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Maŕıa Dolores del Castillo Sobrino
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Resumen

La electroencefalograf́ıa, o registro de potenciales eléctricos generados por el cerebro me-

diante electrodos superficiales colocados sobre el cuero cabelludo, es una técnica ampli-

amente utilizada a nivel cĺınico, siendo tradicionalmente útil para un primer diagnóstico

en alteraciones en la corteza cerebral, trastornos del sueño o para la búsqueda de focos

epilépticos en pacientes con este tipo de crisis. En las últimas décadas, la incursión de

las tecnoloǵıas de la información y comunicación en los campos cĺınicos y, en este caso,

de estudios electrofisiológicos, han contribuido a que este tipo de herramientas hayan sido

propuestas para un gran número de aplicaciones, entre las que destacan los estudios de

búsqueda de correlatos neuronales de la actividad motora en los seres humanos y las in-

terfaces cerebro-computador que proporcionan una ĺınea directa de interacción entre la

actividad cerebral y sistemas automatizados. Las propiedades óptimas en cuanto a res-

olución temporal de la señal de electroencefalograf́ıa hacen que esta técnica permita cono-

cer, sin prácticamente retraso en el tiempo, las caracteŕısticas de los procesos eléctricos

de poblaciones de neuronas en la corteza motora. Estos procesos pueden desencadenarse

como consecuencia de la realización de una acción voluntaria o ser provocados por el com-

portamiento patológico del cerebro, causando dificultades en el control motor. De este

modo, se abre la puerta al desarrollo de nuevas técnicas que caracterizan los procesos

corticales patológicos y sanos asociados con el procesamiento motor, como puede ser la

ejecución, visualización o imaginación de un movimiento voluntario, la realización de tar-

eas funcionales por parte de pacientes con alteraciones cerebrales causadas por una lesión,

o la manifestación de movimientos involuntarios que alteran la capacidad funcional del

paciente. En todos estos casos, la señal de electroencefalograf́ıa puede presentar patrones,

observables en las variaciones de las actividades oscilatorias o de baja frecuencia de cier-

tas componentes de la señal, que permiten conocer información relevante acerca de los

procesos corticales que desencadenan el movimiento.

Este trabajo de tesis presenta un conjunto de estudios en los que se aplican técnicas

de procesamiento de la señal y de mineŕıa de datos en sistemas en tiempo real para el reg-

istro, caracterización y condicionamiento de la actividad de la corteza motora en sujetos
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sanos y en pacientes con desórdenes neurológicos que afectan a la capacidad motora. En

concreto, la presente tesis incluye estudios con pacientes de dos de las patoloǵıas de origen

neurológico más extendidas: pacientes con temblor esencial y pacientes que han sufrido

un accidente cerebrovascular. Los mecanismos neuronales de acción y tecnoloǵıas para el

tratamiento de ambas patoloǵıas son en la actualidad ampliamente investigados por nu-

merosos grupos en todo el mundo. A lo largo de los caṕıtulos que conforman este trabajo

de tesis se presentan resultados sobre la actividad cortical normal relacionada con la plani-

ficación y ejecución de acciones motoras con el miembro superior, y ésta se contrapone a la

actividad patológica que los pacientes presentan y que está directamente relacionada con

la incapacidad motora que se puede observar y cuantificar por medio de técnicas de esti-

mación de la actividad muscular y/o de movimiento. En los caṕıtulos iniciales se presenta

una revisión de los conceptos básicos del papel de la corteza cerebral en el control motor

y de cómo la actividad electroencefalográfica permite su análisis y su condicionamiento,

se propone un estudio de interacción cortico-muscular a la frecuencia del temblor en pa-

cientes con temblor esencial con el objetivo de conocer los efectos de un fármaco en estos

pacientes y, por último, se presenta un estudio basado en algoritmos evolutivos para la

identificación de patrones corticales asociados con la planificación de tareas motoras real-

izadas con un mismo brazo. En la segunda parte del trabajo se presentan dos propuestas

de interfaces cerebro-computador para ser utilizadas en entornos de rehabilitación en pa-

cientes con temblor esencial o con un ictus. En la primera propuesta se plantea el uso

de un sistema de electroencefalograf́ıa para anticipación de movimientos voluntarios como

parte integrada de una plataforma multimodal de estimación y supresión del temblor. En

la segunda propuesta se plantea un paradigma de condicionamiento basado en la identi-

ficación de la intención motora con precisión temporal para pacientes con ictus, y éste es

evaluado en un grupo de pacientes durante un intervalo de un mes a lo largo del cual se

realizan hasta ocho intervenciones.

De este modo, el objetivo general de esta tesis es proponer soluciones tecnológicas

que permitan profundizar en el conocimiento de los mecanismos neuronales que permiten

la generación de la acción motora voluntaria, la caracterización de la actividad corti-

cal patológica en pacientes con desórdenes motores causados por afecciones nerviosas, la

búsqueda de técnicas óptimas para la estimación de la planificación e intencionalidad mo-

tora y la propuesta de nuevas formas de rehabilitación de pacientes con las patoloǵıas

previamente indicadas. Se espera que los resultados aqúı presentados sirvan de base para

el posterior desarrollo de plataformas cercanas al ámbito cĺınico y que supongan un avance

en el diagnóstico, pronóstico y tratamiento de patoloǵıas del sistema nervioso central que

conllevan alteraciones en el control motor.

2



Abstract

The electroencephalography consists in the recording of electric potentials generated in

the brain acquired by means of surface electrodes distributed on the scalp. This tech-

nique is widely used in the clinical field, and it is of relevance for the first diagnosis of

damages in the brain cortex, the study of sleep disorders or the localization of seizure

foci in patients with epilepsy. During the last decades, the use of the information and

communication technologies in the clinical field, and in this case in electrophysiological

studies, has contributed to broaden the field of applications of the electroencephalographic

systems. Among these, studies on the neural correlates of the motor activity in human

beings and the development of brain-computer interfaces (providing an interaction line be-

tween the brain activity and automatic systems) stand out. Due to the optimal properties

in terms of temporal resolution of the electroencephalographic signal, it is now possible

to study, with almost no temporal delay, the characteristics of the electrical processes

produced by neuronal populations in the motor cortex. These processes may appear as

a consequence of the execution of a certain voluntary action, or may be caused by the

pathological function of the brain, leading to an affected motor function. As a result of

these advances in electroencephalographic systems new techniques are developed, study-

ing the movement-related healthy and pathological cortical processes during the execution,

visualization or imagination of a voluntary movement, the performance of functional tasks

by patients suffering brain damages due to a certain lesion, or the presence of involuntary

movements, such as tremors. In all these cases the electroencephalographic signal presents

certain patterns, observed in the variations of the oscillatory or low-frequency components

of the signal, that may allow the extraction of relevant information regarding the cortical

processes giving rise to the studied movement.

This thesis presents a set of studies applying signal processing and data mining tech-

niques in real-time working systems to register, characterize and condition the movement-

related cortical activity of healthy subjects and of patients with neurological disorders

affecting the motor function. Patients with two of the most widespread neurological af-

fections impairing the motor function are considered here: patients with essential tremor
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and patients who have suffered a cerebro-vascular accident. The neurophysiological action

mechanisms and treatment technologies for both pathologies are currently under extensive

research by a number of groups around the world. The different chapters in this thesis

present results regarding the normal cortical activity associated with the planning and

execution of motor actions with the upper-limb, and the pathological activity related to

the patients’ motor dysfunction (measurable with muscle electrodes or movement sensors).

The initial chapters of the book present i) a revision of the basic concepts regarding the

role of the cerebral cortex in the motor control and the way in which the electroencephalo-

graphic activity allows its analysis and conditioning, ii) a study on the cortico-muscular

interaction at the tremor frequency in patients with essential tremor under the effects of

a drug reducing their tremor, and finally iii) a study based on evolutionary algorithms

that aims to identify cortical patterns related to the planning of a number of motor tasks

performed with a single arm. In the second half of the thesis book, two brain-computer

interface systems to be used in rehabilitation scenarios with essential tremor patients and

with patients with a stroke are proposed. In the first system, the electroencephalographic

activity is used to anticipate voluntary movement actions, and this information is inte-

grated in a multimodal platform estimating and suppressing the pathological tremors. In

the second case, a conditioning paradigm for stroke patients based on the identification of

the motor intention with temporal precision is presented and tested with a cohort of four

patients along a month during which the patients undergo eight intervention sessions.

To summarize, the general objective of this thesis is to propose technological solutions

that lead to i) a better understanding about the neuronal mechanisms that mediate vol-

untary motor actions, ii) the characterization of the cerebral cortical activity in patients

with neurological affections, iii) the search of optimal techniques to estimate the motor

planning and intention, and iv) the proposal of new rehabilitation strategies in patients

with the aforementioned pathologies. It is expected that the results presented become

the basis for future developments of technological platforms that can be integrated in the

clinical practice and allow an improved diagnosis, prognosis and treatment of pathologies

of the central nervous system.
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Chapter 1
Introduction

Exploring the nervous system implies studying the essence of human beings. It entails

understanding the mechanisms through which two people perceive in a different way the

same song [Ramachandran et al., 2001], how a child’s personality is conditioned by the

mechanisms of language acquisition [Pinker and Jackendoff, 2005], or how is it possible to

achieve, by means of intensive practise, that a tennis forehand results in a winner point

by slightly touching the side line of the opponent’s field [Kandel et al., 2000].

Clocks tick, skyscrapers and bridges vibrate... and neurons oscillate [Buzsáki, 2006],

and with their oscillation they communicate with other neurons, giving rise to highly com-

plex associations that result into all kinds of mental processes, from which we consciously

recognize a small fraction [Dijksterhuis and Nordgren, 2006].

Discovering the correlates between electrical processes observed in the brain and ob-

servable or measurable human acts leads to understanding the neuronal principles that

rule human behaviour and to further describing the neurophysiological mechanisms of

neurological disorders. Nowadays there exist different windows on the brain, covering

many and complementary spatial regions and time intervals. The electroencephalogram

provides a window on the mind, albeit one that is often clouded by technical and other

limitations [Nunez and Srinivasan, 2006]. Since Hans Berger placed in 1924 the first scalp

electrodes to observe alpha rhythms [Berger, 1929] up to now, the number of possibili-

ties that electroencephalographic systems provide has grown exponentially. Indeed, the

electroencephalography is now an essential tool in any neurology department and new po-

tential applications are expected to be a reality in the near future, allowing an improved

analysis and treatment of certain neurological pathologies.

The analysis of the nervous system and the description of how it works may be carried

out from, a priori, independent research fields such as medicine, informatics, robotics,

physiotherapy, chemistry, etcetera. This thesis aims at being a small contribution in the

neuroscience field from the biomedical engineering perspective. To that end, a group of four

independent studies using electroencephalographic systems are proposed in the framework
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of the analysis and treatment of neurological diseases causing motor disabilities. The global

objectives of the entire work are to further understand the cortical mechanisms of voluntary

movement planning and execution, how they may be affected by the pathological brain

structures of patients with neurological diseases (specifically patients with essential tremor

and patients who have suffered a stroke) and, eventually, how functional recovery may be

achieved either with assistive technologies taking advantage of the online characterization

of the motor cortex, or using conditioning paradigms of the cortical activity that elicit

plastic changes resulting in an improvement of the motor function. In order to meet

these goals, advanced signal processing techniques and data mining algorithms are used

to characterize the cortical changes of subjects performing movement actions, and the

observed results are used to characterize the action mechanisms and evolution of the two

studied pathologies. Additionally, and of special relevance in this thesis, real-time systems

characterizing the cortical activity related to motor-planning online are programmed and

used to implement brain-computer interfaces that allow the patients to use the brain

activity to control external neuroprosthetic devices.

6



1.1 Purpose

1.1 Purpose

The past decades have witnessed the achievement of important advances in the electro-

physiological study of the nervous system, both in terms of advances in the technology

used to acquire neurophysiological information and in terms of new algorithms devel-

oped to process this information. These advances have allowed the acquisition, storage,

characterization and even the conditioning of the nervous system activity at a local level

(measuring neurons spike trains) or at a global level (considering the activity of popula-

tions of neural networks), and focusing on the central nervous system (brain and spinal

cord) or the peripheral nervous system (characterising the activity of motor neurons, re-

flexes etc.). All these achievements provide new opportunities to analyse the function and

the structure of the nervous system associated with the execution of daily-living activities

by the human beings.

Focusing on the applications using electroencephalographic (EEG) systems to analyse

and treat neurological diseases affecting the motor function, a wide variety of studies

have been published during the last two decades. These studies can be divided in two

generic research lines: neurophysiological studies characterising the motor cortex processes

associated with neurological conditions and treatments, and experiments aimed to validate

rehabilitation technologies for the motor function. In the first case, the goal is to relate

the neurological pathologies and their evolution with altered cortical activation patterns

in the patients, so that it becomes possible to find precise descriptions of the neurological

mechanisms that lead to affected motor control. Examples among the large amount of

studies in this field are the experiments analysing the cortico-muscular interaction at the

tremor frequency in patients suffering from tremor-related pathologies (see for example

[Hellwig et al., 2001; Timmermann et al., 2002]), or the experiments characterizing the

altered cortical activation patterns in patients with brain damages to provide ways of

predicting the degree of recovery (see [Burghaus et al., 2007]).

The second group of EEG-based applications for patients with motor disorders are

those in which the main goal is to provide new means of achieving functional rehabilitation

of the patients. In this case the main objective is to develop brain-computer interfaces

(BCIs), i.e. devices using the electrical activity acquired from specific scalp regions to

provide a feedback (typically visual or proprioceptive) to the patient. This group of EEG-

based applications may in turn be further divided into BCIs for motor compensation and

BCIs for motor recovery. In the first case, BCI systems extract information from the

cortical activity and convert it into control signals used to operate external devices such
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as robotic or prosthetic arms, wheelchairs or spellers. An illustrative example in this field

may be taken from BCI technologies providing a communication channel for patients with

complete locked-in syndrome, which constitutes a significant gain in the possibilities of

these patients to interact with the environment [Hinterberger et al., 2003; Birbaumer,

2006]. On the other hand, BCI systems aimed to recover the lost motor capacity are

mainly focused on finding ways to condition the neural activity of specific cortical regions,

resulting in an improvement of the patient’s motor function. In this line, the main area

of research at present is oriented towards new interventions for patients suffering from a

spinal cord injury or with a stroke [Silvoni et al., 2011; Ramos-Murguialday et al., 2013].

The purpose of this thesis is to evaluate the potential uses of EEG-based systems for

the analysis and treatment of neurological diseases affecting the motor capacity. To that

end, four studies associated with the aforementioned research lines with EEG systems

(neurophysiological studies of the normal and pathological motor function and studies

of BCI technology either assisting or recovering the lost motor capacity) are presented

and validated with control subjects and patients. The critical validation of the poten-

tial applications of this type of systems is built upon the obtained results and reached

conclusions.

1.2 Research lines and projects giving rise to this thesis

Currently, one of the most active research areas with EEG systems is the development

of applications for patients with neurological disorders affecting the motor function. In

this regard, EEG systems provide a window on the cortical electrical activity with high

temporal precision, which is a critical factor when trying to study and model the nervous

system. In addition, EEG systems are widely used in neurophysiological fields due to their

advantages as compared to other alternatives: EEG systems are cost-effective practical

systems for clinical environments that do not require ample rooms or restrictive conditions

in terms of vulnerability against electrically noisy environments. All these factors have

made these systems an attractive solution to carry out experimental procedures studying

the neurophysiological characteristics of movement disorders and developing neuroreha-

bilitation technologies, which has in turn received an important economical support from

funding institutions in these research lines, both in the national and European domains.

This thesis is the result of studies carried out in the framework of some of these funded

projects.

The first experiments performed for this thesis were carried out in the framework of the

TREMOR European project (FP7-ICT-2007-224051, An ambulatory BCI-driven tremor

suppression system based on functional electrical stimulation). This project proposed for

8
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the first time (to the author’s knowledge) the use of a multimodal brain-neural-computer

interface integrating information regarding the EEG activity with information about mus-

cular activation with surface electromyography (EMG) and information regarding the

actual movement of the arm (using gyroscopic and accelerometric sensors). The interface

combined the information gathered from these different sensors to achieve a robust charac-

terization of the involuntary tremor before voluntary movements started, so that it could

be cancelled by means of electrical stimulation of the muscles only when intended actions

were performed. The experiments carried out to validate the proposed multimodal inter-

face demonstrated the potential benefits of using a set of sensors with partially recurrent

and complementary information regarding the planning and execution of voluntary move-

ments to distinguish intended actions from the undesired tremor. The project provided

in addition the first demonstration of tremor reduction using electrical stimuli on the arm

muscles of the patients while they performed daily-living tasks.

Following the line started in the TREMOR project, the NEUROTREMOR project

(ICT-2011.5.1-287739, NeuroTREMOR: A novel concept for support todiagnosis and re-

mote management of tremor) aimed to develop novel systems for understanding, giving

support to diagnosis, and remotely managing tremors. The results obtained in one of these

studies are included here as a chapter. In it, the therapeutic effects of a drug (alprazolam)

on cortical activity and tremors in patients with essential tremor (ET) are studied. To-

gether with the other studies developed in the framework of the NEUROTREMOR project,

these results provided a deeper understanding about the neurophysiological mechanisms

of tremor generation in ET.

In parallel with the NEUROTREMOR project, the HYPER project (Hybrid Neu-

roProsthetic and NeuroRobotic Devicesfor Functional Compensation and Rehabilitation

of Motor Disor-ders, CSD2009-00067) started and gave rise to BCI experiments aimed

to provide innovative therapies for the motor rehabilitation of patients with spinal cord

injury or patients who have suffered a stroke. In the case of stroke patients, the main

objectives of the EEG experiments in the HYPER project were to understand the way in

which neurological lesions affect the normal functioning of the cortex, and to look for clin-

ically feasible ways to induce activity-dependent cortical plasticity leading to functional

recovery of the lost function in the damaged limbs of these patients. In the framework of

this project, experiments were carried out to develop an EEG-based BCI intervention for

stroke patients focusing on upper-limb voluntary movements.
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1.3 Motivation

The concept of this thesis is the consequence of a practical and theoretical interest in the

neuroscience field. The main motivation to conceive and carry out the studies integrating

this thesis arises from the curiosity about how the brain and the nervous system work, and

in particular, the way in which the nervous system provides the necessary mechanisms to

interact with the environment through movement. Two aspects are of special relevance in

the definition of the experimental studies carried out for this thesis.

On the one hand, from the perspective of learning relevant aspects about the human

brain function, research using neuroimage techniques, such as the EEG, allow the design

of experiments addressing a wide variety of processes defining the function of the central

nervous system. The possibility of analysing in real-time (i.e with a high enough tem-

poral resolution to observe the studied phenomenon) the changes in the cortical activity

associated with the planning and execution of motor tasks, leads to a deeper knowledge

regarding relevant issues associated with the fact that the human being is interacting with

the environment. This, in turn, provides elements to rise abstract questions regarding wil-

fulness in movement intention or the conscious perception of it. The development of new

technologies conditioning the electrical activity of specific brain regions as a result of the

online characterization of the movement-related cortical activity opens a way to study the

plasticity mechanisms at the neural network level and to analyse the neurophysiological

processes associated with the acquisition of skills to perform motor tasks. In the same line,

it is also of interest to characterize the oscillations of cortical networks to carry out studies

about the interaction between different regions of the nervous system, which provides new

ways to study higher order cognitive functions that allow humans to process stimuli and

interact with the environment.

On the other hand, the development of neurophysiological techniques to study the

function of the nervous system and the neural mechanisms allowing motor control has a

direct application from the clinical point of view. Studies as the ones proposed in this thesis

are expected to be beneficial in the clinical field, both to improve diagnosis and prognosis

of specific neurological pathologies and to propose innovative techniques to rehabilitate

the impaired motor functions. This aspect is of special relevance considering the expected

increase in the population that will benefit from these technologies in the near future.

The increase of population over sixty years old, and the incidence growth of neurological

affections due to bad lifestyle habits and toxic factors in the modern society will lead to an

increased amount of population demanding optimized healthcare systems and treatments

in the decades to come [Feigin et al., 2003; Wenning et al., 2005; Bloom et al., 2011].

Finding effective metrics about the patients’ clinical conditions and expected evolution,
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increasing the knowledge about neurological diseases and achieving a deeper understanding

on the neural reorganization mechanisms associated to good and bad recovery of the

patients are general goals that need to be pursued during the following years in order to

satisfy the present and future demand from the patients.

1.4 Objectives

As aforementioned, in a broad sense, this thesis aims at further validating the use of EEG

systems to study and treat patients with motor disabilities caused by the pathological

function of the nervous system. To do so, a platform integrating EEG, EMG, gyroscopic

and functional electrical stimulation (FES) devices is developed and used in a set of exper-

iments to propose and test novel movement-related neurophysiological analyses and BCI

applications in four studies sharing an essential link: the description of the cortical activity

associated to voluntary and pathological movements and its use to develop systems for the

rehabilitation of the motor function. The specific objectives of this thesis are developed

in the following lines.

Firstly, since the proposed general objectives have a marked clinical focus, a significant

part of the experimental procedures carried out to achieve them is done with patients.

Two specific pathologies are considered in this thesis: essential tremor (ET) patients

and patients with stroke. It has been shown that movement-related cortical patterns in

these two groups of patients are typically altered, especially in stroke patients, due to the

change in the cortical organization that these patients present [Tamás et al., 2006; Fang

et al., 2007, 2009; Lu et al., 2010]. For these groups of patients the intrinsic technological

and neurophysiological challenges associated with measuring their EEG activity either

during resting or movement conditions need to be considered. On the one hand, during

the resting states of ET patients, a certain degree of resting tremor, which originates

centrally (in the cerebello-thalamo-cortical relay), may be present in the peripheral limbs,

and this tremor can in turn produce a proprioceptive stimulation altering the cortical

basal activity [Moazami-Goudarzi et al., 2008]. This can also occur in stroke patients

with clonus episodes (involuntary, rhythmic, muscular contractions and relaxations and

is particularly associated with upper motor neuron lesions involving descending motor

pathways). On the other hand, during movements, the low signal-to-noise ratio of the

EEG and its low spatial resolution are limiting factors that need to be overcome in order to

validate BCI applications especially in patients like the ones considered here. ET patients

typically present an increased tremorgenic activity of their limbs and head when they

begin a movement [Louis et al., 2007], which can affect the quality of the acquired EEG

signal. In patients with stroke, on the other hand, compensatory movement strategies
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when trying to perform simple tasks are typically observed and they may distort the

EEG signal as well. Moreover, stroke patients tend to have slower and altered EEG signal

activity in the damaged regions of the brain, which makes the analysis of movement-related

cortical processes in these patients even more complicated [Niedermeyer and da Silva,

2005]. According to all these potential difficulties in the recording and characterization of

EEG activity related to movement in ET and stroke patients, it is identified as a major

objective of this thesis to further explore the capacity of EEG-based systems to characterize

the cortical activity related to voluntary and pathological movements in these two groups

of patients.

Secondly, previous studies analysing the EEG signal to characterize mental processes

related to the voluntary motor function have been able to describe certain spatio-temporo-

frequential characteristics of cortical changes (see for example [Simonetta et al., 1991;

Pfurtscheller and da Silva, 1999; Bai et al., 2005; Pfurtscheller et al., 2006; Jochumsen

et al., 2013]). These findings have been used in other studies to either characterize the

neurological condition of patients with neurological disorders by describing alterations in

the observed patterns [Cunnington et al., 1995; Hellwig et al., 2000; Magnani et al., 2002;

Daly et al., 2006; Fang et al., 2007; Müller-Putz et al., 2007; Fang et al., 2009; Stepien et al.,

2010; Cremoux et al., 2013], or to develop new control signals for brain-machine interfaces

[Pfurtscheller et al., 2006; Morash et al., 2008; Bai et al., 2011; Delgado Saa and Cetin,

2013]. In line with these experiments, this thesis also aims to i) study the characteristics

of movement-related cortical activation and deactivation patterns, especially in the time

intervals preceding voluntary movements and in patients with neurological conditions, to

use them as control signals in BCI systems, and ii) to propose novel experimental studies

and analysis methods to find new identifiable correlates between the cortical oscillatory

activity and mental states related to motor planning of different kinds of movements

performed with a single limb. In short, with the experiments proposed in this thesis it is

intended to further demonstrate how informative the EEG signal can be to characterize

the mental processes associated with movement-related aspects as movement intention,

planning, and execution, and to demonstrate whether it is possible to introduce new

control signals in BCI systems assisting the motor function.

A third objective of this thesis deals with the validation of the EEG signal for the neu-

rophysiological characterization and understanding of movement disorders. To this end,

experiments are performed with ET patients, a disease in which the exact mechanisms of

tremor generation are nowadays still unknown [Elble and Deuschl, 2009; Louis et al., 2013].

While previous studies in this regard have extensively characterised the tremor properties

in these patients and the interaction between central and peripheral neural information

[Hellwig et al., 2001; Raethjen et al., 2007], no studies up to date have investigated the
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temporal dynamics of tremor manifestation and how the cortical and muscular activities

interact as a result of a pharmacological treatment. With this kind of studies, the present

thesis intends to validate the EEG signal in the clinical environment as a powerful tool

to study, along time, how tremor in ET can be modified through drug-induced changes in

the brain activity.

In the framework of BCI technologies and applications, the studies proposed here aim

at improving the function of online and real-time asynchronous interfaces, i.e. interfaces in

which no external cue stimulus is used, and the user is the one who dictates the timing of

the communication commands to the controlled device [Mason and Birch, 2000; Townsend

et al., 2004]. New metrics are proposed to evaluate the performance of these technologies

in assistive and rehabilitation BCI systems and new signal processing and classification

methods are developed to improve the temporal estimations of the times at which specific

mental states occur, taking advantage of techniques proposed in previous studies by other

authors [Bai et al., 2011; Niazi et al., 2011]. The advantages of implementing adaptive

designs of BCI systems working along different days to overcome problems associated with

non-stationarities of the EEG signal [Shenoy et al., 2006] are also addressed.

The fusion of voluntary movement-related information recorded from different types

of sensors placed on the body (such as EEG, EMG, movement sensors etcetera) provides

a detailed description of inner body processes of motor planning and execution. There-

fore, this thesis includes innovative ways to integrate the EEG information with other

movement-related sensor modalities (such as EMG) to improve the behaviour of human-

machine interaction by achieving more natural interfaces between users and devices.

