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Abstract 

ZrB2–Al2O3 nanocomposite powder was produced by aluminothermic reduction in 

Al/ZrO2/B2O3 system. In this research, high energy ball milling was used to produce the 

necessary conditions to induce a mechanically induced self-sustaining reaction (MSR). 

The ignition time of the composite formation was found to be about 13 minutes. The 

synthesis mechanism in this system was investigated by examining the corresponding 

sub-reactions as well as changing the stoichiometry of reactants. Thermal behavior of 

the system was also studied. 
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1. Introduction 

ZrB2 is a well-known material belonging to the Ultra-High Temperature Ceramics class 

[1]. The distinctive features of this class of materials make them good selections for use 

in various applications such as hypersonic flights, atmospheric re-entry vehicles, and 

rocket propulsion systems. Zirconium diboride has attracted much attention because of 
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its superior oxidation resistance, which is a consequence of the stability of ZrO2 formed 

on these materials at high temperatures in oxidizing atmospheres [2]. 

 

Ceramic matrix composites consisting of high temperature borides and some other 

industrial ceramic materials have been of interest in recent years. Alumina is one of the 

most common used ceramics in various applications such as grinding media, cutting 

tools, crucibles, tube furnaces and liners, owing to its several intrinsic characteristics 

like high hardness, high melting point, good chemical inertness, high wear resistance, 

and low cost. Nevertheless, some mechanical properties of alumina are not good  

enough for several applications. The mechanical strength of these materials can 

significantly improve by the addition of strong compounds like zirconium diboride [3]. 

TiB2–Al2O3 composite that was prepared by mixing alumina and diboride powders, 

showed excellent mechanical properties [4]. The most important applications of ZrB2 

are in the high-temperature fields where it is used as a refractory material; hence, the 

effect of alumina on the oxidation rate of ZrB2 ceramic should be essentially 

investigated. Few reports exist on the high temperature oxidation resistance of ZrB2–

Al2O3 composites. Recently, Li et al. [5] examined the oxidation kinetics of 

Al2O3/ZrB2/ZrO2 composite prepared by mixing and hot-pressing. 

 

Self-propagating high temperature synthesis (SHS) has recently been used extensively 

for the preparation of refractory materials such as carbides, silicides, nitrides, and 

various composite materials. This kind of synthesis is characterized by its significant 

negative enthalpy and high adiabatic temperature (Tad) of above 1800 K [6]. Literature 

survey shows a great attention to the metallothermic reduction of ZrO2 and B2O3 in 
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preparation of ZrB2 because of its cheaper raw material as well as the high exothermic 

nature of the involving self-sustaining reactions compared to the other synthesis routes 

[7-12]. Magnesium has been frequently used to reduce zirconium and boron oxides [7-

11] due to good feasibility of MgO leaching, although aluminium has also been 

employed in a few cases [3, 12] for inducing the reduction reaction in this system. 

Using Al as reducing agent has also the advantage of in-situ making of ZrB2–Al2O3 

which is a valuable composite. 

 

When a self-sustaining reaction is induced by the high-energy ball milling of reactants 

after a critical milling period, called the ignition time, such a mechanochemical process 

is referred to as mechanically induced self-sustaining reaction (MSR) [6]. MSR and 

SHS are different methods, although there are common features between both 

processes. In contrast to the conventional SHS procedure, MSR process has the 

favorable side benefit of mixing of the reactants as well as the subsequent 

homogenization of the products together with intensive particle size reduction of both 

reactants and products, all just in one single step. 

 

All research works that were performed on the ZrB2 synthesis by use of Al as reducing 

agent, were carried out by thermally combustive SHS methods, rather than MSR 

reactions [3, 11]. Furthermore, reaction mechanism has not also been clearly explained. 

