TGFBIp, the

protein was desalted and concentrated using custom-made micro-

columns packed with Poros R1 in GelLoader pipette tips. The resin

(1–3 mm in height) was equilibrated by flushing 10 ml 5% formic acid

through the column and the sample was subsequently loaded and

washed in the same buffer. The desalted sample was then eluted

directly onto the MALDI target using 20 g l�1 sinapic acid dissolved

in a solution containing 70% acetonitrile and 0.1% trifluoroacetic

acid (TFA) in water. The MALDI–TOF MS analysis was performed

on a Voyager-DE STR (Applied Biosystems, Foster City, California,

USA) controlled by Data Explorer software (v.3.4.0.0 and v.4.4;

Applied Biosystems). Operations were performed in linear and

positive polarity mode. The instrument was externally calibrated

prior to use. The spectrum was viewed in MoverZ (Genomic Solu-

tions, Holliston, Massachusetts, USA).

2.6. N-terminal amino-acid sequence analysis

Purified TGFBIp was mixed with 0.1% TFA and applied onto a

ProSorb membrane (Applied Biosystems) activated with methanol.

The membrane was then washed twice with 1 ml 0.1% TFA and
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Table 1
Mutations introduced in TGFBIp.

Nucleotide numbering is according to entry NM_000358.

Mutant Primer sequence†
Changes
introduced

R124C CTCAGCTGTACACGGACTGCACGGAGAAGCTGAGG C417 to T
R124H CTCAGCTGTACACGGACCACACGGAGAAGCTGAGG G418 to A
R124L CTCAGCTGTACACGGACCTCACGGAGAAGCTGAGG G418 to T

† Only the sequence of the forward primer is shown. The reverse mutation primer is
complementary to the forward primer. Changes introduced are shown in bold italics.



analyzed by automated Edman degradation in an Applied Biosys-

tems model 477A/120A protein-sequencing system.

2.7. Crystallization of TGFBIp

Frozen protein samples were slowly thawed on ice and then pooled

and concentrated to a final concentration of 3.9 mg ml�1 using a

Centricon YM-30 (Amicon, Houston, Texas, USA). The concentrated

protein was subjected to final purification by gel-filtration chroma-

tography on a Superdex 200 column (GE Healthcare) equilibrated

with buffer C (20 mM Tris, 50 mM NaCl pH 7.45). The sample purity

was assessed by 10% SDS–PAGE. Pure and homogeneous samples

were pooled and concentrated again with the same device to a final

concentration of 3.3 mg ml�1. A standard set of commercially avail-

able crystallization screens from Hampton Research (Aliso Viejo,

California, USA) were assayed using the sitting-drop (200 and 300 nl)

vapour-diffusion method at 277 and 293 K at the Automated

Crystallization Platform of the Barcelona Science Park–Molecular

Biology Institute of Barcelona employing a Tecan robot and a

Cartesian nanodrop dispenser robot and two-well MRC crystal-

lization plates (Wilden/Innovadyne). The assayed volume ratios of

protein solution to precipitant were 1:1 and 2:1.

3. Results and discussion

TGFBIp is involved in various inheritable corneal dystrophies, in

which point mutations in the protein cause impaired vision owing to

gradual accumulation of protein material in the cornea. By deter-

mining the three-dimensional structure of TGFBIp, it will be possible

to predict structural motifs and binding sites for protein–protein

interactions, which will provide insight into the general function of

TGFBIp in the extracellular matrix. Knowing the structure of wild-

type TGFBIp might also allow us to predict the structural changes

caused by mutations in TGFBIp, which could provide valuable insight

into aggregation mechanisms.

It is commonly known that proteins with a high propensity to

aggregate can be difficult to purify under native conditions. The

Arg124 mutants analyzed in this study have all been found to accu-

mulate in the corneas of patients (Korvatska et al., 2000), indicating

aggregation of the proteins in vivo.