Finally, and by applying the developed techniques in BCI systems for asynchronous

applications, the experiments in this thesis also aim to propose and test novel rehabilitation

interventions for stroke patients promoting associative facilitation between the cortex and

the peripheral muscles. The thesis presents an analysis of how EEG systems allow the

online acquisition of reliable information regarding motor intention in functional tasks

with the upper-limb, and how this information can be used to implement BCI-based

interventions for stroke patients inducing functional improvements after a reduced number

of sessions. Despite the large amount of BCI systems that can be found in the literature in

this regard, little is still know about the single-trial characterization of upper-limb motor

intentions in stroke patients and the way in which BCI interventions using this information

to drive external proprioceptive stimuli can improve the patients’ motor function. For this

reason, these proposed objectives are fully in line with the current work of a number of

BCI groups around the world.
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1.5 Methodology

As the purpose of this thesis entails both technical development and studies from the clin-

ical perspective, the followed methodology to reach the goals is based on two fundamental

blocks:

• Theoretical study of the neurophysiological processes giving rise to the experimen-

tal paradigms and hypotheses proposed in the thesis. This block entails different

aspects:

– Detailed study about the cortical patterns described by previous experiments

and related to movement tasks, analysing the structures giving rise to these

cortical patterns and how they relate to concepts as movement conception,

planning, and execution.

– Review the state of the art to develop real-time processing techniques for motor-

related cortical patterns, to extract relevant information from single movements

that can be used to achieve a robust control of BCI systems

– Bibliographic analysis of experiments with EEG technology studying plasticity

mechanisms caused by conditioning paradigms and how they may benefit the

motor function

– Study of the neurophysiological basis describing the tremor in essential tremor

and its implications in the studies proposed in this thesis

– Study of the neurophysiological basis describing the cerebro-vascular accident

and its implications in the studies proposed in this thesis

• Technological and experimental development to address the objectives in the studies

of the thesis. The identified subtasks are

– To integrate non-invasive measurements of different parts of the body associated

with the movement generation such as the EEG signal over the sensorimotor

cortex, the surface EMG activity of specific muscles and gyroscopic information

of the limb segments involved in the movement.

– Use and development of signal processing algorithms and data mining tech-

niques to characterise and model mental states related to specific cortical acti-

vation patterns.

– Development of an integrated platform processing in real-time the acquired

cortical, muscular and gyroscopic activity and generating in turn proprioceptive

feedback by means of electrical stimulation.
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– Interaction with clinical environments supporting them in the design of ethi-

cal committees for the proposed studies, in the definition of patients inclusion

criteria and in the recruitment of patients for the experiments.
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1.6 Chapters description

The thesis is organized around four chapters, each of which related to the four proposed

studies. Preceding these four chapters, Chapter 2 presents the neurophysiological basis

and EEG-related knowledge regarding cortical control of the movement, which is used in

the subsequent parts of the document. In the beginning of this chapter, a brief description

of the basic nervous system structures involved in the generation of voluntary movements

and how they interact with each other to achieve motor control of the body limbs is

reviewed. After this description, the advantages and disadvantages of EEG technology

as compared to other electrophysiological measurements of the brain are presented, thus

justifying its use in the subsequent chapters. BCI systems for motor rehabilitation are

briefly described in the end of the chapter.

The first study is presented in Chapter 3 and it explores, using healthy subjects,

the possibilities of modelling cortical activation patterns related to different analytical

motor tasks with spatially close somatotopic representations. The methods section of this

chapter describes in detail the data mining methodology used to this end. Results show

both, the performance of a classifier of these movements and a set of tests to evaluate the

validity of the results obtained. The final part of the chapter presents a critical analysis

of the obtained results and describes possible scenarios in which the presented EEG-based

application may be of interest.

In Chapter 4 a novel application of EEG systems in ET patients is presented. In this

case, a neurophysiological study of the effects of a therapeutic drug (alprazolam) in the

tremor manifestation and in specific cortical oscillations in patients with ET is carried out.

The first part of the chapter provides an up-to-date summary of neurophysiological studies

in patients with ET, presenting the main hypotheses of the mechanisms and structures

leading to tremor manifestation. Next, the experimental design used to analyse the effects

of the drug along a certain time after its intake is described, and results are presented,

which lead to establishing a hypothesis regarding the way in which alprazolam reduces

the tremor: the increased presence of fast cortical rhythms (specially in the beta band) in

patients with ET caused by a single dose intake of a benzodiazepine is tightly related with

tremor reduction. The critical discussion of these results, comparing them with previous

studies by other authors, as well as the presentation of the main technical limitations of

the study are included in the final part of the chapter.

Chapter 5 presents the development of a multimodal brain-neural-computer interface

in which EEG technology is integrated with other movement-related sensors to predict vol-
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untary movements. In order to justify the proposed system concept, the potential benefits

of a multimodal interface to control a tremor-compensation neuroprosthesis are exposed.

After this, the global architecture of the multimodal interface is presented, giving special

relevance to the EEG-based subsystem, and preliminary results with healthy subjects and

ET patients are shown. In addition, results of the multimodal interface are included, in

order to provide a proof of concept of the cooperative interaction between different sub-

systems combining information from cortical, muscular and gyroscopic sensors. A critical

evaluation of the reached results and the future lines of study are included in the final

part of the chapter.

In Chapter 6, the last of the four proposed studies is presented. This study is aimed

to develop an EEG-based BCI intervention for the motor recovery of the upper-limbs of

stroke patients. To achieve this, the first part of the chapter includes a brief review of

related studies in the field. The proposed intervention integrates 4 different technologies:

an EEG amplifier, an EMG amplifier, inertial sensors and an electrical stimulator. The

experimental set-up and the used protocol are presented in the chapter. After this, pre-

liminary results of the system function are presented. The chapter also includes results

of a small clinical validation carried out with the system with four patients during eight

sessions. The critical analysis of the obtained results and the possible therapeutic effects

of the BCI system are presented in the final part of the chapter.

Finally, the general results obtained in the proposed studies are summarized in the

last chapter (Chapter 7). This chapter also includes a detailed discussion regarding the

achieved results here, the main limitations that have been found throughout the process

of carrying out the thesis and the future research lines that may continue what has been

here proposed and tested.
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Chapter 2
EEG-based systems to study the motor

function and BCI technologies in the

neurorehabilitation field

This chapter presents the theoretical basis supporting the starting points of the subsequent

chapters with the four studies included in the present thesis. The first part of the chapter

describes the main regions of the central nervous system that are involved in the generation

of voluntary movements. After, the use of EEG technology in neurophysiological studies

of the human motor cortex is justified according to its advantages as compared to other

alternatives. Finally, the chapter presents the basic concepts regarding BCI systems and

refers to some of the most important published studies up-to-date using BCI technology for

rehabilitation purposes.



Chapter 2. EEG-based systems to study the motor function and BCI technologies in the

neurorehabilitation field

2.1 Structures of the central nervous system involved in the

generation of volitional movements

The adult human brain weights around 1.3 kg and it is comprised of around 1011 neurons

with approximately 2 ∗ 1014 connection points between them. The neuron is the basic cell

of the nervous system, and there exist at least over one thousand different kinds of neurons,

although they all share a basic architecture. The complexity of human behaviour does not

rely on the neural specificity, but on the ability of these cells to wire together, building

highly precise anatomical circuits. Four main aspects of the nervous system are essential

to understand its function: the mechanisms by which the neurons produce signals, the

connection patterns between neurons, the relationship between this connection patterns

and human behaviour and the means by which neurons and connections are modified

through experience [Kandel et al., 2000].

Macroscopically, the central nervous system has seven main parts: spinal cord, medulla

oblongata, pons, cerebellum, midbrain, diencephalon and cerebral hemispheres. The most

important parts of the central nervous system, according to size and development, are

the cerebral hemispheres, which consist of the cerebral cortex (outermost part of the brain

formed by neural tissue) and three deep lying structures: the basal ganglia, the hippocam-

pus and the amygdaloid nuclei. The two hemispheres of the human brain can be further

divided into four different regions separated by the so-called cerebral sulci: the frontal

lobe, the parietal lobe, the occipital lobe and the temporal lobe (see Fig. 2.1). Cortical

neurons are highly interconnected, giving rise to human behavior through functions such

as sensory processing, movement planning, preparation and execution, language process-

ing, memory retrieval and many other cognitive functions. Among the different regions

in the cerebral cortex, the primary motor and somatosensory cortices are located anterior

and posterior to the Rolandic fissure, which divides the frontal and parietal lobes.

Elaborating a motor strategy to perform a voluntary action is a complex task (see

Fig. 2.1). The first step in a volitional movement is intent generation and planning. The

prefrontal cortex is connected to many other cortical regions. This allows accessing to

all required information for decision making and associated motor action. The prefrontal

cortex receives information about past experience stored in memory from the temporal

cortex. This information is consciously kept available, thus allowing the subject making

inferences and predictions about the outcome of the tentative action. The parietal cortex,

area 7, receives in turn information from vision-related cortical areas. This allows the

planning of the action in space. In addition, area 5 of the parietal cortex can access
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information about body situation in space. Considering this whole network, the subject

is self-aware and perceives himself as an agent who can act in the environment, predicting

the outcomes of his actions based on his past experience.

Performing the planned action is still an even more complex process among interacting

brain areas. Once the decision of performing an action is made, the upper motor controller

(prefrontal cortex) let the fine-grained control to other frontal areas, such as the premotor

and supplementary motor areas. Then, the primary motor area receives commands about

the sequence of movements to perform the intended action and projects relevant movement

commands directly to the motorneurons through the corticospinal tract and indirectly

through the extrapyramidal system (specially through the rubrospinal tract for upper-

limb movements). Descending projections to the muscles are also generated from other

cortical regions such as the premotor and somatosensory cortices, thus building a complex

model of motor control. The motor information travelling along these complex network

defines the beginning and end of motor sequences, and on-line corrections. For this on-line

correction, sensory information (visual, haptic, proprioceptive) is collected and introduced

into the control model.

Certain subcortical regions are also involved in the beginning of a motor sequence.

These subcortical regions are the basal ganglia and the cerebellum.

The basal ganglia consist of the striatum (caudate nucleus plus putamen), the globus

pallidus, the subthalamic nucleus and the substantia nigra. The basal ganglia, and spe-

cially the striatum, receive information from the whole sensory and motor cortex. There-

fore, the striatum integrates and overlaps the sensory and motor images of the self body.

Those images split in the striatum, representing body parts in a redundant way. When

relating pieces of sensory information to pieces of motor actions (such as muscle area ac-

tivations), the striatum builds action plans coherent with the sensory signaling pattern.

The internal globus pallidus inhibits paths that link the thalamus and the frontal cortex.

The external globus pallidus and the subthalamic nucleus reinforce the globus pallidus

activation. Therefore, the output path from the striatum is double. There is a direct

path that inhibits the internal globus pallidus, thus allowing movement, and there is also

an indirect path that activates the external globus pallidus and the subthalamic nucleus,

which in turn reinforces the internal globus pallidus and blocks movement. Finally, the

substantia nigra provides flexibility to motor plans by the connection to the striatum. If

the motor plan has been successful then the substantia nigra does not activate the path to

the striatum. Otherwise, if the motor plan failed the substantia nigra activates the path

to the striatum. This produces the release of dopamine in the striatum, making it more

plastic and sensitive to be modified and corrected.

The cerebellum modulates movement and posture indirectly, adjusting the outputs of
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Figure 2.1: Depiction of cortico-cortical (dashed lines) and cortico-subcortico-cortical (solid
lines) information flow between brain regions in movement planning and execution. Brain
stem projects fibers to muscles. Lines ending with arrows denote excitatory connections.
Lines ending with dots denote inhibitory connections.

the main encephalic motor structures. It acts as an online comparator between projected

and performed movements, and it is therefore mainly involved in the on-line modulation

of the movement, once it has already started.

2.2 The use of the EEG signal to extract cortical activity

related to the movement

There are a number of techniques that allow the acquisition of the cortical and subcortical

electrophysiological activity. The main difference among these alternatives is the size and

location of the neural population that is being “listened to”. This way, it is possible to

measure

• the spiking activity of single neurons;

• the local field potentials reflecting the summation of nearby synaptic and neuronal

activity;
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• the electrical activity directly measured from the cerebral cortex;

• the EEG activity, which is the cortical signal obtained from electrodes placed on the

scalp;

• the magnetoencephalographic (MEG) activity, acquiring the magnetic fields elicited

by cortical dipole sources tangentially oriented to the head surface;

From this list, only MEG and EEG systems are non-invasive solutions characterizing

cortical processes. The main advantages of using the EEG signal are the fact that it is

a non-invasive technique, commercially available, easy to set-up and robust to possible

external interferences, which makes it perfectly suitable in clinical environments and with

wearable robotic systems. The main handicap of the EEG signal is its low spatial resolution

caused by the fact that cortical signals are acquired from electrodes on the scalp, a few

millimetres away from the actual cortical surface.

As previously defined, the EEG consists in the acquisition of the cortical electrical

activity with scalp electrodes over specific points of the brain. In its origin, the EEG

was developed to analyse mental processes, but its clinical applications rapidly followed.

Cortical neurons are connected to thousands of other neurons through excitatory and

inhibitory synapses, spreading throughout the dendritic part of the neuron. The trans-

mission of an action potential from one neuron to the next one produces in the latter an

excitatory or inhibitory postsynaptic potential. These potentials caused by ionic imbal-

ances are summed in the dendritic bodies of the neurons, giving rise to field potentials

in the nearby region. This process is assumed to be one of the main sources of the EEG

activity acquired by the scalp electrodes [Niedermeyer and da Silva, 2005]. Therefore,

the EEG activity will represent mental processes with sufficiently large enough groups of

neurons spiking synchronously, so that the amplified version of their activity can reach

the scalp.

The EEG morphology depends on multiple factors such as the age, vigilance, per-

formance of cognitive tasks, motor tasks, etcetera. Its similarity with a chaotic process

and its small amplitude (10-100 µV), have definitive influence on the way these signals

are analysed. As with other biological signals, the EEG activity presents a number of

characteristics that make its analysis a complex task. The EEG signal is nonlinear and

it is considered a stochastic and non-stationary process. The high variability present in

an EEG signal is caused mainly by the noisy environment and the acquisition techniques

used, the neurophysiological phenomena that produce the signal, the biological phenom-

ena that appear in parallel with the studied process and that contribute to the recorded

signal and the response of biological mechanisms to external agents.
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The EEG signal is traditionally described by means of its power spectrum, charac-

terized by the presence of a number of cortical oscillations (cortical rhythms) associated

with different frequency bands. The main rhythms of the brain are located in different

frequency bands: the theta band (4-7 Hz), the delta band (1-3 Hz), the alpha band (8-12

Hz), the beta band (13-28 Hz) and the gamma band (29-100 Hz). In addition to these

bands, the cortical changes with frequencies under 1 Hz (slow and ultra-slow rhythms)

may also to be considered as a relevant source of information, specially in the analysis of

movement-related potentials.

2.2.1 Cortical patterns related to the motor function and visible in the

EEG signal

Cortical patterns measured with EEG may be classified according to the nature of the

stimuli that generate them: they may appear as a response to external stimuli or they

may be electrical processes endogenously generated. Cortical patterns can also be classi-

fied according to their morphology and the components that form them. In this line, two

sources of information may be distinguished: slow cortical changes and information con-

tained in cortical rhythms. The information obtained from the processing of the cortical

rhythms can in turn be acquired either by analysing the power changes in a specific cor-

tical region, or by studying how two different regions interact through these oscillations.

Attending to these classification criteria, cortical patterns associated with the voluntary

movements may be classified in different groups, described in the forthcoming sections.

2.2.1.1 Movement related cortical potentials (MRCPs)

Before and during self-initiated movements of healthy subjects, slow changes (with fre-

quencies under 1 Hz) appear in the EEG activity. In most subjects these changes have

amplitudes of few µV and therefore they are difficult to observe in the raw EEG signal.

When averaging across a number of similar movements performed by a same subject,

a sequence of defined temporal patterns with a specific spatial distributions can be ob-

served. This sequence of patterns is termed movement-related cortical potential (MRCP)

[Shibasaki and Hallett, 2006] and it constitutes one of the main sources of information to

evaluate certain aspects of the mental activity before and during voluntary movements.

Each of these MRCP components are found either before or after the onset of vol-

untary movements and are characterized by positive or negative deflections of the EEG

signal. The MRCPs in self-initiated actions begin with a slow negative deflection of the

EEG signal amplitude starting about 1.5 s before the onset of the movement, called the

Bereitschaftspotential (BP). The BP precedes voluntary movements and it has proven to
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Figure 2.2: Typical BP slope coupled with the EMG signal indicating movement.

supply reliable online estimations regarding movement intentions [Niazi et al., 2011]. In

addition, as the pattern precedes the actual movement, it is less dependent on the char-

acteristics of the movement to which it is related (movement speed, complexity, number

and size of muscles involved etc.). For these two reasons, the BP is the most studied com-

ponent of the MRCPs, both in terms of physiological findings and clinical applications.

The BP typically presents an “early” part that begins around 1.5 s before the onset of the

voluntary movements. During this first stage, a slow decreasing tendency of the signal is

observed. About 400 ms before the movement starts, a steeper decay appears, known as

“late BP” (see Fig. 2.2). Different cortical regions are responsible for the generation of

the “early-” and “late-BP” (Fig. 2.2). In the case of hand movements, the SMA and the

lateral precentral gyrus, both bilaterally, are estimated to be the main generator sources

for “early-BP”. Cui and Deecke [Cui and Deecke, 1999], based on a high-resolution low-

frequency EEG analysis, demonstrated that BP occurs earliest in the medial wall motor

areas (SMA and cingulate motor areas), then in the contralateral motor cortex, and lastly

in the ipsilateral motor cortex. Fig. 2.3 shows the spatio-temporal distribution of the BP

pattern associated to the movement of the right arm in a reaching task.

Similarly to the BP pattern in self-initiated movements, the contingent negative vari-

ation [WALTER et al., 1964] is also a slow negative brain potential, but in this case

it appears between two successive external stimuli, with the first stimulus serving as a

preparatory ’warning’ signal for the second ’imperative’ stimulus, to which a motor re-

sponse is required. In this case, the contingent negative variation is assumed to represent

the neural activity necessary for sensorimotor integration. It is therefore related to plan-

ning or execution processes for externally-paced voluntary movements.
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Figure 2.3: Distribution of BP slopes over the scalp with respect to right-arm movement
onset (t = 0).

2.2.1.2 Sensorimotor Event Related Desynchronization and Synchronization

During resting conditions without movements, the neural networks of the sensorimotor

cortex typically present firing patterns in the mu and lower-beta frequency bands, termed

the sensorimotor rhythms. The event related desynchronization (ERD) over the senso-

rimotor cortex refers to the percentage of decrease of EEG signal power in the mu and

lower-beta rhythms as a result of changes in the brain states associated to sensorimotor

processing functions. During a voluntary unilateral hand movement, mu and beta ERD

start contralateral to the side of the movement about 2 s before its onset, becoming bi-

lateral at about the time the movement begins (see Fig. 2.4) [Pfurtscheller and da Silva,

1999; Bai et al., 2005]. This desynchronization pattern suggests a contralateral leading

role in the preparation of voluntary movements. As an inverse effect, ERS is defined

as the percentage of power increase (ERS), especially in the β band, after finishing a

movement. These cortical patterns were first observed during the execution of overt hand

or foot movements and they are also present during passive movements, somatosensory

stimulation, and both observation and imagination of movements.

In order to characterize the cortical ERD/ERS patterns of a certain subject us-

ing a set of EEG segments (trials) time-locked to the movement event, time frequency

de/synchronization maps are used. Standard ERD/ERS calculation is done by introduc-

ing the EEG signal of each trial into a bank of band-pass filters, computing the power

of the filtered signals and averaging over trials. The ERD/ERS is then defined as the
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proportional power decrease/increase with respect to a certain reference interval typically

picked from several seconds before the onset of the sensorimotor task analysed. The esti-

mation of the ERD curve in each frequency band and channel analysed can be performed

as follows:

Yj =
1

Ntr
×

Ntr∑
i=1

X2
ij (2.1)

Ref =
1

k
×

r1∑
j=r0

Yj (2.2)

ERDj =
Yj −Ref
Ref

× 100 (2.3)

where Ntr is the number of trials considered to estimate the ERD, Xij is the jth sample

of the ith trial. Ref is the average power of the band-pass filtered signal in the reference

interval r0 : r1 [Pfurtscheller and da Silva, 1999].

An example of the ERD time/frequency maps obtained over a set of channels acquired

from a subject performing self-paced reaching movements with the right arm is shown

in Fig. 2.5. In this case, the ERD pattern (bright regions in the maps) starts around

1.5 s before the onset of the movements (t = 0 s), is most significant in the alpha and

beta (below 25 Hz approximately) bands and over the contralateral hemisphere (in the

C3 channel in this case, since movements with the right hand are performed), and it is

maintained until the end of the movement (t > 2 s). The ERS phenomenon cannot be

clearly observed in this case, since movements were synchronized with respect to their

onsets and the lengths of the movements were variable (therefore, the average activity

after the movements ended is blurred).
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Figure 2.5: Distribution of average ERD time/frequency maps over the scalp from a subject
performing self-paced reaching movements with the right arm. Bright areas represent power
decay caused by ERD phenomenon around the movement onset.

2.2.1.3 Movement-related cortico-cortical and cortico-muscular interaction

Neural networks associate with each other by means of synchronized oscillations [Buzsáki

and Draguhn, 2004]. This way, neural assemblies are built depending on the cognitive pro-

cess that is being carried out. This synchronization may be present at a local level (within

a certain neural region) or at a large-scale level (between distant neural populations). The

former may be studied by analysing power changes in specific frequency bands using the

information of single electrode positions (as the ERD and ERS patterns presented be-

fore), while the latter are typically studied by analysing the interaction between cortical

regions. To carry out interaction studies between different neural populations, several

mathematical approaches have been proposed up to date. In encephalographic recordings,

synchronization is usually quantified with linear measures like coherence or with nonlin-

ear measures like those based upon phase synchronization or generalized synchronization

[Stam et al., 2007; Varela et al., 2001]. In addition, interaction between neural populations

can be carried out between two different points on the scalp (cortico-cortical interaction)

or between a point on the scalp and a point on a peripheral muscle (cortico-muscular

interaction).

Regarding cortico-cortical interaction, a small number of studies have analysed it dur-

ing movement tasks. The association between sensory inputs and motor responses [Classen

et al., 1998; Hummel and Gerloff, 2005; Rilk et al., 2011] and the association between dif-

ferent sensorimotor regions [Gerloff et al., 1998; Sweeney-reed et al., 2009] have been

subject of study in this area. Overall in this sort of studies two main problems of the
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EEG technology need to be solved in order to further advance in this regard: the volume

conduction and the problem of the active reference [Tognoli and Kelso, 2009].

On the other hand, studies of cortico-muscular coherence have allowed to analyse how

activity in the beta band in the motor cortex mediates cortico-muscular communication

in different types of muscle contractions [Conway et al., 1995; Negro and Farina, 2011;

Raethjen et al., 2008]. An example of such cortico-muscular coherence during the extension

of the hand is shown in Fig. 2.6. According to these kind of analyses, where the existence

of significant coupling at the beta band between the motor cortex and the population

of motor units in voluntarily contracted muscles is observed, it is suggested that cortical

commands are transmitted to the muscles at these frequencies through the descending

pathways [Petersen et al., 2012; Kilner et al., 2000; Conway et al., 1995].

2.3 BCI systems for motor rehabilitation

EEG-based BCI systems are an emerging field aimed to provide a communication channel

between the human and an external device using brain activity [Wolpaw et al., 2002]. This

systems open a door for innovative applications in entertainment and gaming applications

[Liao et al., 2012], and with higher relevance, in clinical and assistive applications. During

the first years of BCI research, clinical applications were explored to provide alternative

communication means to patients with lost ability to interact with the environment in

any possible natural way [Birbaumer, 2006; Nijboer et al., 2008]. During the last decade,

an important part of research efforts in BCI technologies have focused on rehabilitation

applications, in which the main goal is to either restore or compensate the affected motor

function of a patient’s limb [Daly and Wolpaw, 2008]. In both scenarios (motor restoration

and compensation), the EEG signal provides a relevant feature to the communication

channel between the human and the device: having real-time access to movement-related

cortical processes allows fast estimations regarding the user’s intentions, which may in

turn lead to achieving more natural interactions with the controlled device. Such natural

interfaces are specially desired in man-machine interaction for rehabilitation purposes due

to some relevant reasons:
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• Biological reasons: human-robot interface systems seek to take advantage of the

natural control mechanisms fully optimized in humans.

• Practical reasons: Delays are introduced when natural cognitive processes are en-

coded into an imposed sequence of tasks. In addition, a training phase is needed

to teach the user to generate these non-natural commands or to map a cognitive

process into a new set of outputs. Both factors, the delays and the mapping, can

also induce fatigue in the user, both at a musculo-skeletal level and at a mental level.

These limitations may be obviated if the natural outputs of a cognitive process are

used instead.

• Rehabilitation: Interacting directly with the phenomena involved in the cognitive

process is a means to excite them and assess the evolution of the rehabilitation

therapy.

Two groups of BCI applications can be considered in the framework of motor rehabil-

itation: BCIs for motor compensation or assistance and BCIs for motor recovery.

On the one hand, BCI systems aimed to assist the movements have been proposed

specially for upper-limbs and for different pathologies, mainly spinal cord injury [Müller-

Putz et al., 2005; Onose et al., 2012] and stroke [Buch et al., 2008; Ang et al., 2011]. The

major challenges here of the EEG-based movement detection algorithms are to achieve

reliable estimations in realistic scenarios, to work asynchronously (that is, the user controls

the timing of the movement events) [Mason and Birch, 2000; Borisoff et al., 2006; Delgado

Saa and Cetin, 2013] and to reduce the impact of the wearable technology in the patient’s

daily living [Popescu et al., 2007]. Since alternative control mechanisms can be developed

from non-cortical signals (muscular control, eyetracking devices etc.), the justified use of

EEG-based interfaces in this field critically relies on the success of the decoding algorithms

according to the aforementioned criteria.

On the other hand, EEG-based BCI systems focused on recovering the lost function

of affected limbs of disabled patients have gained attention during the past few years, and

there exists a large number of proposed interventions in which promoting motor neuro-

rehabilitation is the main pursued goal [Daly and Wolpaw, 2008]. The most relevant

BCI-based approaches for rehabilitation in the last ten years combine BCI training with

physical therapy [Broetz et al., 2010] or with robotic-based therapy [Ang et al., 2010]

showing motor function improvement in stroke patients. Two BCI-based strategies are

distinguishable in this field. The first one is based on the neurofeedback approach, which

hypothesizes that training the patients to produce more normal brain activation patterns

will be accompanied by improved motor function. The second strategy focuses on using
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brain activity to drive a device providing proprioceptive feedback. This sensory feedback

is expected to induce plasticity leading to restoration of the normal motor control. This

second strategy relies on the idea that brain activity can guide activity-dependent central

nervous system plasticity in the same way as the standard repetitive movement practice

carried out by therapists or robots influences it [Várkuti et al., 2013].