The aim of the present work, therefore, was to investigate the mechanosynthesis of 

ZrB2–Al2O3 powder by aluminothermic reduction using ZrO2 and B2O3 as starting 

materials and by means of mechanically induced self-sustaining reaction (MSR), which 

has not been reported so far. The mechanistic explanation of ZrB2 formation in this 
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system was also another target, which has been accomplished through the investigation 

of sub-reactions, as well as the study of the influence of the reactants stoichiometry. 

 

2. Experimental  

The raw materials, monoclinic ZrO2 (99%, Aldrich, USA), B2O3 (98%, Fluka, 

Germany), and Al (99%, Aldrich, USA) powders, were used to produce zirconium 

diboride–alumina composite powder. Elemental zirconium (99%, Alfa Aesar, Germany) 

and boron (97%, amorphous, Aldrich, USA) were also used for studying a sub-reaction. 

The starting materials were subjected to the high energy ball milling in a modified 

planetary ball mill (Pulverisette7, Fritsch, Germany). The rotational speed and ball-to-

powder mass ratio were 600 rpm and 30:1, respectively. The milling vial and balls (15 

mm) were made of hardened chromium steel. All milling experiments were conducted 

under 5 bar of  high-purity argon gas. The vial was purged with argon gas several times, 

and the desired pressure was adjusted before the start of the milling. The connection of 

the vial to the gas cylinder during the milling experiments was maintained by a rotating 

union and a flexible polyamide tube. The pressure change vs. time was monitored by a 

SMC solenoid valve (model EVT307-5DO-01F-Q, SMC Co .,  Tokyo, Japan) to record 

the ignition time. A sharp peak due to the pressure rise appears when the MSR reaction 

occurs. The position of this peak represents the ignition time. The system used in this 

work has already been shown elsewhere [13].  

 

Thermal behavior of the as-blended mixture was studied by differential scanning 

calorimetry (DSC) in a TA Instrument Q600 analyzer using a constant heating rate of 

20°C/min from room temperature to 1400°C. The DSC measurement was done under a 
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flowing helium atmosphere. Furthermore, isothermal annealing of mixtures was carried 

out at different temperatures for 30 min under a flowing argon atmosphere at a pressure 

of 1 bar in a horizontal tubular furnace (IGM1360 model no. RTH-180-50-1H, AGNI, 

Germany).  

 

Structural features of the samples were investigated using X-ray diffraction (XRD) 

analysis by means of a PANalitycal X'Pert diffractometer (45 kV, 40 mA) with Cu Kα 

radiation (λ=0.15406 nm) XRD analyser. The crystallite size of sample was estimated 

by broadening analysis of XRD peaks using Williamson–Hall formula [14]. 

 Scanning electron microscopy (SEM) images were obtained by a Hitachi S-4800 SEM-

Field Emission Gun microscope. Transmission electron microscopy (TEM) images 

were taken using a 200 kV Philips CM200 microscope equipped with a SuperTwin 

objective lens and a tungsten filament (point resolution Ø=0.25 nm). Powdered samples 

were dispersed in ethanol, and droplets of the suspension were deposited onto a holey 

carbon film.  

 

3. Results and Discussion 

3.1. Mechanosynthesis 

The initial purpose of the present work was to synthesize zirconium diboride-alumina 

composite. In order to achieve this goal, the following reaction was considered: 

ZrO2 + B2O3 + (10/3)Al → ZrB2 + (5/3)Al2O3 (1) 

ΔG°298= –722 kJ,  ΔH°298= –746 kJ,  Tad ≈ 2330 K 
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Stoichimetric amounts of starting materials (Table 1) were milled under aforementioned 

conditions. The change of internal pressure of the vial versus milling time is shown in 

Fig. 1. The large pressure rise observed at approximately 13 min milling demonstrates 

the occurrence of a highly exothermic MSR reaction. 