However, the conditions used in our purification did not appear to

cause the mutant protein to aggregate. Future experiments could

therefore involve probing different cornea-specific factors, such as

collagens, proteoglycans and glucosaminoglycans, for their ability to

induce TGFBIp aggregation and fibrillate in vitro using thioflavin T

fluorescence assays (Naiki et al., 1989).

3.1. Expression and purification of recombinant TGFBIp

Recombinant TGFBIp was expressed in HEK293 cells following

transfection with the pCMV-SPORT6 vector containing full-length

TGFBIp cDNA. Since TGFBIp is an extracellular protein, it accu-

mulates in the cell medium, which was collected over a 3 d period and

stored at 253 K until purification was initiated.

Heparin-affinity chromatography was used as a first step in the

purification of recombinant TGFBIp (Ferguson et al., 2003). Dialyzed

cell medium was applied onto a heparin Sepharose column and

proteins were separated using a 0–1 M gradient of NaCl. SDS–PAGE

analysis of the resulting fractions showed that TGFBIp eluted in

fractions 23–27, corresponding to a salt concentration of about

250 mM (Fig. 1a). Fractions containing TGFBIp were pooled and

dialyzed for further purification. In the second purification step,

proteins were separated using ion-exchange chromatography. The

TGFBIp pool was applied onto the column, separated by a salt

gradient as described above and analyzed by SDS–PAGE (Fig. 1b).

TGFBIp eluted as a broad peak between approximately 200 and

250 mM salt (fractions 22–26). These fractions were pooled and

stored at 253 K. N-terminal amino-acid sequencing revealed the

expected N-terminus at residue 24 (Gly-Pro-Ala-Lys . . . ) and the

molecular weight was determined to be 69 066 Da by mass spectro-

metry. These results indicate that purified TGFBIp is truncated

between residues 655 and 656, which corresponds to a previously

reported truncation in human tissue (Andersen et al., 2004). SDS–

PAGE analysis of the final Arg124 mutant purification pools is shown

in Fig. 2.

The average yield from the purifications was approximately 1.2 mg

of pure TGFBIp per litre of expression medium. For crystallization

experiments, wild-type recombinant TGFBIp was concentrated to

about 3.9 mg ml�1 and homogeneity of the protein was ensured by

gel filtration. The final protein pool was concentrated to 3.3 mg ml�1.
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Figure 1
Purification of rhTGFBIp using heparin-affinity chromatography. (a) Reducing SDS–PAGE of selected fractions separated by heparin-affinity chromatography. TGFBIp
migrates as a clear band at approximately 65 kDa. Fractions 23–27 were pooled for further purification. (b) Reducing SDS–PAGE of selected fractions from anion-exchange
chromatography. TGFBIp eluted around fraction No. 23 with a purity of approximately 95% (by visual estimation). Fractions 22–27 were pooled and used for crystallization.
Fraction numbers are indicated at the top of the gels and molecular weights (in kDa) are indicated at the side.



3.2. Crystallization and preliminary X-ray diffraction data analysis.

Hexagonal crystals with maximal dimensions of 10 � 10 � 60 mm

that were likely to belong to space group P61 (or enantiomorph) were

obtained. These crystals resulted from drops containing 0.2 ml protein

solution (3.3 mg ml�1 in buffer C) and 0.1 ml precipitating agent

(0.1 M sodium acetate, 4% PEG 4000 pH 4.6) after 5 d at 293 K

(Fig. 3a) and are expected to contain two molecules in the asymmetric

unit (VM = 2.5 Å3 Da�1; 51% solvent content; Matthews, 1968).