The potential relevance of the second BCI-based strategy for changes in motor be-

haviour is exemplified particularly well in the context of stroke rehabilitation: assuming

that the connection between peripheral muscles and the sensorimotor cortex has been dis-

rupted due to a cortical or sub-cortical stroke, a concurrent activation of sensory feedback

loops and primary motor cortex may reinforce previously silent cortical connections by

Hebbian learning (repeatedly coincident activation of pre-synaptic and post-synaptic cells

reinforces synaptic strength, tending to become associated) and thus support functional

recovery [Mrachacz-Kersting et al., 2012; Niazi et al., 2012]. According to this arguments,

as will be shown in subsequent studies, the fact that the EEG allows a precise location

of the onsets of voluntary movements becomes a relevant aspect of this technology to be

applied in neural rehabilitation interventions for stroke patients.
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Chapter 3
EEG-based predictive classification of

analytical upper-limb movements

3.1 Abstract

Chapter 2 has presented the most commonly used EEG patterns associated to motor pro-

cessing functions (mainly the MRCPs and ERD/ERS patterns). Yet, the analysis of the

characteristics and dynamics of the cortical rhythms originated from distributed points in

the sensorimotor cortex and measured with EEG may allow an advanced characterization

of how different motor-related cortical regions activate or deactivate when performing dif-

ferent kinds of motor actions. In this regard, one of the main limitations of EEG systems

to characterize task-related cortical processes is their low spatial resolution. This limitation

reduces the possibilities of distinguishing among mental states that present similar soma-

totopic representations. On the other hand, as has been commented before, EEG systems

present a great potential to characterize relatively simple mental states preceding the onset

of volitional movements. So far, the majority of BCI systems that have been proposed to

classify different movement-related mental states have frequently presented paradigms in

which movements of distant parts of the body (and therefore, with distant somatotopic rep-

resentations) were to be distinguished (examples in this line are BCI systems distinguishing

between movement imagery of the right hand, the left hand and the feet proposed by several

BCI groups). In this chapter it is studied the possibility of classifying a number of simple

movements, all of them performed with the same limb, based on premovement EEG signal

segments. To do so, advanced data mining techniques are applied on a dataset with a

large number of examples to find the optimal subset of features that allow a differentiation

of classes over the chance level of the study. The scientific interest of experiments like

this one in neurorehabilitation environments ranges from further understanding the cor-

tical mechanisms underlying the generation of simple movements, to achieving new EEG

processing techniques that can be integrated in rehabilitation BCI systems to test the pa-
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tients’ involvement in the rehabilitation process and to provide an adequate proprioceptive

feedback associated to the movements they intend to do.
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3.2 Introduction

The electroencephalographic (EEG) activity allows the description of cortical processes

associated to volitional motor actions [Chatrian et al., 1959; Kornhuber and Deecke, 1965;

Pfurtscheller and da Silva, 1999; Libet et al., 1982]. A number of studies with EEG have

demonstrated its potential use to locate intervals of motor-related cortical activation and

deactivation [Neuper et al., 2006; Pfurtscheller and Solis-Escalante, 2009], to anticipate the

instants at which voluntary movements begin [Bai et al., 2011; Niazi et al., 2011; Ibáñez

et al., 2013], to decode movement parameters such as velocity, strength, etc [Gu et al.,

2009a], and to distinguish between different classes of movements [Morash et al., 2008;

Pfurtscheller et al., 2006]. Yet, it remains unclear the extent to which the EEG activity

allows the description of motor-related mental processes. Advances in this area will lead

to further understanding the relevant parts of the brain taking part in the generation of

volitional actions [Desmurget et al., 2009; Obhi et al., 2009], and to new ways of inducing

neural rehabilitation by integrating EEG in novel clinical interventions [Buch et al., 2008;

Daly and Wolpaw, 2008], either for passive monitoring the motor therapy, or for active

mobilization with robotic devices. In this context, EEG technology is of great interest since

it allows the real-time characterization of the motor-related cortical activity to obtain

predictive information regarding intended actions. Such information has proven to be

valuable to provide natural proprioceptive feedback inducing cortical plasticity [Mrachacz-

Kersting et al., 2012; Niazi et al., 2012].

Recent studies have proposed methodologies to decode 3D kinematics of the upper-limb

based on slow potentials measured with EEG [Bradberry et al., 2010]. Nonetheless, metrics

applied to validate the results in these studies are subject of discussion [Antelis et al.,

2013]. Previous studies using invasive recordings have pointed out that brain-machine

interfaces (BMIs) based on the dynamics like those of muscles seem to be more robust and

easier to learn than BMIs commanding forces or movements in external coordinates [Oby

et al., 2013]. Several works have taken advantage of the changes of the cortical rhythms

measured with EEG to estimate muscle activations and joint rotations [Morash et al.,

2008; Pfurtscheller et al., 2006]. In[Deng et al., 2005] it was proposed a methodology to

distinguish between movements performed with the shoulder and elbow of the dominant

upper-limb. These two tasks present similar cortical representations, which makes them

difficult to be distinguished from each other based on non-invasive recordings as the EEG

activity. No previous works have tried to identify EEG-signal patterns classifying more

than two different movements performed with the same arm.
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In this chapter, results of a classifier of analytic movements performed with the upper-

limb (7 different classes) based on pre-movement EEG activity are presented. The system

is evaluated on 6 participants who performed 350 self-initiated movements during the

experiments. To develop the classifier, data mining techniques extracting optimal features

selected with a genetic algorithm were applied. The feature space considered were the

power spectral values of the alpha and beta bands of the EEG signal (information of the

activation or deactivation of cortical regions associated to movement tasks [Pfurtscheller

and da Silva, 1999; Deng et al., 2005; Morash et al., 2008]). The average accuracy obtained

with all subjects was above the chance accuracy level obtained by randomly labelling the

acquired examples. Further analyses (discussed in the last part of the chapter) discard

the hypothesis that other sources of information, different from the task-related cortical

activity, were used to reach the classification results. The study supports the idea that

EEG can supply with predictive information about upper-limb analytical movements.

3.3 Methods

3.3.1 Participants and experimental procedure

Six healthy male subjects, right-handed and with ages between 25 and 35 years-old were

recruited for the experiments carried out in this study. They were seated in a comfortable

chair and, during the exercises, they were asked to remain relaxed without performing any

movements other than the tasks studied in the experiments. A screen was placed in front

of the participants to guide them during the experiments.

Each subject performed seven analytic movement tasks with the dominant upper-limb:

shoulder abduction (SA), shoulder extension (SE), shoulder rotation (SR), elbow extension

(EE), forearm pronation (FP), wrist extension (WE) and wrist rotation (WR). For each

one of these tasks, two runs of 25 trials each were executed, leading to 350 trials (7 tasks

and 50 examples per task). Each trial was divided into two parts: during the first part of

12 s, the participants were asked to start a single movement when they wanted, trying to

wait at least 2 s before performing it (during this part the word “Movement” was shown

in the screen). The second part of the trial lasted 3 s and the participants relaxed and got

prepared for the subsequent trial while the word “Rest” was shown in the screen. Each

run lasted 6 minutes and 15 seconds in which the participants performed self-initiated

movements (trials) of one of the seven tasks. The runs were interleaved as follows: the

first type of analytical movement was performed in runs 1 and 8, the second type in runs

2 and 9, etc. (see Fig. 3.1). A session lasted around 2 hours.

Participants adopted three different starting positions of the arm to perform the move-
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Figure 3.1: Scheme of the recording sessions. A trial (top), a run (middle) and the distri-
bution of tasks along the session (down) are represented.

ments (see Fig. 3.3): A) the arm was left hanging and relaxed for tasks SA and SE, B)

the arm was resting on the arm of the chair for tasks EE, FP and WE, and C) the arm

was resting on an auxiliary desk for tasks SR and WR.

EMG/IMUs Sensors

Stimulus presentation

EEG recording

B) C)

A)

Figure 3.2: Schematic representation of the three positions adopted by the participants to
perform the analytical movements.
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3.3.2 Data Acquisition

Three synchronized gUSBamp amplifiers (g.Tec gmbh, Graz, Austria) were used to amplify

and digitize the EEG and EMG data at a sampling frequency of 512 Hz. The EEG montage

consisted of 32 electrode positions (see Fig. 3.4) and active Ag/AgCl scalp electrodes were

used. The ground and reference electrodes were placed on FPz and on the left earlobe,

respectively.

EMG activity was recorded with bipolar derivations on 8 muscular groups: extensor

digitorum, extensor carpi ulnaris, palmaris longus, biceps brachii, triceps brachii, frontal

part of the deltoid, lateral part of the deltoid and back part of the deltoid.

Gyroscopes were placed on the third metacarpal, the edge of the forearm (dorsal side),

and above the olecranon process. The gyroscopic data were digitized at 50 Hz and syn-

chronized with the EEG and EMG data by means of an external digital signal.

3.3.3 Data processing and classifier design

This section describes the methodology for building, for each participant, a classifier of the

7 possible analytical movements performed with the upper-limb during the measurements.

3.3.3.1 Detection of the movements’ onsets

The onsets of the movements were obtained from the gyroscopes data as follows: the

data were low-pass filtered (Butterworth, order 2, ≤ 6 Hz) and the rotation angle of each

joint moved was obtained as the absolute value of the difference between the gyroscope

measurements of the two adjacent sensors (the hand and forearm for wrist movements, the

forearm and arm for elbow movements and the arm and trunk for shoulder movements).

The threshold for the detection of the onset was set at 5 % of the maximum rotation

speed of all movements of each type. The gyroscopes information was used to detect the

onsets instead of the EMG because it was more robust for all movements with all the

three possible initial positions. Notice that the latency between the EMG-based and the

gyroscopes-based onset detections is expected to be small, given that the electromechanical

delay for upper-limb tasks is in the order of tens of milliseconds [Norman and Komi, 1979].

EMG data served to assert that the onsets of the movements detected with the gyroscopes

were correctly located, and that there was no muscular activity in the different initial

positions during the resting intervals before the movements.

3.3.3.2 EEG signal processing and feature extraction
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Small Laplacian filtering [Hjorth, 1975] was applied to the EEG channels that were

surrounded by 4 neighbouring positions and a Common Average de-referentiation was

applied to the boundary positions of the used electrodes set-up.

The EEG data were band-pass filtered (Butterworth, order 2, passed band 5 - 45

Hz). Each trial was segmented in the following time intervals: i) a 2-seconds segment

starting 2 s before the movement onset (referred to as “Whole”), ii) a 1-second window

starting 2 s before the movement onset (“Early”), and iii) a 1-second window starting 1 s

before the movement onset (“Late”). The features from these three windows were used in

combination by the classifier. The “Whole” window was expected to supply the classifier

with global and low-variance information of the cortical activity related to the voluntary

movement, while the “Early” and “Late” windows were expected to provide information

regarding transitory mental processes before the voluntary movement initiation.

For each of these segments, the Power Spectral Density (PSD) values of the EEG signal

of each channel were obtained in the frequency range from 7 - 30 Hz (alpha and beta

bands), with a frequency resolution of 1 Hz (Welch’s method with Hamming windowing,

75 % overlap, no zero-padding). Therefore, 23 power values were extracted per window,

channel and trial, leading to 2208 features extracted per trial.

The logarithms of the PSD values extracted were computed as the features fed to the

data mining process, aimed to construct the EEG-based classifier of analytic movements

performed. The logarithmic power values were used to convert the extracted features into

normal distributions.

3.3.3.3 Classifier implementation

Firstly, the feature space was reduced eliminating features correlated ≥ 0.75 in the

training dataset.

Feature selection was performed using a genetic algorithm that maximized the accuracy

of a Bayesian classifier of independent features (the scheme is presented in Fig. 3.3). The

algorithm was programmed to run 1000 generations, with 500 new individuals generated

in each generation. The number of features of each the individual was set to be between 50

and 100. A 4-fold cross-validation was used to evaluate the classifier’s performance for each

individual in each generation, avoiding singular solutions of the classification problem.

In the classification stage, a Bayesian Classifier of independent features with Gaussian

modelling was also selected to classify the examples because it showed better performance

than neural networks and support vector machines with the data of these experiments.

Moreover, similar studies have also obtained optimal results with Bayesian classification

methods [Bai et al., 2007]. A 4-fold cross-validation was used to obtain the classification
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results.
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Figure 3.3: Schematic representation of the three positions adopted by the participants to
perform the analytical movements.

3.3.4 Additional experiments to prove the validity of the classification

results

Three additional experiments aimed to further validate the classification results were per-

formed and are described here.

3.3.4.1 Validation experiment 1: Estimation of the significance of the ob-

tained class description

The experiment was performed to obtain a referential chance level, in order to compare

it with the accuracy results obtained with the classifier of analytical tasks. To get the

chance level, the following process was repeated 10 times for each subject: firstly, the

labels of the examples in the dataset were reorganized randomly, and secondly, the new

dataset was applied the classification procedure detailed in 3.3.3.3. Mean ± SD of the

accuracy results over the 10 repetitions was computed for each participant and compared
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to the classification results with the correctly labelled examples.

3.3.4.2 Validation experiment 2: Analysis of the influence of the time seg-

ments location

A second experiment was run to test whether varying the location of the time segments

used for the feature extraction process had any influence in the accuracy of the classifier.

Average accuracy results were obtained with the tasks’ classifier using three different

conditions, with the signal segments used for the features extraction (“Whole”, “Early”

and “Late” as defined before) located: i) from -3s to -1 s (0 s is the movement onset);

ii) from -2 s to 0 s (note that this condition is the same as the one presented in Section

3.3.3); and iii) from -1.5 s to +0.5 s.

3.3.4.3 Validation experiment 3: Extraction of other tentative sources of

information

Three different initial positions were adopted by the participants. This may influence

the results obtained with the tasks’ classifier. Therefore, an additional classifier was devel-

oped to classify among the three different initial positions adopted. The selected features

for this classifier were compared with the ones selected for the classification of analytic

movement tasks. The purpose was to evaluate how similar the classifiers of tasks and

initial positions were. The percentage of shared features obtained from this comparison

represents an index of the influence of the initial positions on the tasks’ classification

results.

3.3.5 Statistical analysis of the features selected

Three one-way ANOVAs (P < 0.05) were performed to test whether there were spatial

or frequency preferences in the feature selection process of the tasks’ classifier. Multiple

comparison tests were performed using Bonferroni post-hoc analysis.

To evaluate the spatial distribution of the selected features, the measured scalp posi-

tions were divided into 9 areas (see Fig. 3.4). In order to look for statistical differences

in the spatial distribution of the selected features along the Caudal-to-Rostral direction,

features from sectors 1, 2 and 3 were labelled as “Frontal Features”, features from sec-

tors 4, 5 and 6 were labelled as “Rolandic Features” and features from sectors 7, 8 and

9 were labelled as “Parietal Features”. For the analysis of the statistical differences in

the spatial distribution of the selected features along the central sulcus direction, features
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from sectors 1, 4 and 7 were labelled as “Left Features”, features from sectors 2, 5 and 8

were labelled as “Central Features” and features from sectors 3, 6 and 9 were labelled as

“Right Features”. The number of features in each region was normalized to the number

of positions in that region, so that the statistical analysis was unbiased.

To study statistical differences in the frequency distribution of the selected features,

they were divided into three groups: alpha band (7-12 Hz), lower-beta band (13-19 Hz),

and upper-beta band (20-29 Hz). Normalization was also performed in this case.

Figure 3.4: Scalp division into 9 regions to perform the statistical analysis of the locations
of the selected features.

3.4 Results

3.4.1 Classification results of 7 analytical movements

The genetic algorithm selected on average 86 ± 4 features (out of the initial set of 2208

features) to classify the 7 movement tasks. The plots of Fig. 3.5 represent the spatial

distribution of features selected for each subject. In 4 cases (subjects 01, 02, 03 and

06), contralateral features of the central regions of the scalp were preferentially selected

by the classifier. According to the statistical analysis of the features selected with all

subjects, significantly more features were selected from the upper-beta band than from

the alpha band (P < 0.0001), and the number of features located around the central sulcus

(“Rolandic Features”) was significantly higher (P = 0.017) than the number of “Parietal

Features”. No further statistically significant results were found in this regard.

The precision and recall results obtained are shown in Table 3.1. Results are presented

for the classification of each one of the 7 tasks. The last row and column present average

results across subjects and tasks respectively. On average, 62.6 % of the trials were
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Figure 3.5: Scalp maps of all subjects representing the number of features selected from
each electrode position.

correctly classified with a precision of 63.7 %. Subjects 03 and 06 presented the best

classification results (accuracies of 76.6 ± 4.5 % and 64.2 ± 0.7 % respectively), while the

system showed the worst performance with subject 04 (54.2 ± 6.8 %).

Code
SA SE SR EE FP WE WR Avg. Subj.

R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%)

01 84.0 80.8 46.9 52.3 67.3 57.9 64.0 60.4 52.0 63.4 44.0 46.8 68.0 63.0 60.9 60.6
02 67.3 70.2 50.0 59.5 66.0 56.9 36.2 56.7 54.2 55.3 72.0 59.0 72.9 61.4 59.8 59.9
03 70.0 79.5 89.6 89.6 78.0 73.6 68.0 82.9 62.5 65.2 82.6 67.9 86.0 79.6 76.7 76.9
04 54.0 52.9 56.0 54.9 51.1 47.1 55.1 57.4 46.0 46.0 66.0 66.0 51.0 55.6 54.2 54.3
05 64.0 76.2 57.1 62.2 80.0 69.0 66.0 63.5 51.0 55.6 70.8 65.4 44.0 42.3 61.9 62.0
06 74.0 54.4 80.0 75.5 60.0 75.0 45.8 91.7 46.0 53.5 61.7 64.4 70.0 63.6 62.5 68.3

Avg. 68.9 69.0 63.3 65.7 67.1 63.2 55.8 68.8 51.9 56.5 66.2 61.6 65.3 60.9 62.6 63.7

Table 3.1: Tasks classification results. The Recall (R) and Precision (P) results are presented
for each subject and task. The last row shows the average results across subjects. The last
column shows the average results across joints moved.

The confusion matrix obtained by adding up all single-subject confusion matrices is

presented in Fig. 3.6. The performance of the tasks classifier is represented by the increase

of darkness in bins on the main diagonal. According to this figure, the tasks involving

the elbow joint were the ones that returned the worst classification results (see matrix

columns “True EE” and “True EP” in Fig. 3.6).

3.4.2 Results of validation experiment 1: Estimation of the significance

of the obtained class description

Fig. 3.7 compares between the accuracy results obtained for each subject using the cor-

rectly labelled trials (Section 3.4.1) and the randomized ones (chance level). The average

chance level of the accuracy is 30.2 ± 4.3 %. The results obtained with the correctly

labelled examples are higher than the results with the classifier of randomly labelled trials

for all participants.
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Figure 3.6: Confusion matrix of the tasks’ classification results. Each column of the matrix
shows the distribution of the classifications of all the examples of each analytical movement.
A linear grey scale is used to represent the number of cases in each bin (also indicated
numerically).
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Figure 3.7: Comparison between the tasks’ classification results and the classification results
with the randomly generated dataset of examples. Standard deviation is included in the
second case as these are average results from 10 different random datasets.

3.4.3 Results of validation experiment 2: Analysis of the influence of

the time segments location

Fig. 3.8 shows three box-plots with the average accuracy results obtained with the classifier

of tasks under three different conditions in terms of time segments locations for the feature

extraction. The segment starting -1.5 s before the onset of the movement and finishing
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0.5 s after it returned the best classification results for all subjects (65.3 ± 7.4 %), and

the segment starting at -3 s with respect to the onset of the movements and finishing at

-1 s returned worse accuracies than the other two conditions (60.7 ± 7.8 %). Notably, the

same positive trend was also observed for each participant separately.
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Figure 3.8: Average classification accuracy obtained using three different time intervals to
extract the features.

3.4.4 Results of validation experiment 3: Extraction of other tentative

sources of information

On average, 78.3 ± 11.0 features were selected by the classifier of initial positions, from

which 18.7 ± 3.4 % were shared by this classifier and the classifier of analytic movements.

3.5 Discussion

This chapter described and validated an experimental methodology to identify the type of

unilateral and self-initiated upper-limb analytical movements based on the EEG informa-

tion extracted from the initial stages of their executions. The decoding system achieved

an average classification accuracy (62.9 ± 7.5 %) significantly above the chance level for

the proposed methodology (30.2 ± 4.3 %), thus providing evidence that movement-related

neural information associated to different tasks performed with a single limb can be ex-

tracted from the premovement EEG activity. It is expected that this information will be

valuable in neurorehabilitation environments.

Classification problems of tasks with close spatial representations in the cortical areas
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(as the movements of a single arm) and based on the EEG activity are challenging, due

to its low spatial resolution. To our knowledge, no previous studies have tried to decode

more than two different analytical movements with a same limb. Therefore it becomes

difficult to compare the methodology used here with similar works. A set of studies in the

past have used the EEG to decode two kinds of analytical movements performed with a

same limb [Deng et al., 2005; Zhou et al., 2005; Zhou and Yedida, 2007]. In these works,

positive results were obtained in the classification of torques performed with either the

elbow or the shoulder using EEG data preceding the onsets of the movements. Two classes

were thus distinguished and the obtained accuracies were higher than the ones presented

in this document. This was expected given that in the case of the tasks’ classifier, seven

classes were to be distinguished. Besides, no further testing of the obtained results was

accomplished in these previous studies, so direct comparisons cannot be performed with

the present results. In a study by Hammon et al., results of classification of reaching

movements to predefined targets were presented [Hammon et al., 2008]. In that case cued

movements were performed and premovement EEG information was used to predict the

planned target. Classification rates above chance level were obtained in the four-targets

classification problem, therefore suggesting a potential presence of relevant movement

planning information in the EEG activity.

The additional experiments performed with the acquired data in this study are useful

to assert that the cortical activity is the main information responsible for the classifier

performance, and no other non-cortical signal sources are biasing the results. In this

regard, four factors that could have biased the classification results may be considered,

given the design of the experiments and the characteristics of the EEG signal described

in the literature.

Firstly, as described in the Methods section, three different initial positions were

adopted to start the movements in the experimental sessions. These three initial posi-

tions differed only in the arm position that was used to perform the movements, and they

could have altered the EEG signal properties due to differences in the muscles’ resting

activity. In order to reject the hypothesis that the initial arm position biases the tasks

classification results, two arguments are used. On one hand, the data of the confusion

matrix (Fig. 3.6) shows that tasks starting from same positions (SA and SE; EE, FP and

WE; SR and WR) are distinguished from each other with accuracies similar to the ones

obtained with the rest of the tasks. This suggests that the information used to classify

tasks is independent of the initial positions in these specific cases. In order to reinforce this

argument, it was also run a new feature selection and classification process in which the

trials were labelled according to the initial positions adopted for each task tasks (Section

3.3.4.3). The percentage of selected features that were shared by the classifiers of tasks
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and initial positions was less than 20 %. This suggests that a large portion of different

information is used by the classifiers. Notice that although this could also be due to the

fact that similar but not equal features are being selected, the feature space reduction

performed before the feature selection process discarded features with high correlations.

Therefore it is hypothesized that the first alternative (the classifiers of tasks and initial

positions are different) is more likely.

Secondly, the EEG signal cannot be considered stationary along long measurement

intervals due to the changes in the system’s set-up (as for example changes in the elec-

trodes impedances due to deterioration of the conductive gel) [Shenoy et al., 2006] or to

fluctuations in the patients’ vigilance or involvement [Blankertz, 2008]. Therefore, vari-

ations in the features extracted from the EEG signal during the measurement sessions

are expected. Nevertheless, in these experiments it is unlikely that this phenomenon is

introducing any bias in the classification results, since the experimental design alternated

the types of movements performed in consecutive runs (the two runs of the same move-

ment were separated by one run of each of the rest of the movements). In addition, a

4-fold cross-validation was used, which separated the data in 4 randomly generated test-

ing groups. It is therefore expected that, in general terms, training and validation subsets

were randomly collected from session intervals all along the whole experiment, and the

effects of the EEG non-stationarities were marginal.

Thirdly, it cannot be asserted that the developed classifier of tasks is using cortical

activity directly involved in the motor actions. However, it can be analysed whether cer-

tain characteristics of the classifier’s design and of its behavior fit what may be expected

from a neurophysiological point of view. On the one hand, a higher number of features

were selected from EEG channels around the contralateral rolandic fissure (i.e. from the

motor and somatosensory areas of the cortex) in four out of the six subjects. This was

specially observed with participants 03 and 06, who also returned the best classification

results, whereas with participant 04 the classification results were poorer and the selected

featuers presented a different distribution over the scalp. This is in line with previous

studies regarding the spatial distribution of the cortical rhythms associated with volun-

tary motor activities [Bai et al., 2005; Desmurget et al., 2009; Pfurtscheller and da Silva,

1999; Pfurtscheller et al., 2003; Urbano et al., 1996]. In addition to this, the number of

features in the upper-beta bands was higher than in other bands, which is in line with stud-

ies showing that these rhythms are involved in the preparation of voluntary movements

[Salmelin et al., 1995; Morash et al., 2008; Engel and Fries, 2010]. Besides, given that they

present higher frequencies than the mu rhythm, they are associated with smaller neural

associations [Buzsáki and Draguhn, 2004], therefore allowing for a finer description of the

cortical representation associated with the performed task. This is in turn desired in the
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present study of classifying among tasks with similar cortical representations. Moreover,

a temporal dependency of the classification results on the location of the time segments

for feature extraction was observed (see Section 3.4.3). The segment starting -1.5 s before

the onset of the movement returned the best classification results for all subjects and the

segment starting at -3 s with respect to the onset returned worse accuracies than the other

two conditions. This is in line with what is documented about EEG activity associated

to voluntary actions: the first changes in the signal start around 2 s before the movement

becomes apparent and the significance of these changes is greatest with the beginning of

the movement [Pfurtscheller and da Silva, 1999; Bai et al., 2005; Pfurtscheller et al., 2003].

Finally, it may be argued that the dataset of examples is so small (50 trials per class

in the case of classifying analytic movements) that suboptimal solutions are obtained with

the genetic algorithm, and that these solutions only adapt the measured examples of the

dataset, but would fail generalizing to new unseen data (i.e. overfitting). Nevertheless,

given that a Bayesian Classifier has been used in combination with a cross-validation

methodology, suboptimal classification solutions are highly unlikely. Furthermore, the

results obtained with the original dataset outperform the classification results with the

randomly labelled dataset.