 

Fig. 2 shows the XRD patterns of Al, ZrO2 and B2O3 powder mixture as-received and 

after different milling times. The XRD pattern of as-blended mixture included only the 

sharp peaks of Al (ICCD PDF #03-0932), ZrO2 (ICCD PDF #13-0307) and B2O3 

(ICCD PDF #06-0297) compounds, which were converted to ZrB2 (ICCD PDF #34-

0423) and Al2O3 (ICCD PDF #11-0661) after 13 min milling (just after ignition). Small 

amounts of Al and ZrO2 were still remained which is a typical behavior of 

mechanosynthesis reactions, especially in the MSR situations [12], due to the 

entrapment of some powders in the dead zones of milling vial. As Fig. 2 shows, a 

tetragonal ZrO2 phase (nominated as T-ZrO2) was detected among the remaining 

materials in the sample that was milled for 13 min (the ignition point). In fact, 

zirconium dioxide transformed from its monoclinic crystal structure at room 

temperature to a tetragonal form, due to the significant temperature rise resulted from 

the highly exothermic MSR reaction. Because the cooling rate after ignition is very 

high, there are traces of transformed zirconia remained in the tetragonal state at room 

temperature. As shown in Fig. 2, a very slight amount of elemental Zr was detected in 

the XRD pattern for the sample milled for 13 min, most likely due to the incomplete 

reaction of reduced zirconium with boron. Elemental boron, which may remain due to 

the incomplete reaction with zirconium, could not be detected, most likely due to its 

very little quantity and/or its amorphization because of rapid cooling after ignition.  
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By increasing the milling time, powders trapped in the dead zones can be gradually 

subjected to the ball impacts and locally reacted. Fig. 2 shows the XRD patterns of 

samples milled for 1 and 2 hours. A slight amount of zirconium dioxide was observed 

after 1 h milling, but it was entirely disappeared after 2 h milling. The crystallite size of 

ZrB2 after 2 h ball milling was calculated to be approximately 83 nm. 

 

The electron microgarphs of a sample milled for 2 h are shown in Fig. 3. As these 

micrographs shows, the product powder contains agglomerates which are composed of 

particles of sub-micrometric and nanometric sizes with a combination of semi-spherical 

and platelet morphology. The TEM micrograph in Fig. 3 (b) shows dark polyhedron 

ZrB2 particles surrounded by bright alumina nanoparticles. A bigger, single crystal of 

hexagonal ZrB2 along with alumina nanoparticles is indicated in a larger magnification 

in Fig. 3 (c). 

 

3.2. Reaction mechanism 

3.2.1. During milling 

The mechanistic study of the formation of ZrB2–Al2O3 composite during milling in the 

present work can be divided into two sections. The overall reaction (Rea.1) was initially 

investigated by the study of involved sub-reactions. At the second step, the effect of 

boron oxide amount on the nature of the reaction was studied. 

To form zirconium diboride, zirconium and boron elements must be obtained through 

the reduction of their corresponding oxides. The sub-reactions involved in this system 

can be written as follows: 
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2Al + B2O3 → 2B + Al2O3 (2) 

ΔG°298= –389 kJ,  ΔH°298= –404 kJ,  Tad ≈ 2310 K 

(4/3) Al + ZrO2 → Zr + (2/3) Al2O3 (3) 

ΔG°298= –15 kJ,  ΔH°298= –20 kJ,  Tad ≈ 500 K 

Zr + 2B → ZrB2 (4) 

ΔG°298= –318 kJ,  ΔH°298= –322 kJ,  Tad ≈ 3200 K 

 

In the above reactions, aluminum reduces boron oxide and zirconium oxide to yield 

elemental boron and zirconium. ZrB2 can be subsequently formed by the reaction 

between these two elements. According to the adiabatic temperatures (Tad) and enthalpy 

values of the above reactions, Reas. 2 and 4 meet the required conditions to satisfy 

Merzhanov’s criterion [12] to proceed in a self-sustaining manner. However, the 

reduction of ZrO2 by Al (Rea. 3) does not satisfy these conditions, and it is hence 

anticipated to gradually proceed as an ordinary reaction. 