Assessment of protein identity was performed by tryptic digestion

and subsequent mass spectrometry of carefully washed and dissolved

crystals (data not shown). Prior to diffraction analysis, a cryocooling

protocol was established in order to protect crystals from radiation

damage during data collection. This protocol consisted of initial

stabilization in harvesting solution (4.8% PEG 4000, 0.1 M sodium

acetate pH 4.6) followed by soaking in cryoprotective solution (4.8%

PEG 4000, 0.1 M sodium acetate, 20% glycerol pH 4.6) just prior to

flash-vitrification of the crystals in liquid nitrogen. Diffraction data

(see Fig. 3b) were collected at 100 K from a single crystal using a

ADSC Q315R CCD detector on beamline ID29 of the European

Synchrotron Radiation Facility (Grenoble, France). Data were pro-

cessed to 3.25 Å resolution and scaled with XDS (Kabsch, 2001) and

SCALA (Evans, 1993) from the CCP4 program suite (Collaborative

Computational Project, Number 4, 1994; see Table 2 for statistics of

data collection and processing). Refinement of crystallization con-

ditions to obtain larger and better diffracting crystals is currently

under way.

4. Conclusions

In recent years there has been increasing interest in the field of

protein aggregation and fibrillation. This is a consequence of the

recently recognized involvement of protein fibrils in several, mainly

neurodegenerative, diseases such as Alzheimer’s disease, Hunting-

ton’s disease and Parkinson’s disease (Rochet, 2007). The main goal

of these studies is to gain insight into the mechanisms of fibrillation

and subsequently to produce therapeutic agents that are capable of

dissolving the aggregates. However, much remains to be learned

about the mechanisms that lead to fibrillation.

In the present study, we have successfully expressed and purified

recombinant human wild-type TGFBIp as well as three naturally

occurring TGFBIp mutants (R124L, R124C and R124H). Purification

strategies for recombinant TGFBIp have previously been reported

(Hanssen et al., 2003; Morand et al., 2003; Ohno et al., 1999; Skonier et

al., 1994; Yuan et al., 2004), but this is the first report of milligram-

level expression and purification of untagged recombinant human

TGFBIp expressed in human cells under nondenaturing conditions.

The simple two-step purification procedure resulted in very high

purity, enabling crystallization of TGFBIp. TGFBIp showed a high

propensity to form crystals and needle-shaped crystals were observed
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Figure 2
SDS–PAGE of purified TGFBIp mutants. The R124L, R124H and R124C mutants
were purified as for wild-type TGFBIp. Final pools were separated by SDS–PAGE
and visualized using Coomassie Brilliant Blue. molecular weights (in kDa) are
indicated on the right. The purity was estimated to be greater than 90%.

Figure 3
TGFBIp crystals and preliminary diffraction. (a) Hexagonal P6 crystals obtained
using 0.1 M sodium acetate, 4% PEG 4000 pH 4.6 as precipitating agent solution.
Diffraction data were collected from the encircled crystal. (b) Diffraction pattern
obtained on beamline ID29 at the ESRF synchrotron (Grenoble, France).



in the nano-drop screening procedure after only 5 d at 293 K. These

crystals were found to diffract to 3.25 Å resolution.

We would like to thank Anne Gylling for expert technical assis-

tance. We also thank Professor Peter Højrup for performing mass-

spectrometric analyses. This work was supported by National Eye

Institute Grant R01 EY 12712, the Danish National Research

Foundation, the Danish Natural Science Research Council, the

Danish Association for Prevention of Eye Diseases and Blindness,

the Synoptik Foundation, Aarhus University Research Foundation

and the Danish Medical Research Council. Further support was

provided by BIO2006-02668, PSE-010000-2007-1 and the CONSO-

LIDER-INGENIO 2010 Project ‘La Factorı́a de Cristalización’

(CSD2006-00015) from Spanish public agencies, FP6 Strep Project

LSHG-2006-018830 ‘CAMP’ and FP7 Collaborative Project 223101

‘AntiPathoGN’ from the European Union and 2005SGR00280 from

the National Catalan Government.

References

Adachi, H. & Tsujimoto, M. (2002). J. Biol. Chem. 277, 34264–34270.
Andersen, R. B., Karring, H., Moller-Pedersen, T., Valnickova, Z., Thogersen,

I. B., Hedegaard, C. J., Kristensen, T., Klintworth, G. K. & Enghild, J. J.
(2004). Biochemistry, 43, 16374–16384.

Bury, A. F. (1981). J. Chromatogr. A, 213, 491–500.
Carson, D. D., Lagow, E., Thathiah, A., Al-Shami, R., Farach-Carson, M. C.,

Vernon, M., Yuan, L., Fritz, M. A. & Lessey, B. (2002). Mol. Hum. Reprod. 8,
871–879.