In summary, the posterior analysis of the methods used and results obtained here

demonstrates that the motor-related cortical activity associated to the execution of vol-

untary movements performed with a single limb can be characterized to a certain degree.

Nevertheless, since these results have been obtained with an offline analysis of the data

acquired in a single session with each participant, it still needs to be studied whether the

performance of the developed classifiers remain stable along different sessions. Further-

more, variations of the classifier’s performance were observed when features were extracted

from time segments at different locations with respect to the actual movements. Higher

accuracies were obtained when the initial part of the apparent movements (the first 500

ms) were considered, probably suggesting either an influence of the somatosensory infor-

mation in the classification results, or an increased activation of the primary motor cortex

and other cortical areas related to movement execution, once the movement starts. Future

experiments also including motor imagery tasks of the analytical movements may help to

gain knowledge in this regard.

Finally, a system capable of decoding the cortical activity related to the kind of upper-

limb movements can be of interest for neural rehabilitation protocols [Daly and Wolpaw,

2008]. The system proposed could serve as a monitoring tool of the patient’s involvement

in the rehabilitation task or it could also be included as an additional input to a controller

of assistive robotic devices. Therefore, analogous studies need also to be performed with

patients presenting altered cortical activity due to lesions in the nervous systems [Wiese
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et al., 2004; Stepien et al., 2010; Serrien et al., 2004], to test the reliability of the classifier

in such conditions.

3.6 Chapter conclusions

It has been proposed a classifier of self-paced analytical movements performed with the

upper-limb and based on premovement EEG information. An average accuracy of 62.9 ±
7.5 % has been reached in the classification of the seven analytical movements performed

with the dominant arm, which was above the chance level (30.2 ± 4.3 %). Several tests

have been performed to discard the hypothesis that the information used by the classifiers

could come from different sources than the cortical activity.

This chapter has described an innovative experimental procedure regarding the decod-

ing of mental states related to 7 different movement actions performed with a single limb.

It is therefore a step forward in the use of EEG signals to model cortical patterns related

to planning and execution of movements and it is expected to improve future BCI systems

aimed to respond in close association with users’ intentions to move.
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Chapter 4
Study of alprazolam-induced changes in

cortical oscillations and tremors of

patients with ET

4.1 Abstract

In the first chapters of this thesis it was emphasised the potential capacity of EEG systems

to acquire, with high temporal resolution, cortical processes associated with sensorimotor

states, and it was also indicated that current electrophysiological systems (such as EEG

and EMG devices) allow the concurrent measurement of neuronal information from differ-

ent body regions and with negligible synchronization errors. These advances open a door

to studies of interaction between central (cortical) and peripheral (muscular) neural activ-

ity. While in Chapter 3 the distribution of cortical rhythms associated to the execution of

different voluntary movements was characterized , in this chapter it is presented a study of

the effects of a clinically used drug (alprazolam) on pathological (involuntary) tremors and

cortical oscillations of patients with ET. The study analyses tremor changes after alprazo-

lam intake and how they are related to other changes in the cortical activity. This chapter

is therefore aimed to provide new insights about the mechanisms of tremor generation in

ET and to propose a novel application of EEG systems to analyze the effects induced by a

drug in patients with tremor.



Chapter 4. Study of alprazolam-induced changes in cortical oscillations and tremors of patients

with ET

4.2 Introduction

ET is a neurological disease characterized by postural and action tremor of the arms with

a frequency of 4-12 Hz [Benito-León and Louis, 2006]. Although it is the most prevalent

movement disorder [Louis et al., 1998; Thanvi et al., 2006; Benito-León et al., 2003], and

constitutes one of the most common neurological disorders among adults [Benito-León

et al., 2003, 2005], the exact mechanisms of tremor generation in ET are still unknown

[Elble and Deuschl, 2009; Louis et al., 2013].

A number of studies using different brain imaging techniques point to a neuronal loop

involving cerebello-thalamocortical pathways as the structures involved in the generation

of the pathological tremor-related neural activity [Benito-León et al., 2009; Hua et al.,

1998; Hellwig et al., 2001; Raethjen et al., 2007; Raethjen and Deuschl, 2012; Schnitzler

et al., 2009]. In particular, studies of coherence between the cortical activity, measured

with electroencephalography (EEG), and muscle activation, measured with electromyog-

raphy (EMG), have demonstrated the implication of cortical structures in the pathological

neural network [Hellwig et al., 2001], and have even allowed to postulate how such inter-

action may change over time [Raethjen et al., 2007].

ET is commonly treated either with neurosurgery or with drugs. However 50 % of

the ET population does not benefit from any of the available alternatives [Deuschl et al.,

2011]. All the pharmacological treatments for ET were discovered by chance [Deuschl

et al., 2011] and are still limited and only partly effective [Benito-León and Louis, 2006,

2011]. The action mechanisms of these drugs are barely understood, although it is assumed

that they attenuate tremor by interfering with the widespread pathological oscillations

occurring throughout the motor system [Deuschl et al., 2011]. Among the pharmacological

alternatives to treat ET, alprazolam is a short-acting benzodiazepine accepted by the

Quality Standards Subcommittee of the American Academy of Neurology as a probably

efficacious (level B) agent [Zesiewicz et al., 2011]. Two studies using clinical rating scales

found that alprazolam reduced the limb tremor in a 2-4 week monotherapy trial [Gunal

et al., 2000; Huber and Paulson, 1988]. Nevertheless, its use is recommended in patients

who require only intermittent therapy, due to its abuse potential, and to the risks of

developing tolerance [Huber and Paulson, 1988]. As in the case of other pharmacological

treatments for ET, the way in which alprazolam alleviates tremor is unknown.

Previous studies with healthy subjects have observed an increased activity in the cor-

tical beta rhythms (around 13-30 Hz) after benzodiazepine intake [Baker and Baker, 2002;

Hall et al., 2010; Jensen et al., 2005; Lindhardt et al., 2001]. It is known that benzo-
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diazepines increase the affinity of the λ–aminobutyric acid (GABA)-A receptor toward

its neurotransmitter, increasing the size of the inhibitory postsynaptic potentials that it

generates [Connors et al., 1988]. However, it is not intuitive how enhancing inhibition

increases the power of the beta and gamma rhythms, and why such increase is observed

in the somatosensory cortex [Minc et al., 2010; Hall et al., 2010]. In this regard, it has

been proposed that mutual inhibition between interneurons, and the reciprocal loop be-

tween excitatory and inhibitory cells provide two general mechanisms for rhythmogenesis,

especially for fast cortical oscillations [Wang, 2010].

Whether the expected changes in the cortical beta activity of ET patients after alpra-

zolam intake are part of the neural process that alleviates tremor or they rather represent

a side effect in the ET treatment with alprazolam is an open question. Since voluntary

motor commands are projected to the targeted motor unit populations at the beta band

[Conway et al., 1995; Kilner et al., 2000; Petersen et al., 2012], it is hypothesized that

the increase in the cortical beta activity due to benzodiazepines alters the transmission

of descending motor commands. It is further expected that such an increase of oscilla-

tory beta activity in turn impedes the appearance of pathological tremor-related cortical

activity. Therefore, this study analyses the interplay between the cortical activity in the

beta band and in the tremor frequency after alprazolam intake, and how this interaction

is associated with the drug effects on the tremor and the cortico-muscular coupling at the

tremor frequency.

4.3 Methods

4.3.1 Patients, data acquisition and experimental procedure

Eight patients (two female, age 64.1 ± 13.2 years; mean ± SD) were included from a

general neurology outpatient clinic (details in Table 4.1). All of them had been diagnosed

as ET according to the Movement Disorders Society Diagnostic Criteria [Deuschl et al.,

1998]. Patients with severe tremor at the hands or the head were excluded from the study

to avoid interferences with the recordings. None of the patients had any other neurological

condition apart from ET, or suffered from psychiatric disorders. None of them was taking

medication to treat their tremor, or any other drugs that could alter it.

Wrist tremor at the most affected side was measured with solid-state gyroscopes and

surface EMG. Two gyroscopes, placed on the hand dorsum and the distal third of the

forearm, measured wrist tremor by computing the difference between them [Gallego et al.,

2010]. The data were sampled at 50 Hz.

Surface EMG was recorded using a grid of 13 X 5 electrodes (1 missing electrode),
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Patient 01 02 03 04 05 06 07 08 09

Gender Male Female Male Female Male Male Male Male Male
Age (years) 76 80 44 63 45 65 77 69 58
ET family history Y Y Y Y Y Y Y N N
Disease duration (y) 5 32 15 7 4 10 2 3 4
Dominant side of tremor L R R L R L L L R
EMG tremor freq. (Hz) 6.2 5.2 7.0 6.2 - 6.2 7.0 6.2 8.2
Leg tremor N Y N Y N N N N N
Head tremor N N N Y Y Y N N N
ETRS 45 32 17 38 18 15 14 16 22

Table 4.1: Main baseline demographic and clinical variables. Fahn, Tolosa, Marin Essential
Tremor Rating Scale (ETRS).

with 8 mm inter-electrode distance. The electrode grid was placed on the wrist extensors,

centred on the muscle exhibiting the clearest tremorogenic activity; the common reference

was set to the wrist using a humidified bracelet. The data were amplified, band-pass

filtered (10-750 Hz), and sampled at 2.048 Hz.

EEG signals were recorded from 16 positions (F2, F4, FCz, FC2, FC4, FC6, Cz, C2,

C4, C6, T8, CP2, CP4, CP6, Pz, and P4, according to the International 10-20 system,

when the left arm was recorded; the symmetric positions were employed when the right

arm was recorded) using passive Au electrodes. The cortical activity at the contralateral

hemisphere was recorded because it is where significant cortico-muscular coherence at the

tremor frequency [Hellwig et al., 2001, 2003; Raethjen et al., 2007; Timmermann et al.,

2002], and the beta band [Conway et al., 1995; Negro and Farina, 2011], is best observed.

The reference was set to the common voltage of the two earlobes. AFz was used as ground.

The signal was amplified, band-pass (0.5-60 Hz) and notch filtered (50 Hz), and sampled

at 256 Hz.

The recording systems were synchronized with a common digital signal.

The study was performed in a sound and light-attenuated room. Patients sat in a

comfortable chair with the arms supported. During the measurements, they were asked

to remain relaxed, keeping their eyes open and fixing their gaze on a point in the wall.

Patients were instructed not to eat or drink anything (water was allowed) from 2 h before

the recordings. In order to evaluate the effects of alprazolam, patients were measured

during four 4-min runs, as follows: before the administration of alprazolam (Run0), im-

mediately after it (Run1), 40 min after it (Run2), and 80 min after it (Run3). Postural

tremor was elicited by asking patients to hold the measured hand outstretched, with palms

down, and parallel to the ground. In patients who exhibited a very mild tremor before

the experiments (patients 02 and 04), weight loads of 0.5 Kg were attached to the hand

to enhance it [Hellwig et al., 2001; Raethjen et al., 2007].
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A single dose of 0.50 mg of alprazolam was administered to patients who weighed

less than 75 kg; the rest (5 patients) received a single dose of 0.75 mg. No patient

reported adverse effects. Two patients were discarded due to technical problems with

EEG acquisition (patient 03) and to the absence of tremor during the measurement session

(patient 05), respectively.

4.3.2 Data processing and analysis

The EEG signals were spatially filtered using Hjorth transform [Hjorth, 1975]. The re-

sultant channels (FC2, FC4, C2, C4, C6, CP2 and CP4) were used in the subsequent

analyses. Artefacts were removed based on visual inspection.

After examination of the amplitude spectra of the gyroscope and EMG data, the

defined tremor frequency range for the group of patients was 4-9 Hz (see Fig. 4.1). This

range was used to estimate both the tremor power (measured with gyroscopes and EMG),

and the power of the tremor-related cortical activity.

To select the surface EMG channel that best characterized the tremor, the criterion of

maximizing the signal-to-noise ratio (SNR) of the tremor component of the EMG signal

was used.

To select the surface EMG channel that best characterized the tremor, the criterion of

maximizing the signal-to-noise ratio (SNR) of the tremor component of the EMG signal

was used. This value was defined as the ratio of the integral of the power spectral density

(PSD) within the tremor frequency range, to the integral of the PSD of the rest of the

signal, similarly to [Hellwig et al., 2001]. This channel was used throughout the whole

analysis.

The percentage of tremor reduction between the first and last runs (Run0 and Run3)

was computed by analyzing the gyroscope data. Tremor severity was defined as the integral

of the PSD of the signal in the tremor frequency range. Before, the data were band-pass

filtered (2-15 Hz) to extract the tremor [Gallego et al., 2010]. It was also calculated how

the neural drive to the muscles related to tremor was reduced after alprazolam intake by

computing, with the EMG data, the percentage of tremor power decrease in Run1, Run2

and Run3 with respect to Run0.

Cortico-muscular coherence was computed to assess how the tremor-related cortical

drive to the muscle varied due to the effect of alprazolam. The coherence between all the

processed EEG channels and the rectified EMG at the electrode previously selected was

calculated [Farina et al., 2013], and the EEG channel exhibiting the largest coherence peak

at the tremor frequency was chosen for subsequent calculations. It was used the method

for coherence estimation proposed in [Halliday et al., 1995]: the signals were divided into

epochs of 1 s, and their individual spectra and cross-spectra were computed (Hanning
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window of 1 s and 0.125 Hz resolution, achieved with zero-padding). The coherence

|Rxy(λ)|2 was estimated as

|Rxy(λ)|2 =
|Cxy(λ)|2

Cxx(λ)Cyy(λ)

with |Cxy(λ)|2 being the magnitude squared cross-spectrum, and Cxx(λ) and Cyy(λ)

the individual power spectra [Halliday et al., 1995; Hellwig et al., 2001]. The confidence

limit was obtained as:

1− (1− α

100
)

1
N−1

where N is the number of epochs used to calculate the coherence and α is the signifi-

cance level [Rosenberg et al., 1989].

To study how alprazolam affected the tremor-related cortical activity and the cortical

activity in the beta band, the changes in the EEG spectra were assessed by calculating

the integral of the PSD at the selected channel in the tremor frequency range (4-9 Hz, see

above) and in the beta band (13-30 Hz).

4.3.3 Statistical analysis

The Wilcoxon rank sum test was used to compare the tremor severity measured by the

gyroscopes before (Run0) and 75 min after the administration of alprazolam (Run3).

The Kruskal-Wallis test was used to compare the tremor-related neural drive to the

muscle in Run3, Run2 and Run1 with respect to Run0. Significant differences between

pairs of data were assessed with the Games-Howell test assuming non-equal variances.

The same test was used to compare the changes of the power of the cortical activity in

the beta band and in the tremor-frequency range, and to compare the changes of the ratio

between the activity in these two bands; in all cases changes in Run3, Run2 and Run1

were obtained with respect to Run0.

Finally the Spearman’s rank correlation was calculated between the decrease in tremor

severity (in terms of neural drive to the muscle, i.e. EMG) and the changes of the ratio

between the EEG activity in the beta band and in the tremor frequency range, using

the data of Run3, Run2 and Run1 with respect to Run0, to investigate whether both

phenomena were related.

Results are reported as mean ± SD, and considered significant if P < 0.05.
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4.4 Results

The amplitude of the tremor measured with gyroscopes showed a significant (P = 0.029)

reduction 75 min after the administration of alprazolam (mean 74.3 ± 30.2 %). The mean

tremor amplitude during Run0 and Run3 was 0.31 ± 0.34 rad2s−2 and 0.043 ± 0.049

rad2s−2, respectively.

Fig. 4.1 illustrates the changes of the tremorogenic muscle activity along the different

runs. There was a significant difference in the tremor power reductions observed in Run3,

Run2 and Run1, all compared to Run0 (P = 0.002). Post hoc analysis showed that the

decrease in the tremor power observed in Run3 (mean 75.0 ± 17.6 %) and in Run2 (mean

69.3 ± 17.9 %) were not statistically different from each other (P = 0.82), but both were

significantly larger than that observed in Run1 (mean 4.6 ± 23.6 %), always with respect

to Run0 (P < 0.001 and P < 0.001, respectively).

There were no significant differences (P = 0.917, Wilcoxon rank sum test) between the

tremor frequency measured with gyroscopes (6.22 ± 0.53 Hz) and EMG (6.20 ± 0.56 Hz).

The tremor frequency did not change during the recordings, although no statistics were

extracted since the tremor was no clearly identifiable in some patients after alprazolam

intake (see panel C in Fig. 4.1).

Fig. 4.2 shows the coherence between the EEG (channel providing the largest coherence

at the tremor frequency) and the selected EMG channel. The coherence at the tremor

frequency in Run0 was significant (P < 0.05) for all patients. In Run3, the coherence

at the tremor frequency decreased in all cases and fell below the significance threshold

in 5 out of 7 patients. In the case of patient 07, the significant coherence in Run3 was

accompanied with the observed rebound of EMG tremor power in Run3 with respect to

Run2 (see Fig. 4.1).

Fig. 4.3 shows the time course of the EEG power spectrum along the runs. There was

a significant difference in the increase of the ratio between the beta and tremor-related

cortical activities for Run3, Run2 and Run1, all with respect to Run0 (P = 0.003). Post

hoc analysis showed no statistical difference between Run3 (mean 129.2 ± 96.7 %) and

Run2 (mean 94.0 ± 48.5 %) data groups (P = 0.68), but both were significantly larger

than that observed in Run1 (mean 9.81 ± 17.6 %) (P = 0.039 and P = 0.007, respectively).

As a graphical representation of the increase in beta power observed in one patient, Fig.

4.4 shows in a spectrogram the increased beta activity since 40 minutes after alprazolam

intake for patient 7 in the analysed EEG channel.

Taken separately, the changes in the cortical beta activity and in the cortical activity

within the tremor frequency range, the results were similar. The beta power increases in

Run1, Run2 and Run3 with respect to Run0 (5.7 ± 3.6 %, 54.4 ± 26.8 % and 64.8 ±
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Figure 4.1: Changes in tremor along the recording runs. (A) Example of tremor reduction
between Run 0 and Run3 according to gyroscopic data. (B) Time course of the raw EMG
(same amplitude scale for all subjects); (C) PSD of the EMG signals (one panel per patient).
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included for patient 07 only). Each panel represents a different patient. The significance
level (P < 0.05) is also displayed (solid gray line).

29.2 % respectively) were significantly different (P = 0.002). Post-hoc analysis showed

that statistical significance was observed only in the comparison between Run1 and Run2

(P = 0.007), and between Run1 and Run3 (P = 0.004), while between Run2 and Run3

no significant differences were found (P = 0.77). The decreases of the cortical activity

in the tremor frequency range in Run1 (1.7 ± 15.4 %), Run2 (18.1 ± 16.2 %) and Run3

(23.1 ± 16.1 %) with respect to Run0 were significantly different (P = 0.035). In this

case, post hoc analysis did not show significant differences between groups. A graphical

representation of these results is shown in Fig. 4.5, where it is shown that the decrease

in the cortical activity within the tremor frequency range and the increase of the cortical

beta activity increase along the time and are positive 75 min after alprazolam intake for
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evaluate changes in the cortical activity. Each panel represents a different patient.

all patients.

There was a significant correlation (r = 0.757, P < 0.001) between the tremor power

decrease (as measured with EMG) and the increase of the ratio between the beta and

tremor-related activity in the cortical areas contralateral to the measured hand (in the

EEG channel where significant cortico-muscular coupling was best observed, see Fig. 4.6).

This relation also held when analysing the results of the patients separately, i.e. all of the

patients presented a positive relationship between both variables, as shown in Fig. 4.6.

4.5 Discussion

This study characterizes the dynamics of the tremor and the cortical activity in ET patients

after alprazolam intake. Significant changes in the measured tremor as well as in the

cortical activity both in the beta band and in the tremor frequency range due to the
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effects of the drug were found. These changes led to a significant correlation between the

reduction of the tremor and the relative change in the cortical activity in the beta and

tremor-related bands.

This study also provides the first quantitative evidence of tremor changes after a single

dose intake of alprazolam. Two previous studies showed a significant improvement in

tremor rating scales after treating ET patients with alprazolam. They reported a 30 %

reduction in a double-blind placebo-controlled trial [Huber and Paulson, 1988], and a 25

% decrease in tremor intensity rated by functional scores and a 46 % improvement in the

global improvement scale by self-evaluation of the patients [Gunal et al., 2000] respectively.

Here these results are confirmed quantitatively, by showing a significant tremor reduction

of 69.4 % and 75.8 % according to the EMG data (i.e. the neural input to the muscle related

to tremor) acquired 40 and 80 min after a single dose intake of alprazolam. The timing

of the observed effects is also in line with the time peak of concentration of alprazolam
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Figure 4.5: Changes (in %) of the cortical beta and tremor related activities in Run1, Run2,
and Run3 with respect to Run0. (A) Decrease of the power of the cortical activity within
the tremor frequency range. (B) Increase of the power in the beta band. (C) Increase of
the ratio between the power in the beta band and in the tremor frequency range.

Jaime Ibáñez Pereda 61



Chapter 4. Study of alprazolam-induced changes in cortical oscillations and tremors of patients

with ET

−20 0 20 40 60 80 100

0

50

100

150

200

250

300

350
Pat. 01
Pat. 02
Pat. 04
Pat. 06
Pat. 07
Pat. 08
Pat. 09

Tremor Power Decrease (%)

In
cr

ea
se

 in
 th

e 
ra

tio
 b

et
w

ee
n 

th
e 

co
rti

ca
l

be
ta

 a
nd

 tr
em

or
-r

el
at

ed
 a

ct
iv

iti
es

 (%
)

Figure 4.6: Relationship between changes in tremor power and the ratio between the beta
and the tremor-related cortical activities for all patients and runs. Run1, Run2 and Run3
(all with respect to Run0) are represented with the symbols •, ◦ and × respectively.

reported for healthy elderly subjects (48 ± 18 min) [Kaplan et al., 1998]. The use of

lower, single doses of alprazolam here was aimed to avoid drowsiness that could induce

EEG changes consistent with sedation and not related to any supposed anti-tremorogenic

effect. In fact, the observed increase of EEG activity in the beta band argues against a

sedative effect of alprazolam, since the beta activity is considered as an index of cortical

arousal [Niedermeyer, 2005].

The changes in the strength of cortico-muscular coupling due to the effect of alprazolam

were assessed. As expected [Hellwig et al., 2001, 2003; Muthuraman et al., 2012; Raethjen

et al., 2007], before intake, the coherence values at the tremor frequency were significant

in all patients. The coherence decreased 75 min after alprazolam intake and it was below

the significance threshold in all patients except for patients 07 and 08. Interestingly,

patient 07 also presented a rebound of the tremor severity in Run3 compared to Run2

(according to the EMG data) and highest levels of the cortical beta activity 35 min after

the drug administration. This pointed to an earlier beginning and termination of the

effects of alprazolam in this patient. Additionally, it was observed a decrease in the

power of the cortical activity in the tremor frequency range in the EEG channel showing

the largest coherence at the tremor frequency. Taken together, these results suggest a

decreased pathological oscillatory activity at the cortex when the drug starts to take

effect. Regarding the coherence in the beta band, no consistent results were observed

in the beginning of the session or during the subsequent runs. Unlike in other studies

presenting robust coherence at the beta band, here the patients performed very mild
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contractions to hold their hands extended, which explains the lack of meaningful results

in this regard [Baker and Baker, 2012; Chakarov et al., 2009].

It was observed that, during a period after alprazolam intake, there was a significant

increase in cortical beta activity in all ET patients, similarly to what was previously

reported in studies addressing the effects of other benzodiazepines in healthy subjects

[Baker and Baker, 2002; Jensen et al., 2005]. Interestingly, the power of the EEG activity

at the beta band is also enhanced in alcoholics [Rangaswamy et al., 2002] or after a small

single dose of alcohol [Ilan and Gevins, 2001], and in 50-90 % of ET patients alcohol acts

by reducing tremor amplitude [Growdon et al., 1975; Zesiewicz et al., 2011]. While the

precise mode of action of ethanol in ET has not been established [Boecker et al., 1996],

its principal effect is likely produced via the potentiation of GABA-A receptors [Wallner

et al., 2003]. Although the effect of these substances increasing the beta power measured

with EEG could not be related to its antitremorogenic effects, a significant relationship

between the increase of the ratio between the beta and tremor-related cortical activity

and the reduction of the contralateral postural tremor has been observed. Indeed, this

dependency was seen for each patient individually (see Fig. 4.5). It is acknowledged that

this finding could be an epiphenomenon or the consequence, albeit not necessarily direct, of

the biochemical effect of alprazolam upon the brain. Nevertheless, considering that during

maintained motor contraction the cortical motor areas and the muscles are synchronized

in beta-range [Baker, 2007; Brown, 2000; Conway et al., 1995; Halliday et al., 1998; Kilner

et al., 2000], it is hypothesized that the increased physiological beta activity at the primary

motor cortex may be partially interfering the coupling of pathological oscillatory networks

involved in the generation of tremor in ET.

The main structures in the central nervous system believed to be involved in the

generation of the tremor in ET [Boecker et al., 1996; Jenkins et al., 1993; Park et al.,

2010; Wilms et al., 1999] are controlled by GABAergic connections. Due to this reason,

it is noted that the GABAergic effect of alprazolam would be not only limited to the

sensorimotor cortex, but could be spread through other subcortical structures. Indeed,

localized microinjections of the GABA-A agonist muscimol into the ventral intermediate

nucleus (in areas where tremor-synchronous cells were identified electrophysiologically)

of ET patients undergoing stereotaxy, were effective in reducing tremor [Pahapill et al.,

1999].

This study presents some limitations, but their impact on the conclusions is expected

to be minor. Firstly, a small group of patients was recruited for the experiments, and thus

the obtained results might not be generalized to population dwelling ET cases. However,

the homogeneity of the results obtained in all the patients (see Fig. 4.6), reinforce the

hypothesis proposed in this study. Second, no placebo group was measured. However,
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the obtained data does not indicate that any of the patients experimented placebo effects,

given that the observed reduction of tremor severity 4 min after alprazolam intake was

negligible compared to subsequent runs (see Fig. 4.1). It is considered that the results

were not influenced by expectancy bias since patients had never been previously treated

with alprazolam, and did not know how and when the drug could improve the tremor.

4.6 Chapter conclusions

It has been shown that alprazolam attenuates tremor in ET at the same time that it

increases the ratio between the beta and the tremor-related cortical activity, and decreases

the strength of cortico-muscular coupling at the tremor frequency. It is hypothesized that

the increase in the cortical beta activity due to the effects of alprazolam acts as a blocking

mechanism of the pathological neural networks, which in turn helps reducing the tremor

in ET.