 

When Al, B2O3 and ZrO2 are all present in one system, Al reduces boron oxide in a self-

sustaining manner to yield elemental boron together with the release of a great deal of 

heat; this heat increases the system temperature inside the milling vial to such a level 

which can trigger the reaction between Al and zirconia to form elemental Zr. 

Consequently, ZrB2 can be synthesized by the reaction between these two elements. The 

highly exothermic reaction of the reduced B and Zr (Rea. 4) can exert an additional 

amount of heat to the system, thus causing the further ZrO2 reduction to proceed more 

easily. All these three reactions occur simultaneously; thus only one peak is observed in 

the pressure-time graph of overall reaction (Rea. 1). This postulation can be confirmed 
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by the existence of a trace amount of residual zirconium as the XRD pattern just after 

the ignition time (Fig. 2) shows. Although elemental boron was not detected in the XRD 

pattern, it may be present in consequence of incomplete reaction of ZrB2 formation and 

remaining elemental zirconium. Boron can be possibly interpreted to have been present 

in an amorphous form, if this possible mechanism is factual. 

 

In order to examine the proposed mechanism, these sub-reactions were separately 

studied. Stoichiometric amounts of Al/B2O3, Al/ZrO2 and Zr/B were mixed according to 

the Reas. 2-4 and milled under the same conditions. For Rea. 2, the ignition time was 

found to be about 25 min (Fig. 4), which is a little longer than the ignition time of Rea. 

1, due to lower exothermicity of Rea. 2. Reaction 1 includes Al/B2O3 ignition along 

with Zr/B ignition which can cause the system to be more rigorous than reaction1 (only 

Al/B2O3 ignition). Therefore, the ignition time is shorter in the overall system. The 

XRD patterns of initial materials along with that of sample milled up to the ignition 

point (25 min) are shown in Fig. 5. It can be seen that the ignited sample contains 

aluminum oxide, which is an indication of the feasibility of the reduction of boron oxide 

by Al. Small amounts of the starting materials were also observed, perhaps due to their 

entrapment in the dead zones of the vial, as mentioned earlier. However, elemental 

boron was not detected in the XRD pattern, most likely due to its amorphization as a 

result of the high temperature rise during the MSR reaction and high cooling rate after 

ignition. The formation of amorphous boron as a result of metallothermic reduction of 

boron oxide has already been described in the literature [15,16].  
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For Rea. 3, no pressure rise was observed during the milling process as expected from 

the thermodynamic data. Fig. 6 shows the XRD pattern of the un-milled sample together 

with that of the sample milled up to 4 h in this system. Peak broadening is the only 

observation, with no sign of the occurrence of any reaction during this long milling 

time. This confirms that Al cannot reduce zirconia under the conditions applied in the 

present work even with such a long time period. High energy ball milling at long times 

can introduce lattice defects into the crystal and induce internal strains. By increasing 

the milling time, crystalline natures of the initial materials are gradually changing to the 

amorphous form.  

For Rea. 4, the ignition time was around 17 min as shown in Fig. 4. It is evident from 

the relevant XRD patterns in Fig. 7 that ZrB2 was completely synthesized after the 

ignition time of 17 min. Elemental boron used in this section was amorphous, as 

mentioned in section 2. Thus, only zirconium is observed in the XRD pattern of initial 

materials. Consequently, individual study of these sub-systems confirms the validity of 

the proposed mechanism.  