Clout, N. J. & Hohenester, E. (2003). Mol. Vis. 9, 440–448.
Clout, N. J., Tisi, D. & Hohenester, E. (2003). Structure, 11, 197–203.
Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50,

760–763.
Escribano, J., Hernando, N., Ghosh, S., Crabb, J. & Coca-Prados, M. (1994). J.

Cell. Physiol. 160, 511–521.

Evans, P. (1993). Proceedings of the CCP4 Study Weekend. Data Collection and
Processing, edited by L. Sawyer, N. Isaacs & S. Bailey, pp. 114–122.
Warrington: Daresbury Laboratory.

Evans, P. (2006). Acta Cryst. D62, 72–82.
Ferguson, J. W., Thoma, B. S., Mikesh, M. F., Kramer, R. H., Bennett, K. L.,

Purchio, A., Bellard, B. J. & LeBaron, R. G. (2003). Cell Tissue Res. 313,
93–105.

Hanssen, E., Reinboth, B. & Gibson, M. A. (2003). J. Biol. Chem. 278, 24334–
24341.

Horiuchi, K., Amizuka, N., Takeshita, S., Takamatsu, H., Katsuura, M., Ozawa,
H., Toyama, Y., Bonewald, L. F. & Kudo, A. (1999). J. Bone Miner. Res. 14,
1239–1249.

Hortsch, M. & Goodman, C. S. (1990). J. Biol. Chem. 265, 15104–15109.
Kabsch, W. (2001). International Tables for Crystallography, Vol. F, edited by

M. G. Rossmann & E. Arnold, pp. 730–734. Dordrecht: Kluwer Academic
Publishers.

Kannabiran, C. & Klintworth, G. K. (2006). Hum. Mutat. 27, 615–625.
Kawamoto, T., Noshiro, M., Shen, M., Nakamasu, K., Hashimoto, K.,

Kawashima-Ohya, Y., Gotoh, O. & Kato, Y. (1998). Biochim. Biophys.
Acta, 1395, 288–292.

Kitahama, S., Gibson, M. A., Hatzinikolas, G., Hay, S., Kuliwaba, J. L.,
Evdokiou, A., Atkins, G. J. & Findlay, D. M. (2000). Bone, 27, 61–67.

Klintworth, G. K. (2003). Front Biosci. 8, d687–d713.
Korvatska, E., Henry, H., Mashima, Y., Yamada, M., Bachmann, C., Munier,

F. L. & Schorderet, D. F. (2000). J. Biol. Chem. 275, 11465–11469.
LeBaron, R. G., Bezverkov, K. I., Zimber, M. P., Pavelec, R., Skonier, J. &

Purchio, A. F. (1995). J. Invest. Dermatol. 104, 844–849.
Lee, S. H., Bae, J. S., Park, S. H., Lee, B. H., Park, R. W., Choi, J. Y., Park, J. Y.,

Ha, S. W., Kim, Y. L., Kwon, T. H. & Kim, I. S. (2003). Kidney Int. 64, 1012–
1021.

Luthman, H. & Magnusson, G. (1983). Nucleic Acids Res. 11, 1295–1308.
Mashima, Y., Nakamura, Y., Noda, K., Konishi, M., Yamada, M., Kudoh, J. &

Shimizu, N. (1999). Arch. Ophthalmol. 117, 90–93.
Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497.
Morand, S., Buchillier, V., Maurer, F., Bonny, C., Arsenijevic, Y., Munier, F. L.

& Schorderet, D. F. (2003). Invest. Ophthalmol. Vis. Sci. 44, 2973–2979.
Munier, F. L., Korvatska, E., Djemai, A., Le Paslier, D., Zografos, L., Pescia, G.