This is the first study of the neurophysiological changes occurring in ET patients after

the intake of a drug used to alleviate the tremor, and it is expected that further experiments

with other drugs reducing the tremor in ET will help understanding the pathophysiology

of this disease and its response to the different treatments. The study represents an exam-

ple of possible clinical applications of EEG technology to characterize and/or monitorize

the effects of certain pharmacological treatments in patients with neurological disorders

affecting their motor capacity.
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Chapter 5
Prediction of voluntary movements using

the EEG signal and its application in BCI

systems assisting patients with tremor

5.1 Abstract

It has been previously shown that cortical changes can be observed in the EEG activity when

movement tasks are performed, and that these changes may appear up to 1.5-2 s before

voluntary movements are initiated. Chapter 4 also showed that patients with tremor may

present altered cortical activity at certain frequency bands as a result of the existing tremor.

In this chapter, an EEG-based design predicting voluntary movements and integrated with

other sources of information also related to the execution of motor tasks is presented.

The ultimate goal is to build up a multimodal BCI system managing pathological tremors.

In this multimodal interface, anticipated information regarding intended motor actions is

extracted from the EEG signals and supplied to other subsystems (based on EMG and

gyroscopic signals) to finely track and cancel the tremor superimposed on the voluntary

movement. Results of two experiments are presented in the chapter. The first experiment is

aimed to validate the EEG system anticipating voluntary movements with healthy subjects

and patients with essential tremor, and to compare an adaptive and a fixed design of

the system. The second experiment in the chapter is aimed to validate the idea of a

multimodal interface integrating EEG data with other sources of movement information.

In this second case, results are given for a group of patients and the main objective is to

study the advantages of a multimodal system integrating EEG information with EMG and

gyroscopic data. The proposed system represents the first approach to EEG-based systems

anticipating voluntary movements under a fully asynchronous and continuously evaluated

paradigm, and it also represents the first BCI application for patients with tremors and the
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first time that EEG and EMG signals are fused to improve the performance of a system

tracking motor tasks.
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5.2 Introduction

Multimodal Human-Robot Interfaces (mHRI) for motor compensation take advantage of

complementary sources of information to drive external devices. In such applications,

a major goal is to provide the patient with a communication channel that behaves in a

natural way. A natural human-robot interface controlling movement compensation devices

aims at reducing the impact of the technology on the user, and to do so it must meet three

objectives: 1) the system must reliably distinguish the user’s intentions to move from the

periods of non-intended activity (when the controlled device is in an idle state), 2) it

must react with minimum latency with respect to the user’s intentions to move, and 3)

the assistive technology must rely on the biosignals that appear when the user performs

an action in a normal way, i.e. the user does not need to learn artificial strategies to

control the device. To achieve these goals, the multimodal interface needs to make use of

as many movement-related sources of information as possible, with these sources reflecting

complementary aspects regarding movement generation.

As it was presented in previous chapters, EEG activity acquired from regions around

the central sulcus reflects cortical activity related to movement intentions and motor aware-

ness [Desmurget et al., 2009]. Therefore, its integration with other noninvasive sensor

modalities that track actual human movements, like EMG (analysing musle activation)

and gyroscopic information (analysing rotations of body parts), makes it possible to char-

acterise a voluntary movement during the planning and execution stages.

In this chapter it is presented an Online EEG-based Detector of the Intention to Move

(ODIM) and its integration (with EMG and gyrosopic technology) in a mHRI aimed to

cancel pathological tremors by means of electrical stimulation. In such integrated platform,

the proposed ODIM distinguishes resting states from intervals preceding the execution

of upper-limb movements, and therefore it is aimed to provide the EMG/gyroscopes-

based systems with predictions of voluntary movements. Having anticipated information

about intended actions, the pathological tremor can be characterized and tracked from

right before intended actions begin, giving rise to a successful detection of the voluntary

movement onset and to a precise tremor tracking and cancellation from the exact moment

at which the movement begins. The proposed platform helps to meet the aforementioned

requirements of a natural interface. First, given that EEG holds information on the

patient’s intentions to move, it enables the gyroscopes/EMG-based movement tracking

systems to detect voluntary actions. Besides, providing the EMG and gyroscopic systems

with predictive information on voluntary actions is useful to detect movement onsets
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with short delays (this can be complicated if tremor is present before the movements

begin). Finally, the ODIM proposed here is based only on the EEG patterns present before

a subject self-initiates a movement with the upper-limb. Therefore, learning artificial

mental strategies to command the interface is not required. The integration of EEG

technology in such a mHRI is hence justified. Nevertheless, the EEG-based system must

demonstrate a proper function providing cortical information that allows anticipation of

intended actions and being robust against false activations during long periods of non-

activity. Additionally, the system must demonstrate its suitability for tremor patients,

given that EEG movement-related patterns in the most typical tremor-related pathologies

may be somewhat different to those observed in healthy subjects [Tamás et al., 2006; Lu

et al., 2010; Magnani et al., 1998, 2002].

As it was described in Chapter 2, two EEG patterns are suitable for movement intention

detection: the BP and the ERD. Although both cortical processes appear approximately

2 s before the onset of voluntary movements, to detect the intention to move using the BP

presents an important drawback: the “early-BP” presents small amplitudes (2-3 µV) [Bai

et al., 2011], which are barely detectable in a single-trial analysis. For that reason, the

robust online single-trial detection of the BP relies on “late-BP” detection. This makes

it difficult to anticipate the onset of the movements using this cortical pattern. ERD, on

the other hand, overcomes this problem since the switch between the synchronised and

the desynchronised states is faster and more pronounced [Bai et al., 2011; Morash et al.,

2008]. Several previous works have dealt with the problem of detecting the intention to

move [Niazi et al., 2011; Bai et al., 2011; Lew et al., 2012]. On the one hand, [Niazi et al.,

2011] and [Lew et al., 2012] used the BP to locate the onsets of voluntary movements

performed with the ankle and the arm, respectively. A high percentage of movements was

detected, although no anticipation was achieved due to the aforementioned characteristics

of the BP. On the other hand, Bai et al. [Bai et al., 2011] used subject-specific ERD-

patterns to detect the intention to move in healthy subjects. High prediction periods

(0.62±0.25 s) were obtained with an average precision of 75±10 %, but a small number of

movements was detected with most subjects analyzed (less than 50 % of the movements

were detected with the best subject). Importantly, most of these studies provide results

of paradigms in which rest intervals preceding voluntary actions last on average 5̃ s, thus

reducing the chances of the systems to generate false detections.

ODIM uses the ERD pattern to anticipate movements and it is validated with an

asynchronous paradigm (no external cues are used to indicate when to move) on 6 healthy

subjects and 4 patients with ET, which consitutes the most common tremor-related neu-

rological disease, typically implicating postural and action tremor of the arms [Louis et al.,

1998; Benito-León and Louis, 2006]. Besides, the results of the integrated function of a
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mHRI taking advantage of the EEG information are provided in an additional experiment

with 5 patients with ET.

5.3 Methods

5.3.1 Experimental protocols

5.3.1.1 Experiment 1

Six healthy subjects (one female), all right-handed and between 27 and 36 years old, and

four ET patients, males, right-handed and between 75 and 85 years old were recruited.

The patients and 2 control subjects were measured in a single session, while the rest of

the control subjects participated in two measurement sessions performed over different

days. Patients were diagnosed as ET according to the Movement Disorders Society Diag-

nostic Criteria [Deuschl et al., 1998]. They presented bilateral postural and action tremor

of mild and moderate severity. Patients P01 and P02 presented also mild rest tremor.

None of them had other neurological symptoms. The patients were asked not to take

antitremorogenic drugs within the 24 hours before the experiments.

During the experiments, subjects were seated in a comfortable chair and with the arms

supported. One measurement session of one subject was divided into 3-minute-long runs.

In each run, the subject was asked to stay steady and to repeat a motor task consisting

of focusing on the dominant hand and performing a single wrist extension followed by a

return to the resting position (with the arm and hand relaxed on the armrest of the chair).

The subjects were asked to stare at a fixation cross presented on a wall in front of them

to avoid ocular artifacts. An acoustic signal sounded 10 s after each movement onset to

indicate that a new trial was starting. The subjects were asked to wait more than 3 s

between the acoustic signal and the execution of the movement. A valid trial contained an

initial acoustic signal followed by a period of no motor activity (before the subjects decided

to start the movement), an execution of the motor task and an additional 10 s time period

without motor activity (see Fig. 5.1). All patients and two control subjects (C05 and C06)

completed six to eight 3-minute runs in a single session. The rest of the measured subjects

completed two sessions on two different days. For those participating in a single session,

the runs performed during this session were divided into runs for training (first 2 runs) and

for classification (remaining runs in the session). As for the rest of the control subjects,

the first session was used as the training dataset and the whole second session was used for

validation. On average, 35±19 trials were used to calibrate the ODIM and 56±11 trials

were used to validate it. In each trial, 87.4±2.8 % of the time corresponded to intervals

with the subjects presenting a resting state, and these resting periods of time between
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movements lasted more than 15 s. This is a relevant information in order to objectively

validate the precision of the EEG system in asynchronous paradigms; the longer the idle

states, the more likely it is that the system generates false activations.

Acoustic
signal

Voluntary movement

time
Look at the �xation cross

Subject-dependent period
of time before the movement

10 s

Acoustic
signal> 3 s

Figure 5.1: Graphical representation of one trial.

5.3.1.2 Experiment 2

This experiment was aimed to validate the combined function of the EEG and EMG and

gyrscopic systems in the mHRI. Five essential tremor patients (2 female and 3 male)

between 47 to 79 years old were recruited. All patients presented postural and kinetic

tremor of mild or moderate severity. Medications were continued at the time of the

recordings.

Similar conditions to the first experiment were given. Subjects were asked to perform

a series of exercises that are commonly employed in the clinic to assess tremor: finger to

finger and finger to nose tests, and elevating both arms and keeping them outstretched

against gravity. Each patient performed 6 repetitions of each exercise. In this case,

the trials were separately recorded. The execution of all the trials followed the same

scheme: patients were asked to stay relaxed avoiding eye movements, and self-initiate the

exercise after allowing for a sufficient repose time after the trial started. In this case, the

resting intervals preceding the self-initiated movements were significantly shorter than in

Experiment 1.

The system validation was performed offline using a leave-one-out procedure (to test

the system on each trial, the rest of the trials were used to calibrate the ODIM). To

evaluate the multimodal platform, only those classified trials with visible tremor were

used to present the results of this experiment. On average, results of 10.0 ± 5.6 trials per

patient are presented.

5.3.2 Data acquisition

EEG signals were recorded with passive Au electrodes from positions FC3, FCz, FC4,

C5, C3, C1, Cz, C2, C4, C6, CP3, CPz and CP4 according to the extended international

10/20 system. Impedances were kept below 7 KOhm. The reference was set to the common
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potential of the two earlobes and Fz was used as ground. The amplifier filtered the signal

between 0.1 and 60 Hz, and an additional 50 Hz notch filter was used. The sampling

frequency was 256 Hz. Reference-free estimations of the EEG signals were obtained by

spatially filtering the 13 channels acquired. A Laplacian filter was applied to the C3,

C1, Cz, C2, and C4 positions [Hjorth, 1975], i.e. for each electrode position the average

voltage of the four equally close neighbours was subtracted. For boundary channels, a

common average reference was used (the average voltage of all channels was subtracted).

Wrist extension/flexion was monitored by means of two gyroscopic sensors placed on

the hand and forearm. Wrist rotation was obtained by computing the difference between

both gyroscopes [Gallego et al., 2010]. Both measuring systems were acquired in two

different computers and they were synchronised by means of a pulse signal that was gen-

erated by the computer storing the gyroscopes data and sent through a DAQ to the EEG

(two pulses at the start and the end of the recordings and one pulse each time the IMUs

detected a wrist extension).

In addition to EEG and gyroscopic data, in Experiment 2 tremor was recorded from

the most affected side (with which tasks were performed) using surface EMG. EMG sig-

nals were recorded over the wrist extensors and flexors with a 128-channel amplifier in

differential configuration. A 64-channel array electrode was placed on the muscle belly,

and a humidified wrist bracelet served as common reference. The signal was amplified,

band-pass filtered (10-500 Hz), and sampled at 2048 Hz by a 12 bit A/D converter. Syn-

chronization of the different systems was controlled by a digital clock signal. Only results

from those trials with visible tremor are presented here.

5.3.3 Detection of the movement onset with the gyroscopes

In order to detect the time at which each movement started in the training data (the

recorded data used to calibrate the EEG system), wrist movement in the resting condition

was characterised at the beginning of each session, and the threshold amplitude was set as

two times the maximum amplitude value in this interval. The data from the gyroscopes

were low-pass filtered (Butterworth, order 2, ≤ 6 Hz). Movements incorrectly detected by

the online gyroscopes-based algorithm were either corrected or discarded manually after

the sessions, to ensure a rigorous evaluation of the ODIM.

5.3.4 Description of the ODIM architecture

The core of the ODIM consisted of a Bayesian Classifier (BC) fed by the logarithmic

Power Spectral Density (PSD) values. Previous results presented in [Bai et al., 2007]

showed that these techniques (the BC and PSD estimations) provide the best classification
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performances in similar experiments. The BC also presents the advantage of requiring low

computational load during its online function and also during its training process.

During the function of the ODIM (see Fig. 5.2), the logarithmic power values of three

selected channel/frequency pairs (see 5.3.4.1) were extracted from the EEG signal every

125 ms using 2-s windows.The power estimations were performed using Welch’s method

(Hamming windows, 128 samples, 75 % overlap). A single class Bayesian Classifier (BC)

was fed with these values and the three output probabilities were combined to generate

the final output probability. An optimized threshold (see 5.3.4.3) was then used to convert

this probability into a binary signal, and a Refractory Period (RP) was applied in order to

maintain each positive output interval of the ODIM active for at least 2.5 s, thus generating

a stable output of movement predictions [Townsend et al., 2004].

EEG Channels
selection PSD Frequency

selection
Bayesian
classifier Threshold Refractory

period
Movement
prediction

Gyroscopes Movement
locations

Training dataset
with the previous

movements

Figure 5.2: Flowchart of the ODIM. The arrows crossing the blocks represent the adaptive
design of the parameters in these blocks.

5.3.4.1 Selection of subject-specific optimal channels and frequencies for the

ERD characterization based on the training data

The process was aimed to search for the channel/frequency pairs with largest and most

anticipative ERD. The process was divided in two steps. First, the system looked for the

frequency at which the largest ERD was observed in each channel. This frequency was

the one that maximized the ratio between the average frequency spectra of the basal and

movement states. In previous tests with the training data of the control subjects, using

this criterion provided better results in the selection of optimal frequency components than

the Bhattacharyya index, the two-sample t-test and the Kullback-Leibler distance. The

frequency spectrum of the movement state was characterised by averaging the PSDs of

all the movement intervals included in the training dataset. The movement intervals were

taken from 2 s before the onsets of the movements (when the average ERD is expected

to begin in most subjects [Pfurtscheller and da Silva, 1999]) until they ended. Similarly,

the frequency spectrum of the basal state was characterised by averaging the PSDs of all

72



5.3 Methods

−8 −6 −4 −2 0 2 4 6 8
time (s)

 

 

Average power in a given channel
ERD interval
Movement Onset

Anticipation

2s interval with
the lowest amplitude

Ba
se

lin
e 

+/
- s

td

Figure 5.3: Smoothed ERD of one channel at the optimum frequency. The amount of
prediction is the gray area under the ERD curve from its begining (at around time = -2.5
s in this case) until the movement onset (time = 0 s).

the basal intervals. The basal intervals were taken from the end of the movements until

3 s before the subsequent movements. Welch’s method was used to estimate the spectra.

At the end of this first step, it was obtained the frequency at which the ERD was most

prominent in each channel.

Second, in each channel, the average ERD was obtained at the selected frequency

by filtering the training trials (Butterworth, order 4, band-pass, 2 Hz resolution) and

averaging over the trials. The resulting 13 curves were used to estimate ERD prediction

with respect to the real movement in each channel. The amount of prediction of ERD in

each channel was obtained as the integration of ERD from the time at which the average

ERD fell below the baseline level until the movement onset detected by the IMUs (see Fig.

5.3).

The three most perdictive channels at the best pre-determined frequencies were selected

to model and classify pre-movement states.

5.3.4.2 Initial training of the BC and online recalibration

The BC was trained with the logarithmic power values of the movements from the training

dataset for the three features (channel/frequency pairs) selected as in 5.3.4.1. The power

estimation method used to extract the features training the BC was the same as the one

used to classify the trials.

Every time a movement was detected during the classification in Experiment 1, the BC

was retrained using the updated training dataset containing the most recent movements
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acquired (including the one just detected). The number of past movements taken into

account for online retraining of the system was configurable and for this study, the 30 most

recent trials were used. This amount of past movements is expected to be large enough

to correctly characterise the ERD phenomenon [Graimann et al., 2002]. In Experiment 2,

given that a leave-one-out validation procedure was carried out, no classifier update was

performed.

5.3.4.3 Classifier performance and threshold selection

In order to select the optimum threshold applied to the output probability of the BC, its

performance was evaluated with the training dataset. The selected threshold was the one

that maximised the percentage of predicted movements (recall) while keeping the false

positives per minute rate (FPMR) below a maximum level of 1.5 false activations per

minute for the training data. The recall and FPMR were defined as:

Recall = TP · (NumberOfTrials)−1 (5.1)

FPMR = FP · (1 minute)−1 (5.2)

where TP (True Positives) was the number of time intervals during which the output

of the ODIM was true and the movement onset (reported by the IMUs) was inside it.

FP (False Positives) was the number of time intervals during which the output of the

ODIM was true and they were located in the resting intervals, when the subjects were

not performing any kind of movement. Similar metrics have been used in previous studies

dealing with asynchronous BCIs [Townsend et al., 2004; Mason and Birch, 2000; Mason

et al., 2006; Niazi et al., 2011].

Similarly to the BC calibration update described in the previous section, the threshold

was also updated each time a movement was performed in Experiment 1.

5.3.5 Design of the mHRI with the ODIM system

This section presents a general view of the ODIM integration in a mHRI combining the

EEG information with EMG data and gyroscopes to drive a electrical stimuli aimed to

cancel the tremors during voluntary movements. The way the mHRI used the informa-

tion gathered from the different sensors was based on the main characteristics of each

technology regarding movement characterization (see Table 5.2). According to this table,

EEG was conceived to provide the other sensors with anticipated information of voluntary

movements, the EMG data was aimed to monitor the onset of tremor in the presence of

voluntary muscle activation, and gyroscopes were used to drive the electrical stimulation
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Advantages Drawbacks

EEG

- Low reliability

- Predictive
- Variable anticipation time ([2̃ - 0] s)

- Distinction of voluntary movement and tremor
- Some subjects do not have ERD
- Electrical stimulation may affect the EEG signal

EMG

- Robust detection of voluntary and tremulous activity - Incompatibility with electrical stimulation
- Fast and accurate detection of tremor - Nonlinear complex relationship between muscle
- Direct identification of tremulous muscles activation and joint kinematics
(preferred stimulation sites) - Limited maximum movement anticipation

Gyros.

- Usable with FES - Delayed detection of voluntary movements and tremors
- Reliable and accurate parameterization of tremor - Impossibility to identify the source (muscle)

that causes the tremor
- Convergence time of tremor tracking algorithms

Table 5.1: Advantages and disadvantages of EEG, EMG and gyroscopes to detect and track
tremors and voluntary movements.

once it was triggered.

In order to analyze the influence of the EEG system in the mHRI architecture, two

conditions were compared:

• An mHRI platform, without EEG data, in which the EMG-based system detected

the tremor and voluntary movement onsets in windows with 50 % overlap.

• An mHRI platform integrating EEG information to alert the EMG-based system

when movement intentions were detected. In case a movement intention was detected

by the EEG system, the EMG increased the overlap between consecutive windows

to 75 %.

The latency in movement and tremor onset detections for both cases were compared to

analyze possible benefits of using EEG combined with EMG data. The Wilcoxon signed

rank test (with p < 0.05 for significant results) was used.

5.3.6 Results in Experiment 1

The ODIM results obtained with all subjects who took part in Experiment 1 are presented

in the following lines along with the comparison of an adaptive and fixed design.

5.3.6.1 Results obtained with the adaptive design

The plots in Fig. 5.4 show 140 s of continuous function of the ODIM with subject C02.

Four movements are performed along this period of time. Three movements are predicted,

no false detections are generated and a late detection is achieved in the second trial. The

ODIM outputs higher probabilities when more significant ERD is found in the selected

channels. The anticipation is achieved through an optimized selection of the most antici-

pative channels and of the threshold.
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Figure 5.4: Example of ODIM performance during 140 s of continuous function with subject
C02. The plots show from top to down: 1) the spatially filtered EEG data of the three
channels selected by the ODIM, 2) the raw wrist flexion/extension recorded with inertial
sensors (gray areas) and the movement intervals obtained with this information (solid black
line), 3) the ODIM output probability (gray area) and the system’s binary output after
applying the threshold (solid black line). The vertical dashed black lines indicate the onsets
of the movements (M.O.).

Table 5.2 shows the channel/frequency pairs selected as features by the ODIM for each

of the measured subjects. Channels of the contralateral hemisphere are selected more

frequently. In some cases, ipsilateral positions are also selected, implying an anticipated

activation of this cortical region, also observed in other studies involving the upper-limb

[Bai et al., 2011; Pfurtscheller and Berghold, 1989]. The frequencies chosen with the

control subjects are mostly from the upper-alpha band (between 10 Hz and 13 Hz), while

in the case of the patients’ group, the frequencies where the ERD phenomenon is more

predictive correspond either to the lower-beta band (P02 and P03) or to the lower-alpha

band (P01 and P04).

Subject Ch.1 Fr.1(Hz) Ch.2 Fr.2(Hz) Ch.3 Fr.3(Hz)

C01 C5 10.5 C3 10.5 CP4 10.5
C02 C3 11.5 C1 11.5 CP3 11.5
C03 FC3 12.5 C5 12.5 C3 12.5
C04 FC3 12.5 C3 12.5 CP3 12.5
C05 C3 12.5 Cz 9.0 C6 9.0
C06 FC4 11.5 C3 11 .0 C1 11.5
P01 FC4 8.5 C5 8.0 CP3 8.5
P02 C1 15.5 C2 15.0 CP3 11.0
P03 FCz 16.5 FC4 17.5 C5 17.5
P04 C3 8.5 Cz 8.0 CP3 8.5

Table 5.2: Selected features (Channel-Frequency pairs) by the ODIM.
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The results obtained with the ODIM are summarised in Table 5.3. The prediction

period column refers to the average distance between the times at which the EEG-based

movement detections start and the onset of the movement. ’RecallLate’ refers to all the

movements performed by a subject and detected by the ODIM, regardless of whether the

detection anticipates or not the onset of the movement (the ODIM activations after the

actual onset of the movement and considered false negatives for the estimation of the Recall

ratio are considered true positives in this case). Finally, the continuous specificity (last

column in the table) is calculated by dividing the length of all false activations (activations

during resting intervals) by the total length of the resting intervals.

On average, 60±11 % of the movements performed by the control subjects were cor-

rectly predicted. Two patients presented Recall ratios equal to or above 50 %. The ODIM

generated on average 1.5±0.1 false activations per minute with the controls and 1.4±0.5

with the patients. Given that in the experimental protocol used, resting intervals repre-

sented more than 80 % of the total length of the measuring sessions, 2.25 false activations

would be given in a minute of permanent resting state in the worst case (with P04).

The Wilcoxon rank sum test showed no significant difference in Recall (P = 0.26) and

FPRM (P = 0.90) between results obtained with patients and controls. Subjects C03, P01

and P03 presented Recall ratios under 50 %, while in these cases, the RecallLate results

substantially increased, suggesting a late initiation of the ERD in most trials.

Continuous
Subject Recall FPMR Prediction RecallLate specificity

(%) period (s) (%) (%)

C01 65 1.5 0.77±0.96 100 97
C02 77 1.3 0.80±0.90 100 93
C03 44 1.6 1.27±1.02 84 92
C04 55 1.6 0.99±0.87 98 92
C05 57 1.3 1.17±1.17 89 92
C06 60 1.5 0.83±1.02 100 92

Controls Average 60±11 1.5±0.1 0.97±0.99 95±7 ±
P01 14 1.7 0.98±1.24 74 91
P02 76 0.7 0.90±0.95 100 97
P03 28 1.3 0.81±0.67 91 93
P04 50 1.9 1.36±1.11 100 88

Patients Average 42±27 1.4±0.5 1.01±0.99 91±12 92±4

Table 5.3: Classification results of the ODIM.

The mean prediction latency achieved with all the subjects was longer than 700 ms.

Fig. 5.5 shows the histogram of distances between the movement predictions with the

ODIM and the onsets of the actual movements observed in all the classified runs of all
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subjects. Most detections were achieved with prediction periods between -1 s and 0 s.
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Figure 5.5: Histogram of the distances between the movement intention detections and the
onset of the actual movements detected by the IMUs.

5.3.6.2 Comparison of the results using adaptive and nonadaptive ERD de-

tection designs

To check whether the online adaptations of the model used by the BC and the threshold

were appropriate for the detection of the intention to move, Fig. 5.6 compares the Recall

and the FPMR for three cases: 1) the ODIM adapts both the threshold and the model of

the BC, 2) only the threshold is adapted, and 3) only the model of the ODIM is adapted.

When no adaptation was used for the threshold or the model, fixed values were assigned

to these parameters and only the initial training dataset was taken into account.

Differences in four subjects were found between the cases where the threshold was

adapted and not. For P03 and P04, the recall results were maintained and the FPMR

significantly increased when no threshold adaptation was carried out. The recall results

with C01 and C04 fell sharply when the fixed threshold was used and ODIM performance

clearly deteriorated for both cases.

Slight differences in the results were observed between an adaptive model for the BC

and a fixed model, although in most cases Recall and FPMR were higher with the adaptive

version.

Only in the case of P01 the results obtained using the ODIM with the adaptive thresh-

old and model were worse than using the other two cases (the FPMR increased while the

Recall virtually did not change). In the previous section, the ODIM was unable to robustly

detect intentions to move in this patient, and hence the differences in this case may not be

representative of the suitability of the adaptive ODIM design for the objectives defined.
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Figure 5.6: Comparison of the Recall and FPMR results for three conditions: 1) Both the
model of the BC and the threshold are adapted (black), 2) only the model is adapted (grey),
3) only the threshold is adapted (white). Mean and standard deviations across runs are
presented.