 

As mentioned already, the overall Rea.1, which is a self-sustaining reaction, is a 

combination of two self-sustaining reactions (Reas.2 and 4) and one non- self-sustaining 

reaction (Rea.3). According to the previously proposed mechanism, B and Zr elements 

must be obtained at first to form ZrB2. But, the self-sustaining reduction reaction of 

boron oxide is not basically the same as non-self-sustaining reduction reaction of 

zirconium oxide. Therefore, it would be interesting to understand how the latter non-

self-sustaining reaction converts to a self-sustaining one. To examine this phenomenon, 

the following general reaction was developed: 
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ZrO2 + y B2O3 + ((6y+4)/3) Al → y ZrB2 + ((3y+2)/3) Al2O3 + (1-y) Zr   0 ≤ y ≤ 1 (5) 

 

where the amount of B2O3 is considered as a variable. The amounts of initial materials 

used in above reaction were listed in the Table 1 for the different values of y. Once 

B2O3 is added to the binary ZrO2–Al system (Rea. 3), it can be reduced to boron by 

aluminum. The significant heat generated by this reaction promotes the reduction of 

zirconia to zirconium. Afterwards, the total amount of boron and a stoichiometric 

portion of reduced zirconium react to form ZrB2, the rest of unreacted zirconium being 

left in the product. When y is equal to zero, the Rea. 5 converts to Rea. 3, which is a 

non-self-sustaining reaction. When y is equal to one, the Rea. 5 changes to Rea. 1, 

which is a self-sustaining reaction. This implies that there is a transition point between 

these limiting extends where a gradual reaction transforms to a self-sustaining one, 

depending on the amount of B2O3 in the initial mixture. Therefore, the amount of B2O3 

is expected to play a crucial role in the sense of the system thermodynamics. 

 

If the adiabatic temperature (Tad) is considered as a measure of the self-sustaining 

tendency, this transition can be illustrated by plotting Tad of Rea. 5 versus the y values. 

Fig. 8 shows the thermodynamic calculations for Tad and room temperature enthalpy of 

Rea. 5 as a function of y values ranging from 0 to 1. It is clear that when y increases, the 

enthalpy of the reaction becomes more negative, causing more suitable thermodynamic 

conditions for the reaction to take place. Since a given reaction requires Tad to be at least 

1800 K to proceed in a self-sustaining manner (known as the Merzhanov’s criterion) 

[12], it can be seen from Fig. 8 that such a condition is satisfied with y values higher 

than 0.4. In other words, in the case of compositions with 0 ≤ y < 0.4, the amount of 
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boron oxide is not sufficient to release a great deal of heat by aluminothermic reduction, 

which is necessary for changing the whole system state to a self-sustaining situation. 

Therefore, the reaction in these compositions is expected to be unable to take place at 

room temperature and would require more rigorous situation such as high temperatures 

or very long-term milling, so that overall reaction can proceed in a gradual way. For 

compositions with y ≥ 0.4, the amount of B2O3 is sufficient to be reduced in a self-

sustaining mode by Al and to simultaneously motivate the reduction of ZrO2 to Zr. 

 

In order to verify the above thermodynamic prediction, various initial compositions 

with different y values between 0 and 1 with intervals of 0.1 were examined by high 

energy ball milling to induce MSR reactions. As can be seen from XRD results in Fig. 

9, compositions with y ≥ 0.8 were observed to behave in a self-sustaining manner and 

expected products of Rea. 5 have been completely formed after the ignition point of 13 

min (results corresponding to y = 1 was shown in Fig. 2). But, no ignition occurred in 

the compositions of y < 0.8 even after a long milling time. As an example, the XRD 

pattern of y = 0.7 composition after 2 h milling is shown in Fig. 9. It can be seen that the 

transition theory of gradual behavior to the self-sustaining mode in this system seems to 

be valid, although there is a quantitative distinction between thermodynamically 

calculated and experimentally observed criteria. Ultimately, it can be confidently 

concluded that in the case of y values less than 0.4, Rea. 5 will never proceed in a self-

sustaining mode. For the compositions with 0.4 ≤ y < 0.8, there is no thermodynamic 

barrier for emerging a self-sustaining reaction, but the experimental conditions applied 

in the present work have not been severe enough to stimulate the reacting materials to 

be reduced in a self-sustaining manner. 
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The main cause of the difference between the thermodynamic calculations and 