& Schorderet, D. F. (1997). Nature Genet. 15, 247–251.
Naiki, H., Higuchi, K., Hosokawa, M. & Takeda, T. (1989). Anal. Biochem.

177, 244–249.
Ohno, S., Doi, T., Fujimoto, K., Ijuin, C., Tanaka, N., Tanimoto, K., Honda, K.,

Nakahara, M., Kato, Y. & Tanne, K. (2002). J. Dent. Res. 81, 822–825.
Ohno, S., Noshiro, M., Makihira, S., Kawamoto, T., Shen, M., Yan, W.,

Kawashima-Ohya, Y., Fujimoto, K., Tanne, K. & Kato, Y. (1999). Biochim.
Biophys. Acta, 1451, 196–205.

Politz, O., Gratchev, A., McCourt, P. A., Schledzewski, K., Guillot, P.,
Johansson, S., Svineng, G., Franke, P., Kannicht, C., Kzhyshkowska, J.,
Longati, P., Velten, F. W., Johansson, S. & Goerdt, S. (2002). Biochem. J. 362,
155–164.

Rawe, I. M., Zhan, Q., Burrows, R., Bennett, K. & Cintron, C. (1997). Invest.
Ophthalmol. Vis. Sci. 38, 893–900.

Rochet, J. C. (2007). Expert Rev. Mol. Med. 9, 1–34.
Skonier, J., Bennett, K., Rothwell, V., Kosowski, S., Plowman, G., Wallace, P.,

Edelhoff, S., Disteche, C., Neubauer, M., Marquardt, H., Rodgers, J. &
Purchio, A. F. (1994). DNA Cell Biol. 13, 571–584.

Streeten, B. W., Qi, Y., Klintworth, G. K., Eagle, R. C. Jr, Strauss, J. A. &
Bennett, K. (1999). Arch. Ophthalmol. 117, 67–75.

Takeshita, S., Kikuno, R., Tezuka, K. & Amann, E. (1993). Biochem. J. 294,
271–278.

Tamura, Y., Adachi, H., Osuga, J., Ohashi, K., Yahagi, N., Sekiya, M., Okazaki,
H., Tomita, S., Iizuka, Y., Shimano, H., Nagai, R., Kimura, S., Tsujimoto, M.
& Ishibashi, S. (2003). J. Biol. Chem. 278, 12613–12617.

Weiss, M. S. (2001). J. Appl. Cryst. 34, 130–135.
Yuan, C., Reuland, J. M., Lee, L. & Huang, A. J. (2004). Protein Expr. Purif. 35,

39–45.

crystallization communications

Acta Cryst. (2009). F65, 299–303 Runager et al. � TGFBIp 303

Table 2
Preliminary crystallographic statistics of data collection and processing.

Values in parentheses are for the outermost resolution shell.

Space group P61 or P65

Unit-cell parameters (Å) a = b = 114.8, c = 181.1
Wavelength (Å) 0.9762
No. of measurements/unique reflections 261330/19822
Resolution range (Å) 49.69–3.25 (3.42–3.25)
Completeness (%) 99.9 (100.0)
Rmerge† 0.114 (0.405)
Rr.i.m.† 0.122 (0.432)
Rp.i.m.† 0.042 (0.148)
Average intensity over standard deviation {h[hIi/�(hIi)]i} 18.1 (5.8)
Average multiplicity 8.3 (8.3)

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ, Rr.i.m. =

P
hkl ½N=ðN � 1Þ�1=2

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ and Rp.i.m. =

P
hkl ½1=ðN � 1Þ�1=2 P

i jIiðhklÞ �
hIðhklÞij=

P
hkl

P
i IiðhklÞ, where Ii(hkl) is the ith intensity measurement, N is the

number of observations of reflection hkl, including symmetry-related reflections, and
hI(hkl)i is its average intensity. Rr.i.m. (or Rmeas) and Rp.i.m. are improved multiplicity-
weighted indicators of the quality of the data, the redundancy-independent merging R
factor and the precision-indicating merging R factor, the latter computed after averaging
multiple measurements (Weiss, 2001; Evans, 2006).
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