5.3.7 Results in Experiment 2

Table 5.4 shows the detection results of the ODIM with the valid trials in Experiment

2 (those in which tremor was visible). Results for patient 02 are not supplied since he

did not exhibit a visible ERD. In general terms, although in this case a significantly

lower number of examples was used to validate the system than in Experiment 1, higher

recalls are obtained with equivalent number of false activations and similar amounts of

anticipation. This was in part due to the fact that here, the resting periods of time

preceding the movements were shorter. In summary, the results indicate that the mHRI

was capable of consistently anticipating the intention to move (in those patients that

exhibited ERD). Moreover, the delay in the detection of both voluntary movement and

tremor was considerably increased in the patient 02, who did not present a detectable

EEG-based movement anticipation (average delay 1.83±1.77 s and 1.79±0.91 s for the

voluntary activity and the tremor, respectively) when compared to the other patients

(average delay in all trials 0.88±0.45 s and 0.77±0.45 s for the voluntary activity and the

tremor respectively). The outcome of increasing the overlapping of the windows that the

EMG algorithm used from the 50 % to the 75 % was also evaluated. When the ODIM

was used, a statistically lower (P < 0.05) delay in the detection of both the voluntary
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Patient Recall Prediction Continuous
(%) period (s) Specificity (%)

01 88 0.75±0.98 96
02 - - -
03 92 1.84±1.52 95
04 67 0.41±0.37 96
05 80 1.43±1.39 86

Average 82 ± 11 1.11 ± 0.52 93 ± 5

Table 5.4: Classification results of the ODIM in Experiment 2.

movements and the tremor was observed, which highlights the benefit extracted from

using the prediction of movements derived from EEG to drive the system.

5.4 Discussion

This chapter presented and EEG-based system to predict online voluntary movements

with the arm. The robustness of the system against false detections was demonstrated

validating its continuous function with a protocol with non-action intervals between move-

ments lasting over 15 s on average (1.4±0.3 false activations per minute were generated

in Experiment 1). With most subjects, more than 50 % of the movements could be an-

ticipated by the system. With two patients small recall results were obtained, although

the late detection of the movements was achieved, suggesting a delayed appearence of the

ERD pattern. In addition, it has been proposed for the first time a design of a multimodal

interface taking advantage of the EEG information regarding motor intentions. The EEG

system was aimed to give anticipatory information to other systems tracking voluntary

movements and tremors and doing so, detection latencies of voluntary and tremulous

movement onsets were significantly lower than in the case where no EEG technology was

used.

The ODIM represents a step forward in the development and validation of BCI tech-

nology for patients with tremor. The proposed interaction between EEG and other sensor

modalities is also original. The ODIM is conceived to give advanced information on vol-

untary movements to other sensors, such as EMG and gyroscopes. Information from these

sensors are in turn expected to trigger the electrical stimulation that assists tremor pa-

tients. As was shown in the comparative Table 5.2, EMG- and gyroscopes-based systems

require muscle contraction or actual movements to assess that an action is being per-

formed, increasing the latency of the response of a system aimed to assist or compensate

the voluntary movement. This is critical with tremor patients, since the tremors are su-

perimposed to the voluntary movement and the precise detection of the movement onset
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becomes more complicated. In this terms, the EEG activity becomes a valuable source

of information to improve the response time of neurorobotic or neuroprosthetic devices.

In fact, a synchronised operation of an active device and the user’s commands governing

it is desired to improve the interface between man and machine [Gomez-Rodriguez et al.,

2010]. This depends on how accurately the user’s intentions are estimated. Moreover,

after anticipating information on future volitional movements it is then also interesting to

start characterizing the patient’s tremor before each movement starts. In such case, the

tremor cancellation can be tackled already before the start of the voluntary movement

[Kinoshita et al., 2010].

ODIM performance has been tested with ET patients. As it was described in Chapter 4,

ET seems to be due to abnormal oscillations within the thalamocortical and olivocerebelar

pathways [Elble, 2006], and this may cause variations in the characteristics of the ERD

patterns in patients with tremor as observed in previous studies [Tamás et al., 2006; Lu

et al., 2010]. Besides, the proprioception of hand movements while the tremor is present

can also influence the ERD patterns during the intervals of intended basal (resting) activity

in patients with rest tremor. The ERD single trial detection system must hence be tested

with these kind of patients. Here, several differences were observed in Experiment 1 in

the results with the ET group compared to the ones obtained with the control group.

The feature selection showed that the frequencies at which the tremor patients exhibited

ERD corresponded to the lower alpha- and beta-bands (7-10 Hz and 13-19 Hz), while

with the controls, most features were at frequencies in the 10-13 Hz range. The channels

selected in both groups differed slightly, and the C3 position (covering the right hand

cortical area) was more frequently selected in the control group than in the patients’

group. Pathological oscillations of cerebellothalamocortical pathways causing ET [Benito-

León and Louis, 2006] could be causative of such differences in the spatial and frequencial

distribution of the ERD, although other factors, mainly the age of the patients, are also

likely to play a role in this regard, in agreement with previous studies [Derambure et al.,

1993]. No statistically significant differences were found in the Recall and FPMR results

obtained here in Experiment 1, although two patients (P01 and P03) showed the worst

performances. These results could be caused by the pathology of these patients, although it

may also be due to differences in the task involvement (fatigue, concentration, motivation)

of these patients as compared to the rest of the subjects measured. As no studies of ERD

in ET patients have been documented to date, further research may be done in this area.

Nevertheless, the performance of the ODIM with P02 and P04 is encouraging to consider

the ODIM as a valid interface for patients with tremor.

Also in Experiment 1, an adaptive design for the ODIM was proposed to face the

expected inter-subject variability caused by changes in the subjects’ fatigue, concentration
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and degree of involvement, among others [Blankertz et al., 2006; Shenoy et al., 2006].

Previous studies have demonstrated the benefits of adaptive BCIs based on sensorimotor

rhythms [McFarland et al., 2011]. In the present study, no feedback was given, so no

learning was expected. The ODIM worked using a training dataset acquired on a different

day (in 4 control subjects) or with a small amount of training examples (all patients

and 2 control subjects). In both cases the ODIM can benefit online from synchronised

movement tracking with the gyroscopes, by enriching the training dataset each time new

examples are accomplished. The results obtained with the adaptive design have been

compared with non-adaptive alternatives. Using a fixed threshold worked worse with 4

subjects because it was too restrictive (C01 and C02) or too tolerant (P03 and P04).

These differences were probably due to aforementioned changes in the subjects’ brain

processes, which made the training dataset unrepresentative to choose a threshold for

the validation dataset. Comparing the adaptive design with a design only adapting the

threshold showed similar results. A higher number of movements predicted and of false

detections was obtained in 9 out of 10 subjects with the adaptive alternative. For the

here proposed application, the minimization of false detections was not so critical as the

maximization of true positives, because the final decision for triggering an active strategy

with electrical stimulation would rely on the EMG/gyroscopes-based system. Therefore,

the results obtained with the adaptive model are more suitable in this case.

Comparing the results obtained here in Experiment 1 with other works is difficult,

since the experimental protocols used, the subjects measured and the goals addressed

vary significantly. Several studies have presented results of EEG-based movement onset

detection systems using the BP pattern and showing similar specificity results and signif-

icantly higher recall ratios without anticipation of voluntary movements (see [Niazi et al.,

2011; Lew et al., 2012; Xu et al., 2014] and Chapter 6 in this thesis). The fact that, in

those studies, movements were detected and not anticipated is a crucial aspect of the sig-

nificant difference in this regard. The important increase in the number of late detections

(Recall-Late) achieved in our study supports this idea. The characteristics of the experi-

mental protocol used are also an important factor, since using longer non-action intervals

has a direct influence on the specificity of the system (the longer the basal intervals, the

more likely it will be that the system generates false activations). On the other hand, Bai

et al. in [Bai et al., 2011] presented results of an EEG-based system predicting voluntary

movements, but only 50 % of the movements were detected in the best case. In their study

the length of the rest intervals preceding the movements was similar to that in [Niazi et al.,

2011] and thus shorter than here.

Results obtained in Experiment 2 provided a proof of concept (with a reduced number

of trials and patients) on how an mHRI may benefit from the anticipated information
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regarding motor tasks provided by the ODIM to detect and parameterize the concomitant

tremor, in order to drive electrical stimulation to compensate it. The integration of the

ODIM in the mHRI shortened the reaction time of the system: significantly (P < 0.05)

lower delays in movement and tremor onset detections were obtained when the ODIM was

integrated in the mHRI. This aspect has obvious implications for tremor compensation,

since a response of the interface matched in time with the intended actions of the patients

becomes possible, giving rise to a more natural interaction. There are, nevertheless, two

scenarios in which the mHRI needs to overcome the absence of ERD information. The

first of them is those patients that present not classifiable ERD, where the EMG detection

algorithms will have to assume larger detection delays (as for Patient 02 in Experiment 2).

The second scenario corresponds to the generation of false positives by the EEG classifier,

which unnecessarily increases the overlapping of windows of the EMG subsystem, but these

misdetections do not propagate to the patient (electrical stimuli are only triggered by the

EMG and gyroscopic systems). As a matter of fact, the idea of enhancing the reliability

of the neuroprosthesis control by combining recorded data with redundant information

(as in the case of EEG, EMG and gyroscopic signals) constitutes the rationale for always

running the EMG classifier in parallel. It is worth noting, however, that the number of

false negatives of the EEG classifier throughout the experiments here is remarkably low.

It is also worth mentioning that the overlapping of the EMG windows could be increased

more, which would yield a faster detection of both voluntary muscle activity and tremor.

The value selected here was chosen to analyse the interest of the approach, while ensuring

low computational burden.

5.5 Chapter conclusions

Experiments with 6 healthy subjects and 4 ET patients were conducted to assert the ability

of the proposed EEG-based system to anticipate voluntary movements while reducing the

number of false activations during long (> 15 s) periods of resting activity. On average,

60±10 % and 42±27 % of the movements were anticipated with the control subjects and

the patients respectively. The number of false activations generated per minute was kept

low in both groups (1.5±0.1 and 1.4±0.5) despite using an experimental protocol in which

long non-action intervals were given. Further experiments with 5 additional ET patients

were run to validate the interaction between EEG- and EMG-based systems in a proposed

mHRI for patients with tremors. The movement predictions provided by the EEG system

allowed a significant improvement in the detection of movement and tremor onsets when

the patients started new tasks.

In summary, this chapter has proposed an asynchronous EEG application in which
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anticipated detections of motor intentions are performed. To rigorously validate the on-

line function of the system, already proposed metrics by other studies and ad hoc metrics

defined here have been used. An adaptive configuration of the detector has been pro-

posed, which allows an optimized robustness of the system when dealing with the non-

stationarities of the EEG signals recorded along different measurement days. These are the

first results of a BCI system in patients with tremors and the first time that a multimodal

platform integrating EEG sensors with other movement-related sources of information is

proposed and justified.
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Chapter 6
Detection of the onsets of upper-limb

reaching movements using ERD and BP

patterns to elicit associative facilitation

6.1 Abstract

As it was presented in the first chapters of this thesis, the EEG signal allows the char-

acterization of movement-related cortical processes with high temporal accuracy. Chapter

5 demonstrated the potential use of the EEG signal to anticipate voluntary movements

performed with the arm. In this chapter the goal is slightly modified: it is studied how

accurately is it possible to decode the onset of voluntary movements with temporal reso-

lution using the EEG signal. Developing online systems able to decode motor intentions

at the exact time they occur is of special interest for the neurorehabilitation of stroke pa-

tients, since it then becomes possible to develop conditioning paradigms associating cortical

and peripheral neural processes with temporal accuracy (in the range of hundreds of mil-

liseconds). This chapter proposes for the first time an EEG-based detector of the onsets

of voluntary upper-limb functional movements using information extracted from cortical

rhythms and slow cortical potentials. The system is evaluated with data from healthy sub-

jects and chronic stroke patients and a rationale for the combination of oscillatory and

slow cortical informations is provided. Additionally, results of a feasibility study using the

developed EEG system in a one-month BCI intervention with chronic stroke patients is

presented.
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6.2 Introduction

During the past few years, the development of brain-computer interfaces (BCIs) for the

functional rehabilitation of patients with motor disabilities has gained special interest [Daly

and Wolpaw, 2008; Buch et al., 2008]. The main purpose of BCIs in such scenarios is to

provide a way to promote the neural rehabilitation of the patients. EEG-based systems

allow the real-time characterization of the cortical activity over the motor cortex while the

subject is performing motor tasks. This way, it becomes possible to detect online when

a person is attempting or imaging a movement [Pfurtscheller and Solis-Escalante, 2009;

Bai et al., 2011; Niazi et al., 2011], and to predict certain properties of the movement to

be performed [Pfurtscheller et al., 2006; Morash et al., 2008; Gu et al., 2009b; Jochumsen

et al., 2013]. Such information may in turn be used to close the loop with neuroprosthetic

or neurorobotic devices. In this regard, recent studies have proven the importance of the

proprioceptive feedback timing to achieve long-term associative neural facilitation effects

[Mrachacz-Kersting et al., 2012; Niazi et al., 2012].

In a series of previous studies, it has been proposed the use of the BP (described in

Chapter 2) to detect the movement intention [Niazi et al., 2011; Garipelli et al., 2013; Lew

et al., 2012; Jochumsen et al., 2013; Xu et al., 2014]. Since the BP presents an identifiable

pattern that is decaying until the movement starts, it is suitable to achieve temporal

precision in the detection of the onsets of voluntary movements. In fact, previous studies

showing results of online systems based on this pattern indicate that average detection

latencies of 315 ± 165 ms can be obtained [Xu et al., 2014]. Nevertheless, the BP is not

detectable in all cases, since some subjects do not present a significant pattern during

self-paced movements. In addition, results obtained in previous studies using the BP have

not fully validated the use of this cortical pattern alone to detect movement intentions

in stroke patients [Niazi et al., 2011]. In fact, altered BP patterns have been observed in

previous studies with this type of patients [Daly et al., 2006; Fang et al., 2007].

A possible way of boosting EEG-based systems aimed to detect the onsets of voluntary

movements is to combine the BP with other EEG movement-related patterns providing

complementary information [Fatourechi et al., 2008]. The ERD (described in Chapter 2) is

a well-known cortical pattern related to the execution of voluntary movements. Although

a variable anticipation may be observed in the ERD of a specific channel and frequency in

a subject during consecutive movements, the spatio-tempo-frequential distribution of the

ERD observed when averaging a number of EEG segments preceding voluntary movements

shows a desynchronization pattern attached to the movement event [Bai et al., 2005].
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Therefore, the analysis of the ERD also provides certain degree of information regarding

the timing of volitional motor actions. Indeed, previous studies have used the ERD pattern

to anticipate movement events [Bai et al., 2011; Ibáñez et al., 2013]. As in the analysis

of the BP, the ERD pattern of stroke patients presents variations with respect to healthy

subjects [Stepien et al., 2010]. Therefore, it is of special relevance to study how stroke-

related cortical changes may affect a BCI driven by these cortical patterns.

This chapter presents results from two experiments. In the first experiment, an EEG-

based system combining the information extracted from the analysis of the BP and ERD

cortical processes is proposed to estimate the onsets of voluntary upper-limb reaching

movements. The comparison between the proposed classifier and equivalent classifiers

using either the BP or the ERD patterns is also performed to justify the fusion of these

two sources of information. The second experiment presents preliminary results of a

BCI intervention for stroke patients using functional electrical stimulation (FES) and the

developed EEG system. The intervention is tested with four chronic stroke patients in

eight sessions along one month. Changes in two functional scales are studied to analyze

the effects of the BCI intervention on the patients.

6.3 Methods

6.3.1 Participants

Healthy subjects and chronic stroke patients were recruited for the two experiments de-

scribed in this chapter (referred to as Exp1 and Exp2 from nowon here). Six healthy

subjects (all males, right-handed and under 35 years old) were measured and considered

the control group in Exp1. Nine patients were recruited (three females, age 62 ± 14 years,

mean ± SD; details are provided in Table 6.1). Patients P1-P6, P8 and P9 were recruited

for Exp1. Patients P8 and P9 were discarded for further analysis because they could not

comply with the demands of the task performed during the experimental protocol. Pa-

tients P2, P3, P5 and P7 participated in Exp2. None of the subjects measured had prior

experience with BCI paradigms.

6.3.2 Data Acquisition

The movements of the arm were measured with solid-state gyroscopes and EMG electrodes.

Two gyroscopes, placed on the distal third of the forearm, and the middle of the arm

measured the limb kinematics. The data were sampled at 100 Hz.

Surface EMG was recorded using bipolar derivations on the main muscle groups in-

volved in the execution of the reaching task (pectoralis major, anterior deltoids, medium
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Pat. Age Gender Stroke Affected Years since Fügl-Meyer Minimental Ashworth Rh sessions
code type hemisphere stroke a week

P1 52 F Isquemic L 4 126 30 0 1
P2 54 M Isquemic R 4 69 30 2 2
P3 54 M Isquemic L 3 68 30 3 2
P4 75 M Hemorrg L 1 60 30 3 2
P5 69 M Hemorrg R 4 64 29 3 -
P6 57 F Isquemic L 1 93 26 1 Discont
P7 40 M Hemorrg R 13 81 30 3 2
P8 83 F Isquemic L 5 112 23 1 2
P9 75 M Isquemic L 3 - (mixed aphasia) - 2 2

Table 6.1: Demographic table of the patients participating in the present study.

deltoids, biceps, triceps and wrist extensors). The data were amplified and sampled at

2,000 Hz.

EEG signals were recorded from 31 positions (AFz, F3, F1, Fz, F2, F4, FC3, FC1,

FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz,

P2, P4, PO3, PO4 and Oz) using active Ag/AgCl electrodes. The reference was set to

the voltage of the earlobe contralateral to the arm moved. AFz was used as ground. The

signal was amplified and sampled at 256 Hz.

All recorded data were synchronised with a common digital signal.

Additionally, Functional Electrical Stimulation (FES) was used in Exp2 to provide

proprioceptive feedback to the patients. Stimuli were delivered at the anterior deltoid,

triceps and wrist extensors with a multichannel monopolar neurostimulator with charge

compensated pulses. The common electrode was located at the oleocranon. A stimulation

sequence was applied each time the FES system was triggered: first the anterior deltoid

was stimulated during 500 ms alone, then the stimulation of triceps and extensors was also

activated. The three muscles were then stimulated during 1 s and after this period of time

the stimulation sequence was finished. The currents of the stimuli at each muscle were

adjusted in each session to optimise the elicited movements in each patient. Pulse width

and frequency were set to 250 µs and 30 pps, respectively. The stimulator was controlled

by a stand alone computer (with a real-time operating system) that received activation

commands from the computer recording the EEG activity via a digital signal.

6.3.3 Aims and description of the experimental protocol in Exp1

The first one of the two experiments presented in this chapter was intended to validate

the EEG-based detector of movement intention. Each participant was measured during

one single session. The study was performed in a sound- and light-attenuated room.

Participants sat in a comfortable chair with their arms supported on a table. During the

measurement phase, participants were instructed to remain relaxed with their eyes open
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and their gaze fixated on a point on the wall. They were asked to perform self-initiated

reaching movements with the affected arm (the dominant arm in the case of the control

subjects). The point to be reached was in the midline of the body and at around 75

% of the maximum distance achievable by each subject. The average distance between

consecutive movements was around 8-15 s. During the resting state between movements,

participants were asked to remain as relaxed and quite as possible, whereas they were

asked to start a movement as soon as they felt the urge to do it. Runs of 30 movements

were performed.

The intervals containing at least 5 s of resting activity followed by a self-initiated

reaching movement and free of EEG artefacts were considered trials and were used in the

subsequent steps of the data analysis to validate the EEG detector. On average, 53 ± 8

and 55 ± 12 trials were collected with the healthy subjects and the patients, respectively.

A leave-one-out validation methodology was used, i.e. to validate the detector function

on each trial, the rest of the trials performed by the same patient were used for training.

6.3.4 Aims and description of the experimental protocol in Exp2

In the second experiment presented in this chapter, four patients participated in a feasi-

bility study of a BCI intervention for the upper-limb. The intervention consisted of eight

sessions along a month (2 sessions/week). In each session, patients were first asked to

perform the same task as in Exp1 until 30 trials were acquired. These trials were used to

calibrate the EEG-based detector of movement onsets. After this process, patients were

asked to perform 80 more trials in a single run. In this case, the EEG system detected

online intervals of motor intention and triggered the FES assisting the patients’ reaching

movements. The patients were asked to concentrate in the task and to perform the move-

ments when they decided to. They were also asked to block the arm in case the electrical

stimulation arrived at time intervals in which they were not planning a movement.

The performance of the proposed EEG-based system along the intervention sessions

was analysed to test whether a reliable interface was feasible and stable. To evaluate

the effects of the proposed intervention on the patients, two functional scales, namely

the Stroke Impact Scale (SIS) and the Fügl-Meyer index (FMI), were measured at the

beginning (pre-intervention) and in the end (post-intervention) of the month during which

the intervention was carried out. The SIS assesses the health status of the stroke patient

according to his/her self-reported outcome. The FMI, on the other hand, is one of the most

widely used stroke-specific quantitative measures of motor impairment and it evaluates and

measures recovery in post-stroke hemiplegic patients by assessing patients’ performance

of activities of daily living, functional mobility and pain.

Additionally, patients were asked to perform self-initiated imagined (instead of real)
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reaching movements in a single run (30 trials) during the last experimental session. The

purpose of this additional measurement was to ascertain that the proposed BCI inter-

vention would also present a reliable performance in the case of patients with no residual

voluntary muscle activity. Patients were asked to say “YES” if the electrical stimuli arrived

when they were imaging a movement and to say “NO” in case the stimuli arrived without

movement imagination or in case no stimulus was perceived when they were imaging a

movement.

6.3.5 Estimation of the real onsets of the movements for training and

validation purposes

To detect the real onsets of the movements, the kinematic information (gyroscopes) was

used instead of the muscle activation data (EMG). This decision was made to solve the

difficulties in detecting onsets of muscle activation in spastic muscles as the ones likely

found in the affected limbs of stroke patients. The real onsets served both to calibrate the

EEG-based proposed detector with the training data and to test its performance with the

validation data.

The gyroscopic sensor that first detected that a movement was starting was used to

locate the onsets of the reaching movements. This sensor selection was performed for each

participant. Data were low-pass filtered (Butterworth, 2nd order, fc = 6 Hz), and the

peak amplitude was estimated for each subject performing the reaching movement. The

threshold amplitude for the detection of the onsets of the movements was set to 5-7 %

(patient dependent) of this peak amplitude.

The EMG data was used to ascertain that no sudden muscle activations were present

in any of the muscles of the measured arm during the resting intervals between consecutive

movements. Sudden muscle contractions (which were only observed in the patients in few

moments along the recordings, such as when they readjusted their position on the chair to

be comfortable) were marked as artefacts and were not considered in subsequent analyses.

6.3.6 Description of the EEG-based detector architecture and validation

The following lines describe the structure of the proposed EEG-based detector of movement

intention based on the combination of ERD and BP patterns. Fig. 6.1 shows the general

overview of the system structure, identifying 1) the block characterising the ERD pattern

preceding the onsets of the movements, 2) the block characterising the BP pattern, 3) the

block combining both outputs to generate a binary estimation of motor intention, 4) the

blocks converting the binary signal into a more stable estimation triggering the electrical

stimulation and 5) the FES block closing the BCI loop.
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Figure 6.1: Structure of the EEG-based system detecting the onsets of voluntary upper-limb
movements.

6.3.6.1 ERD-based detector of the onset of the movement

A Näıve Bayes classifier was used to detect the ERD pattern preceding the movements.

Previous studies have demonstrated the suitability of this type of classifiers for ERD

detection [Bai et al., 2007; Ibáñez et al., 2013]. Band-pass filtering was first applied to the

EEG signals (Butterworth IIR filter, 3th order, 6 Hz < f1, 35 Hz > f2) and then a small

laplacian filter (for each electrode position the average voltage of the closest neighbours is

subtracted) was used [Hjorth, 1975]. Frontal, fronto-central, central, centro-parietal and

parietal channels were kept. The power values were estimated in segments of 1.5 s and
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for frequencies between 7-30 Hz in steps of 1 Hz. Welch’s method was used to this end

(Hamming windows of 1 s, 50 % overlapping). Estimations were generated every 125 ms.

The power estimations obtained in all training trials from -3 s to -0.5 s (with re-

spect to the movement onsets) were labelled as examples of the resting state, whereas

the estimations generated at t = 0 s where labelled as movement onset examples. The

Bhattacharyya distance was used to select the 10 best features (channel/frequency pairs)

to build the classifier. This number of features was chosen on the one hand to correctly

characterize the ERD pattern in several channels and frequencies and, on the other hand,

to achieve a real-time function without requiring an excessively high computational load.

The trained classifier was applied to the test data generating estimations of movement

intention every 125 ms.

6.3.6.2 BP-based detector of the onset of the movement

A similar procedure to the one proposed in [Niazi et al., 2011; Jochumsen et al., 2013] was

used to detect the BP. Nevertheless, unlike in those two previous studies, we used a finite

impulse response band-pass filter with linear phase (FIR filter, 15th order, 0.05 Hz < f1,

1 Hz > f2) using the fir1 routine of Matlab software. This solution was adopted since

linear preservation is crucial to extract the entire BP pattern, and using non linear phase

filters (as for example the Butterworth filter) does not allow to decode this pattern unless

zero-phase filtering (filtering in the forward and reverse direction) combined with framing

of the EEG signal is performed, which leads to a delayed (few hundreds of milliseconds)

detection of the BP in the online function, due to filtering edge effects.

After the temporal filters were applied, spatial filtering and channel selection were

performed. Three virtual channels were computed from the original 31 set of channels

in the experimental set-up. These channels were obtained by subtracting the average

potential of channels F3, Fz, F4, C3, C4, P3, Pz and P4 to channels C1, Cz and C2

(similarly to [Jochumsen et al., 2013]). The average BP was computed for the three

resulting channels using the training data. The channel showing the highest absolute

peak at the movement onset was selected for the BP-based detection of movement onsets.

The selection of one of these channels instead of directly choosing Cz (as in [Jochumsen

et al., 2013]) was conducted because, in healthy subjects, upper limb movements typically

present a maximal late BP over the contralateral central areas of the cortex [Shibasaki

and Hallett, 2006].

A matched filter was designed using the previously selected channel. To this end, the

average BP was obtained using the time intervals from -1.5 s to 0 s of the trials in the

training dataset. The matched filter was applied to the virtual channel in the validation

dataset. As with the ERD-based detector, estimations were also made every 125 ms.
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6.3.6.3 Detector of the movement onsets based on the combination of the

ERD- and BP-based systems

Outputs from ERD-based and BP-based detectors were combined using a logistic regres-

sion classifier. Training examples of the resting condition were taken from estimations of

the two detectors between -3 s and -0.5 s with respect to the movement onset (in steps

of 125 ms). The output estimations of the ERD and the BP classifiers at the movement

onset with the training dataset were used to model the movement state. The classifier

generated estimations of the intention to move every 125 ms.