experimental outcome is expected to be the heat loss from the system through heat 

exchange with the milling vial body, connections, inert gas flow, etc., and consequently 

insufficiency of energy, including the reaction enthalpy and milling momentum, to 

induce a very fast self-sustaining reaction. The overall reaction in this range is expected 

to become self-sustaining if more severe milling conditions are applied. For instance, 

the self-sustaining reaction occurred for composition of y = 0.7 at 1 hour milling when 

the rotational speed of milling was increased to 750 rpm. In the case of compositions 

with y ≥ 0.8, both thermodynamic and current experimental conditions confirm that this 

situation is adequate to have a self-sustaining reaction. 

 

3.2.2. Thermal behavior 

In order to provide more evidences regarding the proposed reaction mechanism, thermal 

behavior of as-blended Al/ZrO2/B2O3 powder mixtures was studied by differential 

scanning calorimetry (DSC). The DSC curve, shown in Fig. 10, includes one 

endothermic peak at 660
°
C and two major exothermic peaks at around 1000°C and 

1250°C. To clarify the phenomena related to the peaks appeared in DSC graph, some 

heat treatments at temperatures before and after each DSC peak were performed on the 

homogenous powder mixtures. To prevent the formation of a stable propagating 

reaction front, which may cause the occurrence of the overall self-sustaining reaction, 

loose powder mixtures (un-consolidated) were used and the experiments were 

accomplished with a slow heating rate (10
°
C/min). Figs. 11 and 12 show the XRD 

patterns of products after heating of initial mixture at different temperatures. From the 
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XRD pattern corresponding to the annealed sample at 700°C in Fig. 11, it is clear that 

the endothermic phenomenon in DSC is related to Al melting.  

 

The first exotherm starts at about 950°C extending to about 1050°C. The XRD patterns 

taken before (950°C) and after (1050°C) the first exotherm are shown in Fig. 11. It can 

be seen at 950°C that the small peaks related to the products such as ZrB2, Al2O3 and 

Al3Zr have appeared together with the sharp peaks of initial reactants. With rising the 

heating temperature to 1050°C, the peaks of ZrB2, Al2O3 and Al3Zr have been sensibly 

intensified and a slight amount of Al2Zr phase has appeared, although the major phases 

are still initial ZrO2 and Al. It can be concluded that the first exotherm observed at 

about 1000°C is attributed to the reduction of boron oxide by the corresponding 

stoichiometric portion of Al with the side product of alumina. A little amount of 

zirconia has also been reduced due to the high temperature resulted from the heat 

generated by the reaction between Al/B2O3, together with subsequent formation of 

small amounts of ZrB2 through the reaction between reduced Zr and B elements. An Al-

rich zirconium aluminide (Al3Zr) begins to form around the first exotherm whose 

amount increases with increasing temperature. Formation of this phase is due to the 

presence of slight amounts of reduced Zr along with great amounts of Al which can 

react at high temperatures. At higher temperatures, another less Al-rich zirconium 

aluminide (Al2Zr) also finds the chance to be formed. These intermediate compounds 

are formed in a gradual diffusional mode which is evident from the broad appearance of 

the DSC graph around the two exhotherms. Therefore, no characteristic exotherm can 

be cited for their formation. 
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In order to clarify the nature of the second exotherm observed at 1250°C, heating 

experiments were performed before (1150°C) and after (1300°C) the exhotherm. XRD 

results are shown in Fig. 12. At 1150°C, accompanied with a considerable increase of 

all product compounds (ZrB2, Al2O3 and Al3Zr) compared to 1050°C, a large amount of 

zirconia and aluminum have still remained unreacted. With increasing temperature to 

1300°C, the major phase was found to be ZrB2, even though a small amount of 

remained ZrO2 is still observed in XRD pattern. It can be concluded that the second 

exotherm in DSC pattern relates to the reduction of zirconia by aluminum. Comparison 

of the results corresponding to the heating at 1300°C with those of 1150°C reveals that 

Al3Zr phase amount has decreased and Al2Zr formation has correspondingly grown. 