6.3.7 Threshold selection

A threshold was applied to the output of the detector to decide at each moment whether

movement intention was detected. The threshold was optimally obtained from the training

dataset, following the criterion of maximizing the percentage of good trials (GT), i.e. trials

with a true positive (TP) and with no false positives (FP) (these and other performance

metrics are defined in 6.3.8). In Exp2, the threshold was further adjusted (manually and

around the optimal value) before initiating the intervention sessions.

6.3.8 Metrics of the detector performance and threshold selection

As the present study uses asynchronous paradigms in both experiments, conventional

metrics used in traditional BCI paradigms could not be used [Townsend et al., 2004;

Mason et al., 2006]. Three metrics were used to evaluate the ability of the EEG-based

system to reliably locate movement onsets. The TP rate was defined as the percentage of

trials with a movement detection contained in the time interval from -0.75 s to +0.75 s

with respect to the real onset estimated by the gyroscopes. The precision of the detector

was characterized as the number of FP per minute (FP/min), i.e. rate of detections during

the resting intervals. The percentage of GT was obtained by counting the amount of trials

in which no FP were generated and a TP was achieved. Finally, the latencies of the TP

with respect to the real onsets of movements were also computed to analyse the temporal

accuracy of the system.

6.3.8.1 Application of a refractory period and a dwell time

In order to generate stable estimations that could be used to trigger the FES, a minimum

time period between the onsets of two consecutive FES activations (refractory period)

and a fixed duration of FES stimuli (dwell time) were used [Townsend et al., 2004]. The

thresholded output of the logistic regression classifier was applied a refractory period of
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6 s. The dwell time was set between 1.5-2 s (subject dependent) after analysing the time

spent by the patients to reach the target point on the table.

6.3.9 Statistical analysis

In Exp1, a comparison between the performance of the proposed detector combining the

ERD and the BP information and the performances of detectors based only on each one

of the two patterns was carried out to validate the proposed methodology. Given that

the performances of the three detectors depend on each subject, a Friedman’s test was

used. In order to gain statistical power and to reduce the size of the statistical results,

samples from healthy subjects and patients were used together to test the hypothesis that

the three proposed detectors supplied significantly different results. Bonferroni post-hoc

correction was used to analyse significant differences between pairs. The statistical analysis

was performed on the dependent variables GT, TP and FP/min. Results were considered

significant for values of P < 0.05. All presented results are reported as the mean ± SD.

6.4 Results

6.4.1 Results of Exp1

Results of Exp1 are presented in this section. First, the average ERD and BP patterns

of the measured subjects are shown in order to look for differences in the spatio-temporal

distribution of the cortical activation patterns in healthy subjects and patients. Then,

results of the EEG-based detector of movement intention are presented and the comparison

between the proposed EEG system and two alternatives relying either on the ERD or the

BP patterns (based on the corresponding algorithms described before) is performed.

6.4.2 Summary of observed cortical patterns in patients and healthy

subjects

A summary of the average BP and ERD patterns observed in all patients and healthy

subjects is shown in Figs. 6.2 and 6.3. Overall, the ERD and BP could be observed

in most subjects analysed, although differences in spatial distribution and in strength

of these patterns were found. The average BP peak across healthy subjects was found

at -19.8 ± 57.6 ms with respect to the movement onsets. In the case of the patients,

this peak was observed at 97.5 ± 47.3 ms. A more homogeneous BP pattern could be

observed in the group of healthy subjects than with the patients according to both, the

temporal BP pattern and its spatial distribution. The ERD spatial distribution presented

a predominant contralateral activation both in the alpha and beta bands in the group of
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healthy subjects, whereas activation patterns presented a central (P1, P2 and P5 in the

alpha band and P2, P3 and P5 in the beta band) or bilateral distribution (P3 in the alpha

band and P1 in the beta band) in the patients group.
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Figure 6.2: Average BP of all subjects (discontinuous lines), and average BP across subjects
(solid line). Averages from healthy subjects and patients are presented in the left and right
panels, respectively.

6.4.3 Results of the EEG-based detection of the onsets of movements

Fig. 6.4 shows a representative example of the detector function on a single trial performed

by participant C2. The different stages in the EEG signal processing to extract information

regarding movement intention are represented. The three last curves show the estimations

of the onset of the movement based either on the BP pattern, on the ERD pattern or on the

combination of both, respectively. In this example, the EEG-based detection is achieved

with few hundreds of milliseconds of anticipation.

Table 6.2 summarizes the results obtained by the detector based on the ERD and BP

patterns. On average 63.3 ± 13.8 % and 66.4 ± 18.8 % of GT are obtained with the

healthy subjects and the patients, respectively. The percentage of true positives achieved

with patients is smaller than with healthy subjects, but also the FP/min generated with

the patients is higher. These results lead to a similar average performance of the system

in terms of detections and false activations in both groups. Nevertheless, more delayed

detections are obtained with patients (35.9 ± 352.3 ms) than with healthy subjects (-89.9

± 349.2 ms).

The features selected by the ERD-based detector of movement onsets in the healthy

subjects and patients are summarized in Table 6.3 and Table 6.4, respectively. According
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C5

C6

αERD βERD BP

Figure 6.3: ERD and BP spatial maps with healthy subjects (left) and patients (right). Left
and central columns show the spatial distribution of the α-ERD and β-ERD (normalized
power changes) obtained by comparing a window of 1.5 s ending at the movement onset with
an equivalent window 4 s before the onset. The third column shows the spatial distribution
of the BP peak amplitude. For each column, the same colour scales are used with all
subjects. Colour scale normalization is performed representing the lowest value in each
column with dark blue and calibrating the level of dark red in order to optimize the patterns
representation.

to the average ERD patterns observed in section 6.4.2 a predominance of contralateral

central features is observed in the first case (healthy subjects), therefore most features

correspond to channel C3 and the surrounding positions. In the case of the patients,

a more spatially spread distribution of selected features is obtained. Features from the

midline (around Cz) become more relevant in this case. The selection of features from the

alpha or beta band varies for each subject, although predominance of beta band features
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Figure 6.4: Simulated online function of the single-trial EEG-based detector of onsets of
voluntary movements. The plots show from top to bottom: 1) the gyroscopic data used to
locate the actual onset of the movement, 2) the raw EEG signal of a single channel, 3) the
virtual channel obtained after spatial and temporal filtering the EEG signal to detect the
BP pattern, 4) the EEG signal in one channel after applying a small laplacian filter and a
band-pass filter (between 6 Hz and 35 Hz) for the ERD-based detection, 5) the output of
the matched filter applied by the BP-based detector, 6) the output of the bayesian classifier
applied by the ERD-based detector, and 7) the final estimation of the intention to move
and the optimal threshold level used to convert the estimation to a boolean signal.

is observed. Finally, the tables show that selected features relative to the alpha-band in

the case of the patients present lower frequencies than the ones in the group of healthy

subjects.
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Code GoodTr (%) TP (%) FP/min Latency (ms)

C1 81.3 82.8 0.47 -48±351
C2 63.8 81.0 1.34 -24±278
C3 39.0 56.1 2.63 -180±476
C4 64.6 70.8 0.38 -198±322
C5 69.8 84.9 1.13 -3±388
C6 61.5 71.2 1.96 -164±290

Average 63.3 ± 13.8 74.5 ± 10.8 1.32 ± 0.87 -89.9 ± 349.2

P1 56.5 84.8 1.83 -58±368
P2 75.0 83.3 0.92 123±290
P3 60.3 80.9 1.94 98±386
P4 60.0 70.0 1.08 83±449
P5 100.0 100.0 0.00 -89±147
P6 46.5 74.4 3.21 50±520

Average 66.4 ± 18.8 82.2 ± 10.4 1.50 ± 1.09 35.9 ± 352.3

Table 6.2: Detection results obtained with control subjects and patients.

C1 C2 C3 C4 C5 C6

C3/21Hz C3/12Hz Pz/12Hz F1/7Hz C3/12Hz FC3/19Hz
CP3/21Hz C3/11Hz C3/12Hz F1/8Hz C3/19Hz CP1/19Hz
C3/20Hz C3/23Hz C3/13Hz C6/29Hz C3/11Hz FC3/20Hz

CP3/20Hz FC1/18Hz FC4/9Hz C3/27Hz CP3/10Hz FC3/18Hz
C3/10Hz FC1/17Hz P1/12Hz FC1/23Hz CP3/11Hz F3/19Hz
C3/19Hz C3/22Hz P1/11Hz C3/26Hz C3/22Hz CPz/20Hz
C3/22Hz C2/17Hz CP1/8Hz C3/24Hz CP3/12Hz C1/19Hz

CP3/19Hz FC1/19Hz Pz/10Hz C3/28Hz Pz/11Hz F3/18Hz
C3/9Hz FC1/14Hz P1/9Hz FC2/18Hz C3/18Hz CP3/18Hz

CP3/22Hz C3/13Hz FC4/10Hz C3/29Hz CP3/13Hz FC3/17Hz

Table 6.3: Features selected by the ERD-based detector for the control group.

Fig. 6.7 compares the detection results obtained with the combined detector (ERD and

BP) with the results obtained by detectors based only on the BP or the ERD. Statistically

significant differences between the three detectors are found in GT, TP and FP/min (p

= 0.002, p = 0.010 and p = 0.008, respectively). Pos-hoc multiple comparisons show

significant differences between the ERD-based detector and the combined detector in GT

(p = 0.007) and FP/min (p = 0.015), but not in TP (p = 0.192). In the comparison

between the BP-based detector and the combined detector, significant differences are found

in GT (p = 0.003) and TP (p = 0.003), but not in FP/min (p = 0.0.059). Finally, no

significant differences are found in GT (p = 0.611), TP (p = 1) and FP/min (p = 0.305)

between the detector based on the ERD and the one based on the BP.
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P1 P2 P3 P4 P5 P6

C1/9Hz C2/9Hz Cz/20Hz F3/8Hz CP2/13Hz C3/14Hz
Cz/13Hz C2/8Hz Cz/21Hz C1/10Hz C2/13Hz P2/18Hz

FC1/10Hz C2/10Hz Cz/13Hz F3/9Hz C1/22Hz C3/19Hz
FC1/13Hz CP2/18Hz Cz/22Hz C2/11Hz C1/21Hz C2/23Hz
C1/10Hz C2/7Hz Cz/14Hz F1/8Hz Cz/21Hz CP3/14Hz

CP4/18Hz Cz/9Hz Cz/16Hz P1/10Hz C1/20Hz CP1/15Hz
FC1/9Hz Cz/10Hz Cz/15Hz C1/9Hz CPz/22Hz FC2/19Hz
FC1/11Hz CP2/19Hz Cz/17Hz P3/8Hz CPz/16Hz Pz/22Hz
C1/12Hz CP2/17Hz CP1/11Hz F4/20Hz CPz/12Hz CP4/21Hz
C1/13Hz Cz/8Hz Cz/19Hz FC3/8Hz C1/23Hz CP3/11Hz

Table 6.4: Features selected by the ERD-based detector for the patients.

For healthy subjects, the detector combining ERD and BP information achieves 6.5 ±
5.2 % more GT than the BP-based detector and 22.4 ± 10.0 % more GT than the ERD-

based detector (see Table 6.5). For patients, the percentage of GT also increases when

using the combined detector (13.3 ± 10.9 % and 12.6 ± 16.3 % increase as compared to

the BP- and ERD-based detectors, respectively).
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Figure 6.5: Performances of the three compared detectors (BP-based, ERD-based and com-
bined detector) in the healthy subjects group (left) and in the patients (right) in terms of
GT, TP and FP/min

Finally, the latencies in the detections of the movement onsets are represented by

means of histograms in Fig. 6.6. The latencies obtained when using the detectors based

only on the BP or the ERD information are superimposed in the figure. The histograms
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Code Combined vs BP Combined vs ERD

C1 4.7 32.8
C2 10.3 12.1
C3 14.6 12.2
C4 0.0 35.4
C5 5.7 18.9
C6 3.8 23.1

Average 6.5 ± 5.2 22.4 ± 10.0

P1 4.3 10.9
P2 20.8 -6.9
P3 30.9 -4.4
P4 10.0 36.0
P5 1.9 19.2
P6 11.6 20.9

Average 13.3 ± 10.9 12.6 ± 16.3

Table 6.5: Gain in the performance of the detector (GT in %) when using the combined
information of the ERD and BP compared to the use of either of these patterns alone.

shown depend on how much the ERD and BP patterns vary across trials with respect to

the onsets of the movements, and also on the detection threshold applied to each one of

the three detectors. The figure shows a more delayed distribution of the detections with

the group of patients. Nonetheless, around 85 % of these BP detections are located earlier

than +375 ms. Given that the window used for the BP detector are 1.5 s long, this result

supports the absence of movement artefacts in the activity analysed. The ERD-based

detector appears to be the less precise in terms of latencies of the detections, while the

BP-based detector presents distributions clearly centred at t = 0 s. Also noticeably, the

ERD-based detector shows a certain degree of anticipation in the detections of movement

onsets in the group of healthy subjects, although it generates delayed detections in the

case of the patients.

6.4.4 Results of Exp2

Overall, patients could reliably control the EEG-based interface by performing the self-

paced movements and low detection latencies were obtained in most cases. Fig. 6.7

shows, for each intervention session and patient, the percentages of GT obtained and the

latencies for the correct detections of the movements. The GT percentages increased across

sessions in P2, P3 and P7, suggesting learning mechanisms in the interaction with the BCI

platform. The best GT results were 80.9 %, 64.4 %, 91.7 % and 81.2 % for patients P2,

P3, P5 and P7, respectively (green bars in the left panels of Fig. 6.7). Results were similar

to those obtained in Exp1. The detection latencies were stable across sessions and in some
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Figure 6.6: Histograms of the distances between the movement detections and the actual
movement onsets for healthy subjects (left panel) and stroke patients (right panel). The
histograms of the detectors based only on the ERD or the BP are superimposed in the
graphs.

cases (P3 and P7) they slightly improved as the intervention evolved. Average detection

latencies (considering all sessions) for P2, P3, P5 and P7 were 202 ± 266 ms, 130 ± 316ms,

3 ± 190 ms and 103 ± 254 ms, respectively. Unsuccessful results of the BCI system were

only observed in one session (sixth session with patient P3). In this case the BCI-based

intervention was cancelled since the patient reported an uncomfortable interaction with

the FES system.

As for the EEG-based system performance with motor imagery (blue bars in the left

panels of Fig. 6.7), results varied among patients and they provided in all cases reliable

estimations. GT results over 50 % were obtained in three out of four patients, which means

that in more than 50 % of the trials the BCI system was able to successfully detect the

onset of the movement imagination without generating any false activation in the resting

period preceding it. Bad trials, on the other hand, were those presenting a false activation

in the resting period preceding the movement, or those in which movement imagery was

not detected or it was detected too late according to the patients’ reports.

Table 6.6 shows the changes obtained in the two evaluated functional scales. Average

increases of 10.5 ± 8.7 and 15.7 ± 11.9 points in the SIS and the FMI were obtained with

the intervention. Patients P2, P5 and P7 showed changes in the quantified FMI over the

minimal detectable change (which is 5.2 points for upper-extremity assessments). Changes

of FMI in P3 were slightly below this threshold, despite the positive results observed in the

self-report test. Interestingly, P3 was also the patient showing the worst detection results
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Figure 6.7: Summary of the EEG-based detector performance during the intervention with
the patients. Left panels: GT (%) results along sessions for each patient. The best session
in each patient is represented with a green bar and for this session the percentage of TP
and the number of FP is shown. The GT results for the imagined movements performed
by the patients is represented with blue bars. Right panels: Detection latencies (Mean ±
SD) along the sessions for each patient. The real onsets of the movements are represented
with dashed red lines.

of the EEG-based system, both in terms of GT and detection latencies across intervention

sessions.

Code SIS-pre SIS-post FMI-pre FMI-post

P2 64 74 61 93
P3 66 79 83 88
P5 44 64 65 82
P7 73 72 81 90

Table 6.6: ISI and FMI scales of the patients before and after the BCI intervention.
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6.5 Discussion

The accuracy with which movements can be detected online using EEG activity (both in

terms of temporal precision and ratio between true and false activations) represents an

important criterion to decide whether BCI technology can be brought to clinical practice in

neurorehabilitation environments. This study shows the results of an EEG-based detector

of voluntary movement onsets combining information extracted from the processing of

cortical rhythms and slow cortical potentials. This is the first time that both sources of

information are combined to this end. It is also the first time in which the benefits of a

detector combining information from the ERD and BP patterns in patients with stroke are

demonstrated. Moreover, the EEG system has been tested in a BCI intervention lasting

one month with chronic stroke patients. The observed changes in the FMI of three out

of four patients were over the minimal detectable change in Fügl-Meyer assessments of

the upper-extremity function. This is, to the author’s knowledge, the first study of a

BCI intervention for upper-limb movements focusing on the idea of inducing associative

cortico-muscular facilitation by means of an accurate (in terms of temporal precision)

characterization of motor intentions.

Previous studies have described several aspects on the characterization of the BP to

locate onsets of voluntary movements. On the one hand, Garipelli et al. studied the

relevance of choosing appropriate spatial and temporal filters to extract the BP pattern

[Garipelli et al., 2013], without showing results regarding temporal precision in the de-

tections. In a study by Lew et al., average results of BP detection were presented for

healthy subjects and stroke patients, although no single trial validation was carried out

[Lew et al., 2012]. Up to date there are, to the authors’ knowledge, no studies regarding

the detection of upper-limb voluntary movements based on the detection of the BP and

using an online feasible design. In a recent study, Xu et al. presented a system using a

manifold method (Locality Preserving Projection) with a LDA classifier to optimize the

classification of the BP. The algorithm was tested on healthy subjects performing ankle

dorsiflexions. The TP and FP/min results obtained in that study (79 ± 12 % and 1.04

± 0.8, respectively) were similar to the ones obtained here with the healthy subjects and

upper-limb movements. Nevertheless, the average latencies presented in their study (315

± 165 ms) were higher than the ones obtained here. This differences could be due to

variations in the way subjects performed the task in each experiment (differences between

upper- and lower limb cortical patterns, length of the resting intervals between movements

and speed of movements among others). The observed differences could also be due to the

combined use of the ERD and BP features proposed here, which allows to reduce the rate

of FP and, as a consequence, allows the selection of less restrictive (more anticipative)
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detection thresholds.

While several previous studies have made use of the cortical rhythms to either de-

tect movement events [Townsend et al., 2004; Müller-Putz et al., 2005] or to anticipate

movement intentions (see [Bai et al., 2011] and Chapter 5 in this thesis), no studies so

far have tried to use ERD information to locate onsets of voluntary movement with time

precision. In a previous study by Fatourechi et al., the combined use of cortical rhythms

and slow cortical potentials was proposed for an asynchronous BCI, although in that case

the device was not intended to detect the onset of voluntary movements [Fatourechi et al.,

2008]. The Näıve Bayes classifier described here has demonstrated that the ERD supplies

valuable information in this sense. Indeed, it has been shown here the benefits of the

combined use of the information about the ERD and BP as compared to detectors relying

solely on either the BP or the ERD. Significantly better performances could be achieved

with the combined detector in all metrics analysed: a higher number of GT and TP was

achieved with lower rates of false activations during the resting intervals. Previous studies

have demonstrated that different neural mechanisms are involved in the generation of the

ERD and the BP, and therefore may justify their complementarity. On the one hand, the

BP is assumed to originate in the presupplementary and supplementary motor areas [Ba-

biloni et al., 1999; Shibasaki and Hallett, 2006], which are associated with the movement

planning and with the process of focusing on the intention to move [Lau et al., 2004]. On

the other hand, the ERD is first visible over the contralateral motor cortex [Pfurtscheller

and da Silva, 1999], and it is associated with the formation of more specific neural assem-

blies synchronized at higher frequencies in order to generate the desired descending motor

commands [Pfurtscheller and da Silva, 1999; Buzsáki and Draguhn, 2004]. The spatial

distribution of both phenomena in the here presented data also points to different cortical

sources. Given these evidences, it seems reasonable to point to an improved outcome in

the combination of both sources of information to estimate certain aspects regarding the

motor planning.

Differences in the average ERD and BP patterns between patients and healthy subjects

were found in Exp1. On the one hand, a delayed peak of the BP was observed in the

patients group, likely associated with the higher cognitive motor planning time and the

slower speed with which stroke patients perform voluntary movements [Daly et al., 2006;

Jochumsen et al., 2013]. On the other hand, differences in the spatial distribution of

both ERD and BP patterns were also observed (see Fig. 6.3), reflecting altered cortical

activation patterns in stroke patients, also described in previous studies [Wiese et al.,

2004; Daly et al., 2006; Platz, 2000; Stepien et al., 2010]. Regarding the single-trial

detection results, previous offline studies [Niazi et al., 2011] showed differences in the BP-

based detection performance with healthy subjects and stroke patients (significantly worse
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TP results were obtained with the patients). In contrast, the detection results obtained

here in Exp1 (in terms of GT, TP and FP/min) were similar for patients and healthy

subjects. Apart from the differences in the recruited subjects and paradigms used in both

experiments, these better results with patients were likely due to the improvement of the

detector performance when the ERD information was used, which provided a 13.3 ± 10.9

% increase in the number of GT as compared to the BP-based detector alone (see Table

6.5). On the other hand, differences were observed in the detection latencies: detections

in patients were achieved later than with the healthy subjects. According to Fig. 6.6, this

is especially evident in the ERD-based detection (while ERD-based detections in healthy

subjects tend to anticipate the actual movement onsets, the reverse effect is observed in

the group of patients). Such difference may be the combined result of the altered ERD in

stroke patients [Platz, 2000; Stepien et al., 2010] and an aging factor [Derambure et al.,

1993].

Given the detector design proposed here, the influence of movement artefacts in the

detections achieved after the onset of the movements are considered negligible. First,

regarding the ERD-based system, the combined use of a small laplacian filter and a band-

pass filter discarded the presence of movement-related common low-frequency components

in the analysed EEG. In addition, the use of premovement signals in the training stage

ensured that the Bayesian classifier focused specifically on the ERD phenomenon, as it

may be attested by analysing the features selected in Exp1 by the Bayesian classifier (see

Tables 6.3 and 6.4). In the case of the BP-based detection, the use of spatial filtering

together with the spatial distribution of this pattern (see Fig. 6.3) reduces the chance

that artifactual sources are having any influence. Indeed, around 95 % of the detections

in the case of the healthy subjects in Exp1 (around 85 % with the patients) were obtained

with latencies under +375 ms (see Fig. 6.6). Since a matched filter of 1.5 s was used,

it is highly unlikely that any of these detections were caused by the effect of movement

artefacts. In fact, BP-based detections later than +375 ms in the stroke patients are likely

related to the intrinsic difficulties in the detection of the real onsets of the movements, and

to the delayed BP observed in these patients due to slower movement velocities with the

affected limb [Jochumsen et al., 2013] and to an increased cognitive motor planning time

[Daly et al., 2006]. Results with imagined movements in Exp2 reinforce the idea that the

EEG-based detector proposed here did not rely on muscular artefacts. Despite the fact

that movement imagery is associated with weaker cortical changes over the sensorimotor

cortex [Neuper et al., 2006; Nascimento, 2008], results here with the imagined movements

were similar (although worse) to the ones with the actual movements, and in all cases,

they were clearly above chance levels.

A number of studies have been proposed during the last years in the field of EEG-
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based BCI systems for functional rehabilitation of stroke patents [Grosse-Wentrup et al.,

2011; Silvoni et al., 2011; Ang and Guan, 2013]. To the author’s knowledge, the most

relevant studies up to date are the ones by research groups from Tübingen [Buch et al.,

2008; Ramos-Murguialday et al., 2012, 2013], Rome [Pichiorri et al., 2011], Aalborg and

Göttingen [Niazi et al., 2012; Mrachacz-Kersting et al., 2013; Xu et al., 2014]. On the

one hand, BCI experiments proposed by the groups from Tübingen and Rome focused on

paradigms promoting the patient’s self-modulation of sensorimotor rhythms. Results from

these experiments showed improvements in upper limb FMI motor scores in stroke patients

with no active finger extension [Ramos-Murguialday et al., 2013] and significant increase in

motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle’s

cortical representation [Pichiorri et al., 2011]. On the other hand, studies performed in

Göttingen and Aalborg have focused their attention in the temporal benefits of using

EEG systems to decode motor intentions, which provides a faster way to induce long-term

associative facilitation by increasing the excitability in cortical areas representing the part

of the body to be moved [Mrachacz-Kersting et al., 2012]. In this regard, it has been

exposed that any feedback that does not fulfill the requirement of coincident activation of

the targeted brain regions is unlikely to result in long-term behavioural changes [Grosse-

Wentrup et al., 2011]. Results of BCI interventions with EEG systems optimized for

the detection of the onsets of the movements have demonstrated plastic changes in the

supraspinal level when using proprioceptive electrical [Niazi et al., 2012] or mechanical [Xu

et al., 2014] feedback, and have also provided preliminary results of a BCI intervention on

stroke patients, leading to improvements in their gait [Mrachacz-Kersting et al., 2013]. The

BCI intervention proposed in this chapter is therefore similar to the second group of BCI

interventions. While this latter group of studies have mainly focused on the rehabilitation

of lower-limbs through analytical dorsiflexions of the ankle, the BCI intervention here has

been proposed for upper-limb reaching movements. Moreover, the EEG based system uses

both cortical rhythms and slow cortical potentials to supply patients with an appropriate

afferent volley, and therefore, it may be expectable that benefits related to mechanisms

associated to the modulation of sensorimotor rhythms are also summed to the expected

associative facilitation effects in the here proposed scenario. Future studies in this regard

will look for larger experimental groups and more adequate clinical validation studies will

be pursued, using double-blind placebo-controlled techniques.

Developing EEG-based systems that can be trained in a short period of time is a

critical aspect in order to bring this technology into the clinical practice. The training

procedure proposed here in Exp2 contemplates that a number of self-initiated movements

are performed in the beginning of each session and are used to train the detector (this

process takes around 5 min in case 30 movements are used to train the system). In this
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regard, several studies have proposed ways to use training data from different sessions

to calibrate the BCI system [Shenoy et al., 2006; Niazi et al., 2013], and they may be

considered in future studies.

Finally, gyroscopic data were used to locate the movement events in order to extract

and characterize the subject-specific ERD and BP patterns. Similar previous studies

have frequently used muscle activation data (from EMG) for such purposes. In this case,

because functional upper limb movements were measured on stroke patients, detecting

the onsets of the movements from muscle activation became difficult, particularly in the

patients with muscle spasticity. On the contrary, by using kinematic data of the upper-

limb segments, it becomes possible to finely detect when a functional movement starts

without significant latencies, considering that the electromechanical delay for upper-limb

movements is relatively small (in the order of tens of milliseconds [Norman and Komi,

1979]). In agreement with this, results presented here of average BP patterns in healthy

subjects and patients -obtained with movement references based on the gyroscopic data-

show peaks of the BP with similar latencies than those observed in other studies using

EMG data and healthy subjects [Mrachacz-Kersting et al., 2012].

6.6 Chapter conclusions

A system using the EEG activity to detect online the onset of voluntary upper-limb reach-

ing movements based on the combined charaterization of the ERD and BP patterns has

been tested here with healthy subjects and chronic stroke patients. The results obtained

with the proposed detector point to an improvement in the temporal accuracy of the

estimations, as compared to other similar online-feasible techniques. Remarkably, the ob-

tained results offline with patients (TP = 82.2 ± 10.4 %, FP/min = 1.32 ± 0.87 and

average latencies of -89.9 ± 349.2 ms) were close to the ones obtained with the healthy

subjects (TP = 74.5 ± 13.8 %, FP/min = 1.50 ± 1.09 and average latencies of 35.9 ± 352.3

ms), and therefore suitable for online BCI applications. Moreover, a BCI intervention us-

ing the developed EEG-based detector of the movement intention has been proposed and

tested with four chronic stroke patients in eight sessions along one month. The online

function of the EEG-based detector was equivalent to results obtained offline, and the

preliminary results obtained point to a functional improvement of the patients as a result

of the proposed therapy (average increases of 10.5 ± 8.7 and 15.7 ± 11.9 points in the SIS

and the FMI were obtained).

This study has tested for the first time the EEG-based detection of the onsets of volun-

tary upper-limb movements based on the combination of information from cortical rhythms

and slow cortical potentials. The successful results obtained with stroke patients and the
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applied asynchronous paradigm demonstrate that the proposed system is suitable for re-

habilitation applications in which the patient performs the self-paced tasks and receives

assistance or simple proprioceptive feedback from a neuroprosthetic device. Indeed, the

presented preliminary results of an upper-limb intervention are the first demonstration of

an improved functional upper-limb capacity in stroke patients undergoing an EEG-based

associative facilitation paradigm based on the characterization of the mental states related

to motor intention.
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Chapter 7
Conclusions and future work

This chapter puts together the main results and conclusions reached in this present thesis,

enumerates the main contributions associated with the presented studies and discusses

the main achievements and limitations found during the experimental sessions. A list of

future research lines resulting from the here presented work in each of the studies and the

scientific publications related to the work performed for this thesis are included as well.



Chapter 7. Conclusions and future work

7.1 General overview of the work presented in this thesis

The range of applications of EEG systems in the study and treatment of neurological

diseases related to motor disabilities has exponentially grown during the last decades. This

is mainly a result of the development of new EEG technologies integrated in computer-

based platforms, which allows a fast and accurate characterization of different cortical

states. As a consequence, relevant advances have been achieved with these technologies.

Physical interfaces for the signal acquisition (active electrodes, impedance optimization,

dry electrode technologies etc.) have been improved, the integration (with negligible

temporal synchronization errors) of electrophysiological signals from different parts of the

human body has become possible and much more versatile systems have been developed

to record the EEG activity (with a wide variety of electrode montages, highly dense EEG

measurements, portable systems robust against electromagnetic interferences etc.). In

this present thesis, these technological advances have been used to propose a set of studies

with a common link: exploring the possibilities of using techniques for the measurement,

analysis and conditioning of the cortical activity to study and treat neurological disorders

affecting the motor function. In addition, these studies represent different application

examples of the EEG systems in patients. Given the current high prevalence of neurological

disorders affecting the motor function in the adult population, advances in the proposed

research lines for the diagnosis and treatment of these patients becomes a critical aspect

to work on. In fact, the main strategic research lines funded by the European Commission

in forthcoming years (in the framework of the HORIZON 2020) and in the clinical field

will look for technologies improving diagnosis and prognosis of pathologies so that the

patients’ treatments become optimized, as well as innovative treatments and technologies

that empower active and healthy ageing and allow patients to bring part of their treatments

to their homes while maintaining the treatment-related benefits.

The first study presented an application of data mining techniques to explore the

information hidden in EEG data and discriminating a number of movements performed

with a single arm, and therefore sharing similar somatotopic representations. The obtained

results were clearly above the chance level. In order to achieve these results, the developed

classifiers looked for cortical sources of information distributed along different scalp regions

(not only from the a priori expected contralateral central positions where the cortical

representation of the moved arm is found). The obtained results may be a combined

consequence of, among others, the differences in higher-order mental functions associated

with the planning and execution of the different tasks (some of them were more natural
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than others) and the more separated cortical representation of the different joints of a

single-limb. In order to fully validate the hypothesis that EEG carries information that

allows the classification of the proposed tasks, a set of tests was carried out, all of them

aimed at proving that other explanations for the obtained results (e.g. the fact that

different initial positions affect the classification) could be discarded. The obtained results

open a door to integrating advanced EEG classification techniques in BCI interventions

for rehabilitation, enriching the capacities of the BCI systems.

The second study in the thesis has presented a neurophysiological characterization of

the effects of a clinically used drug (alprazolam) in the tremors and the cortical activity of

patients with ET, which has its origin in the pathological behaviour of the central nervous

system. The presented study shows the temporal dynamics (due to the drug effects) of

neurophysiological variables related to tremor manifestation in ET. This study is in line

with other previous works, by a number of research groups, in which the main purpose is

to characterize the mechanisms through which tremor is generated and altered in patients

with ET, a neurological disease whose origin and action mechanisms are nowadays still

not well understood. In this kind of studies, electrophysiological techniques such as the

EEG and the EMG are of great interest, since they allow the characterization of electri-

cal processes with high temporal resolutions (in the order of 1̃ ms), which is a critical

factor to detect the changes in the neurophysiological function intended to be charac-

terized. Additionally, studies of connectivity between distant neural networks provides

highly informative data regarding interacting structures and the way in which this inter-

action changes along time. In the concrete case of the study included in this thesis, the

main contribution resides in the characterization of the interplay between the beta and

tremor-related oscillations at the cortical level, a phenomenon expected to be shared by

other subcortical structures. The interaction between these brain oscillations results in

changes of the apparent tremor, and therefore, further understanding them will improve

tremor management in patients with ET. Finally, the presented results constitute the first

objective quantification of tremor reduction in ET as a result of the administration of a

drug. Such numerical description of the effect of a drug in a given pathology are currently

demanded by clinical environments, so that a precise and objective characterization of the

patients status and the outcomes of applied treatments can be obtained.

In the third of the four studies included in this thesis, the design of an EEG-based

system to anticipate voluntary movements and its integration in a BNCI to compensate

pathological tremors have been presented. The proposed system is conceived as a proof

of concept of multimodal systems to be used on patients with pathological tremors. The

experimental sessions carried out allowed the evaluation of the EEG-based system as well

as the whole acquisition system on patients with ET. The experimental paradigms used

Jaime Ibáñez Pereda 111



Chapter 7. Conclusions and future work

represented a simplified scenario of the real one in which the patient would be using

the platform: long periods of inactivity followed by self-initiated simple movements were

used in order to test the ability of the system to provide reliable and anticipated esti-

mations about motor planning when the subjects were about to move. Results achieved

demonstrate the potential of the EEG signal to be used to describe periods of movement

preparation and they also show that, under optimal conditions (subjects concentrated in

the task and reduced electromagnetic interferences), estimations on movement intentions

may be achieved reliably (with high percentages of true positives and reduced number of

false activations). Nevertheless, the proposed study presents a set of technological and

methodological limitations that reduce the impact of these results in daily living condi-

tions: wearable technologies working reliably at home are nowadays not available and the

analysis of the EEG signal with currently available techniques is still not able to avoid

its contamination (reducing the signal-to-noise ratio), produced while users perform daily

living tasks. A major prerequisite of BCI systems for motor compensation is that the

benefits provided by the technology outbalance the disadvantages of using it. These dis-

advantages may be caused, among others, by aesthetic or ergonomic factors regarding the

use of the wearable technologies, economic costs associated with the development of the

used technology or the cognitive requirements that the use of human-machine interfaces

demand from the potential users. From the author’s point of view, there are currently no

commercial BCI devices for motor compensation that meet the aforementioned requisites.

There are, nevertheless, cases in which the application of the BCI systems results in a

clear improvement of the patients’ capabilities, such as spelling interfaces for complete

locked-in patients, giving them the only possible way of communication with the outside

world. In these cases, the benefits provided by the BCI systems will more likely justify

the efforts of using the available technology. The system proposed in this thesis must

be considered a proof of concept of the advantages that can be derived from the use of

multimodal systems for the precise neurophysiological characterization of the movement

generation chain originated in the brain and manifested in the peripheral limbs. While

the here proposed mHRI system integrating EEG technology aims at meeting some of

the aforementioned requirements for motor compensation technologies (a small number of

electrodes is used, adaptive algorithms reduce training demands of the system, the pro-

cessing techniques described require a relatively small computational load and the system

is focused on ecologically characterizing the natural cortical activity observed when a sub-

ject performs a voluntary movement), future works in this line will need to focus on ways

to solve the mentioned limitations of the technology.

Finally, the fourth proposed study has presented an EEG-based technique to detect

mental states associated with the initiation of voluntary functional movements. Inspired
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by some previous works regarding the online single-trial decoding of the BP [Niazi et al.,

2011; Jochumsen et al., 2013], this study has proposed a way to optimize the detection

of the movement onset-related mental states in patients with stroke, and this has been

carried out by combining two different types of information: oscillatory changes (related

to the ERD) and low-frequency cortical components (giving rise to the BP). The obtained

results have demonstrated that it is possible to generate a reliable control signal about

the onset of voluntary actions with temporal precision, high recall ratios and almost no

false detections in experimental paradigms that could be easily transferable to clinical

environments in case minor adjustments were performed (optimize the number of channels

used for the detection, reduce training periods of time, increase the detector efficacy

with subjects not showing identifiable ERD/BP patterns, etcetera). Importantly, results

obtained with chronic stroke patients were similar than those with the control subjects

despite the patients’ altered cortical activity [Daly et al., 2006; Stepien et al., 2010].

Consequently, these patients are suitable for BCI systems using electrical stimulation

aimed to provide associative facilitation between the cortex and the muscles of affected

limbs. In addition, a BCI intervention for patients with a stroke has also been proposed

and preliminary results of a clinical validation with four chronic stroke patients have been

presented. Although further research must be carried out to fully understand the effects of

EEG-based conditioning paradigms in the motor function of stroke patients, results here

provide evidences of a possible improvement in the motor condition of the patients after

a whole month intervention.

In summary, this thesis has proposed a set of novel scientific studies framed in the

main research lines that are being currently explored with EEG technology. According

to the results and conclusions reached in the proposed studies, it is considered that EEG

systems represent a powerful way to characterise the neurophysiological mechanisms of

neurologic diseases, and that the acquired information from this sort of studies represents

a non-invasive and efficient opportunity to look for the cerebral regions originating certain

motor-related pathologies. On the other hand, experiments carried out here with BCI

systems using the EEG signal have demonstrated to be reliable and of special interest for

rehabilitation scenarios, while the BCI application in daily-living conditions represents a

challenging objective that still need to be further explored and requires dramatic techno-

logical improvements in order to find more robust and wearable technologies that can lead

to an actual benefit of patients using the BCI systems for assistive/compensatory pur-

poses. In conclusion, despite the several and well known limitations of EEG technologies

for the analysis of the brain activity, it can be established that these systems allow the ac-

quisition of highly relevant cortical information regarding motor-related mental processes,

which makes this kind of technology a valuable tool for the research and conditioning of
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the human neurological system.

7.2 Contributions

This thesis has yielded advances from both the technological and the scientific points of

view in all studies proposed.

The main contributions from the technological point of view are:

• The design of an integrated upper-limb platform working in real-time. The plat-

form was designed to acquire information from different types of noninvasive sensors

(EEG, EMG and gyroscopic sensors) characterising the planning and execution of

voluntary movements. The platform was also capable of processing online the ac-

quired data and generating an adequate feedback.

• The development of signal processing and classifying techniques adapted to the kind

of signal recorded in the two kinds of patients considered in this thesis and to the

requirements of online processing and real-time single-trial function desired for BCI

applications. Especially in this regard, an original methodology to detect onsets of

voluntary movements using slow cortical potentials and cortical rhythms has been

presented.

• The design and validation in real-time of asynchronous BCI systems using motor

planning EEG segments to anticipate or detect when patients begin a voluntary

movement with the upper-limb.

• The proof of concept of the use of the EEG activity in a mHRI architecture that con-

stitutes the first multimodal interface taking advantage of the combined acquisition

of EEG, EMG and gyroscopic data, which allows the concurrent characterization of

different parts of the body associated with the execution of a movement.

The main scientific contributions of this thesis are:

• It has been proposed for the first time an experiment to inspect whether the EEG

signal carries enough information to classify up to seven different tasks performed

with a single limb. Both the methodology applied and the validation procedure are

also innovative in this sort of studies.

• It has been presented the first neurophysiological study using EEG and EMG data

to analyse the effects of a drug on cortical activity and tremors of patients with ET.
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In addition, the obtained results have shown for the first time that a significant cor-

relation exists between the dynamics of specific cortical oscillations and pathological

tremor manifestation as a consequence of the drug effects.

• The study of the EEG-based anticipation of voluntary movements presented in Chap-

ter 5 was the first demonstration (to the author’s knowledge) of the capacity of the

EEG signal to provide reliable movement predictions based on single-trial classifica-

tion of online data of healthy subjects and ET patients. This study also provides,

for the first time, the results of a BCI system tested in ET patients and it represents

an original approach to BCI applications for this group of patients.

• It has been demonstrated for the first time the relevance of combining different

cortical sources of information (such as BP and ERD) to estimate the initiation of

voluntary movements with the upper-limb. In this line, special relevance may be

given to the positive results achieved with stroke patients, improving the results

presented by similar previous EEG-based studies by other research groups. It has

also been proposed for the first time an upper-limb intervention protocol for stroke

patients using BP and ERD patterns to provide proprioceptive feedback tightly

associated with the patients’ expectations of movement. The effects of the proposed

intervention have been studied with a small group of patients.

7.3 Scientific dissemination

The work performed to carry out this thesis has given rise to a number of contributions

in scientific journals, conferences and book chapters in the neurorehabilitation framework.

The following lines summarize these contributions:

Publications in journals:

• J.A. Gallego, J.L. Dideriksen, A. Holobar, J. Ibáñez, J.P. Romero, J.L. Pons, E.

Rocon, D. Farina. Properties and determinants of the relative phase between neural

drives to antagonist muscles in essential tremor. Brain. To be submitted.

• E. Monge, F. Molina, F.M. Rivas, J. Ibáñez, J.I. Serrano, I. Alguacil, J.C. Miango-

larra. Electroencefalograf́ıa como método de evaluación tras un ictus. Una revisión

actualizada. Neuroloǵıa. In Press.

• J. Ibáñez, J.I. Serrano, M.D. del Castillo, J. Mı́nguez, J.L. Pons. Predictive classifi-

cation of self-paced upper-limb analytical movements with EEG. Medical & Biolog-

ical Engineering & Computing. (second revision).
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• J.A. Gallego, J.L. Dideriksen, A. Holobar, J. Ibáñez, E. Rocon, J.L. Pons, D. Farina.

Neural drive to muscle and common synaptic inputs to the motor neuron pool in

essential tremor. Journal of Neurophysiology. Submitted.

• J. Ibáñez, J.I. Serrano, M.D. del Castillo, E. Monge, F. Molina, I. Alguacil, J.L. Pons.

Detection of the onset of upper-limb movements based on the combined analysis of

changes in the sensorimotor rhythms and slow cortical potentials. Journal of Neural

Engineering, 11(5):056009, 2014.

• J. Ibáñez, J. González de la Aleja, J.A. Gallego, J.P. Romero, R.A. Sáız-Dı́az, J.

Benito-León, E. Rocon. Effects of Alprazolam on Cortical Activity and Tremors in

Patients with Essential Tremor. PLoS ONE. 9(3): e93159, 2014

• J. Ibáñez, J.I. Serrano, M.D. del Castillo, J.A. Gallego, E. Rocon. Online detector

of movement intention based on EEG – Application in tremor patients. Biomedical

Signal Processing and Control, 8(6):822-9, 2013.

• J.A. Gallego, J. Ibáñez, J.L. Dideriksen, J.I. Serrano, M.D. del Castillo, D. Farina,

E. Rocon. A multimodal human-robot interface to drive a neuroprosthesis for tremor

management. IEEE Transactions on Systems, Man and Cybernetics, Part C: Ap-

plications and Reviews, 42(6):1159-68, 2012.

• M.D. del Castillo, J.I. Serrano, J. Ibáñez. Metodoloǵıa para la creación de una inter-

faz cerebro-computador aplicada a la identificación de la intención de movimiento.

Revista Iberoamericana de Automática e Informática Industrial (RIAI). 8(2):93-102.

2011.

Book chapters:

• S. Cremoux, J. Ibáñez, S. Ates, A. Desśı. Neuromodulation on Cerebral Activities

in Emerging therapies in neurorehabilitation, J.L. Pons and D. Torricelli (Eds.),

Springer Verlag, 2014.

Selected publications in conference proceedings:

• J. Ibáñez, J.I. Serrano, M.D. del Castillo, E. Monge, F. Molina, F.M. Rivas, I. Al-

guacil, J.C. Miangolarra, J.L. Pons. Upper-Limb Muscular Electrical Stimulation

Driven by EEG-Based Detections of the Intentions to Move: A Proposed Interven-

tion for Patients with Stroke. 2014 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, accepted.
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• J. Ibáñez, F. Molina, J.I. Serrano, M.D. del Castillo, E. Monge, F.M. Rivas, M.

Carratalá, J. Iglesias, I. Alguacil, A. Cuesta, R.Cano, J.C. Miangolarra, J.L. Pons.

A BCI intervention for upper-limb functional movements of chronic stroke patients.

2014 Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, accepted abstract.

• J. Ibáñez, J.I. Serrano, M.D. del Castillo, E. Monge, F. Molina, F.M. Rivas, I. Al-

guacil, J.C. Miangolarra, J.L. Pons. Detection of the Onset of Voluntary Movements

Based on the Combination of ERD and BP Cortical Patterns. Replace, Repair,

Restore, RelieveBridging Clinical and Engineering Solutions in Neurorehabilitation.

Springer International Publishing, 437-46; 2014.

• J. Ibáñez, E. Monge, J.I. Serrano, M.D. del Castillo, F. Molina, J.L. Pons. Erd- and

bp-based movement onset detectors in stroke patients. XX Congress of the Interna-

tional Society of Electrophysiology and Kinesiology ISEK 2014, accepted abstract.

• I. Alguacil, E. Monge, F. Molina, F.M. Rivas, R. Cano, J. Ibáñez. Entrenamiento de

los ritmos motores corticales en sujetos con ictus intervenidos con Brain-Computer

Inetrface. 52 Congreso Nacional de la Sociedad Española de Rehabilitación y Medic-

ina F́ısica SERMEF 2014, accepted presentation.

• J. Ibáñez, M.D. del Castillo, J.I. Serrano, F. Molina, E. Monge, F.M. Rivas, J.C.

Miangolarra, J.L. Pons. Single-Trial Detection of the Event-Related Desynchroniza-

tion to Locate with Temporal Precision the Onset of Voluntary Movements in Stroke

Patients. XIII Mediterranean Conference on Medical and Biological Engineering and

Computing 2013, 1651-1654; 2013.

• J. Ibáñez, J.I. Serrano, M.D. del Castillo. Asynchronous BCIs for the Early De-

tection and Classification of Voluntary Movements: Applications in Stroke Reha-

bilitation. Converging Clinical and Engineering Research on Neurorehabilitation

Biosystems & Biorobotics Volume 1, 629-633; 2013.

• I. Alguacil, E. Monge, A. Cuesta, J. Ibáñez, F. Molina, M. Pérez de Heredia. De-

tección de la intención de movimiento mediante Brain-Computer Interface en el ictus.

51 Congreso Nacional de la Sociedad Española de Rehabilitación y Medicina F́ısica

SERMEF 2013, accepted presentation.
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7.4 Future work

The applied methods in this thesis and the achieved results are expected to serve as

a starting point for future projects and research lines. Some of the topics considered

for future research are the consequence of the results and conclusions reached in the

here presented work, while others constitute a planned continuation in the framework of

the addressed research line. Future studies identified here are organized in two groups

associated with the two considered pathologies considered in this thesis. According to this

division, future studies in line with the EEG classifier presented in Chapter 3 (EEG-based

classification of upper-limb analytical movements) are integrated in the block of studies

related to stroke, since such an application is expected to be of interest both to characterize
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the cortical status of patients with cortical reorganization and to develop advanced BCI

systems capable of predicting the kind of movements that the patients are planning to

perform during the rehabilitation sessions.

Regarding the use of EEG and BCI technologies in the study and treatment of ET,

the following future goals are identified, some of which have already been started at the

time this document has been written:

• Study the possible benefits of EEG-based neuromodulation systems in pathological

tremors. In this line, previous experiments have been carried out by other research

groups showing promising results when patients with tremor are able to modulate

movement-related cortical activity [Fumuro et al., 2013].

• Develop new signal processing techniques for electrophysiological signals to improve

the findings achieved with EEG and EMG technologies and with ET patients so far.

Of special interest in this regard are the improvement of techniques studying inter-

action between neural populations and the development of new means of extracting

the directionality of this interaction and the estimated delays.

• Explore new technologies for the BNCI platform that allow bringing the proposed

system into real-life conditions. This involves testing new acquisition technologies

(modern dry electrodes, active electrodes with high signal-to-noise ratio...) and

developing new signal processing techniques that allow filtering external sources of

signal contamination that are present during daily living conditions.

• Design new experimental protocols to increase our knowledge regarding tremor gen-

eration mechanisms in ET. In this line, studies using vibrotactile stimulation will

be carried out in the near future in order to analyze the effects of periodic sen-

sory afferences in tremor manifestation. Combination of EEG measurements with

other technologies such as functional magnetic resonance imaging and magnetoen-

cephalography systems are also expected to provide a more detailed description of

tremor-related neural structures, by analysing the pathological tremor from different

perspectives.

• Look for more complex ways of combining the EMG and EEG information to improve

the performance of the proposed mHRI.

• Increase the number of recruited patients for the validation of the mHRI system and

include patients with pathological tremor caused by other tremor-related diseases,

such as Parkinson’s disease, or cerebellar tremor, so that the proposed platform can

be robustly validated.
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As for possible future research lines derived from the here presented studies with stroke

patients, some of them are listed in the next lines:

• To test online the EEG classifier of analytical upper-limb movements (presented in

Chapter 3) on a large number of patients with stroke. This will allow the analy-

sis of the extent to which the proposed system is able to describe altered cortical

activation patterns and of the possibility of integrating the system in a BCI with

other classification modules, leading to an improved characterization of the patients’

motor intentions while they perform rehabilitation tasks.

• To advance in the development of the EEG-based BCI intervention for stroke pa-

tients, including robotic technologies able to cooperate with the neuroprosthetic

device to produce a more natural movements during the rehabilitation. Besides,

the adaptive control of the assistive forces delivered to the patients’ arms will be

addressed in the future, so that an optimal movement generation is achieved.

• To improve certain aspects of the EEG signal processing techniques used in order

to make the BCI-based intervention suitable for clinical scenarios. In this line, it

is identified as a relevant goal to look for ways to make the training data from a

patients valid along different intervention sessions, which requires overcoming the

inter-sessions variability of the EEG signal properties (due to changes in the elec-

trode impedances, specific electrode locations on the scalp or patients’ vigilance).

It is an additional goal to look for variations in the proposed system so that a re-

duced number of electrodes can still allow a robust detection of movement intentions.

Future experiments will also seek to develop online artefact filtering techniques, so

that patients can make use of this technology in a less restrictive way. All these

advances will have as a final goal to adapt EEG-based BCI technology to the clinical

scenario by reducing the time required for the interventions, allowing cost-effective

EEG systems and allowing a proper function of the proposed system in electrically

contaminated rooms (typically found in clinical environments).

• To explore EEG sources of information that allow a fine characterization of the status

of a patient with stroke and an accurate prognosis about the patient’s evolution both

in terms of functional motor capacity and cortical activation patterns. It is expected

that gaining knowledge in this regard will serve to develop interventions tailored to

patients’ needs and to evaluate the efficacy of current interventions using longitudinal

studies.

• To explore the benefits that the BCI intervention presented here may provide to

stroke patients in acute or subacute states. This kind of studies are of great interest,
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since stroke patients in early stages present high plastic changes during the first

weeks and months after the brain injury, and therefore, conditioning paradigms may

provide more significant changes in these patients. In this regard, it should also be

further analysed what sorts of cortical changes can lead to maladaptive rehabilitation

(inducing cortical changes that are suboptimal for the treated patient).

• To carry out a clinical validation procedure in which a larger sample of patients can

be considered, so that more reliable results are reachable by increasing the number

of subjects in each of the experimental groups and also by increasing the number

of control groups to discard all possible non EEG-based effects leading to patients’

improvement.
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[Buzsáki, 2006] Buzsáki, G. (2006). Rhythms of the Brain. Oxford Universiy Press.
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Birbaumer, N. (2003). A brain-computer interface (BCI) for the locked-in: comparison of

different EEG classifications for the thought translation device. Clinical neurophysiology,

114(3):416–25.

[Hjorth, 1975] Hjorth, B. (1975). An on-line transformation of EEG scalp potentials

into orthogonal source derivations. Electroencephalogr Clin Neurophysiol, 39(5):526–30.

[Hua et al., 1998] Hua, S. E., Lenz, F. a., Zirh, T. a., Reich, S. G., and Dougherty,

P. M. (1998). Thalamic neuronal activity correlated with essential tremor. Journal of

neurology, neurosurgery, and psychiatry, 64(2):273–6.

[Huber and Paulson, 1988] Huber, S. J. and Paulson, G. W. (1988). Efficacy of alpra-

zolam for essential tremor. Neurology, 38(2):241–3.

[Hummel and Gerloff, 2005] Hummel, F. and Gerloff, C. (2005). Larger interregional

synchrony is associated with greater behavioral success in a complex sensory integration

task in humans. Cerebral Cortex, 15(5):670–8.
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