This suggests that zirconium aluminide has begun to be converted to lower Al 

containing aluminides at higher temperatures. In order to reduce the remained ZrO2 and 

to decompose zirconium aluminides, heating experiments were carried out at 1400 and 

1500°C. As seen in Fig. 12, a little amount of zirconia is still remained at 1400°C 

whereas the products were free of zirconia at 1500°C. As to the zirconium aluminides, 

Al3Zr was disappeared at 1500°C while Al2Zr has been slightly remained among the 

products. 

 

These all experiments described above, exhibited the preliminary reduction of boron 

oxide being followed by the reduction of the zirconium oxide at higher temperatures. 

This general trend is consistent with the mechanism proposed during mechanochemical 

(milling) synthesis with an exception that intermediate zirconium aluminides were 

observed in thermal treatment while they were not detected in the milling route. This 

difference is most likely due to the enough time at high temperatures in the thermal 



16 

 

treatments, which can make the conditions suitable for Zr and Al to form zirconium 

aluminides.  

 

4. Conclusion 

High energy ball milling technique was successfully applied for mechanosynthesis of 

ZrB2–Al2O3 nanocomposite by means of the aluminothermic reduction. Synthesis in 

Al/B2O3/ZrO2 system found to possess a self-sustaining nature having an ignition time 

of 13 min. Examination of the sub-reactions revealed that boron oxide is easily reduced 

by Al, while Al cannot reduce ZrO2 to Zr in a self-sustaining manner. It was concluded 

that the great deal of heat generated through the reduction of boron oxide by Al together 

with the large amount of heat released by the reaction between the reduced B and Zr, is 

capable of activating the reduction of ZrO2. This mechanism was found to be in good 

agreement with the general trend observed during thermal treatment of the system with 

an exception of formation of intermediate zirconium aluminides in the latter case. The 

amount of boron oxide was recognized to be a critical parameter which can alter the 

magnitude of reaction heat and consequently cause the system to undergo a transition 

from a gradual state to a self-sustaining one. 
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Fig. 1. Pressure inside the vial versus milling time for Al/ZrO2/B2O3 system. 

 
Fig. 2. X-ray diffraction patterns of as-blended and milled samples of Al/ZrO2/B2O3 system. 
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Fig. 3. Electron micrographs of Al/ZrO2/B2O3 system after 2 h milling, (a) SEM and (b) TEM 

images. 

 
Fig. 4. Pressure inside the vial versus milling time for Al/B2O3 and Zr/B systems. 
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Fig. 5. X-ray diffraction patterns of initial and milled samples of Al/B2O3 system. 

 
Fig. 6. X-ray diffraction patterns of initial and milled samples of Al/ZrO2 system. 
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Fig. 7. X-ray diffraction patterns of initial and milled samples of Zr/B system. Boron cannot be 

observed among initial mixture due to its amorphous state. 

 
Fig. 8. Calculated adiabatic temperature and room temperature enthalpy of Rea. 5 series 

versus B2O3 molar amount. 
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Fig. 9. X-ray diffraction patterns of the different compositions (y = 0.7–0.9 in Rea. 5) after 

milling. 

 
Fig. 10. DSC curve of as-blended mixture in Al/ZrO2/B2O3 system. 
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Fig. 11. X-ray diffraction patterns of the blended powders in Al/ZrO2/B2O3 system after heating 

at 700, 950 and 1050°C (30 min dwelling at maximum temperature and then cooling to room 

temperature). 

 
Fig. 12. X-ray diffraction patterns of the blended powders in Al/ZrO2/B2O3 system after heating 

at 1150, 1300, 1400 and 1500°C (30 min dwelling at maximum temperature and then cooling to 

room temperature). 
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Table 1. The weight (g) of components involved in the Reaction 5 for the different y values. 

y 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

B2O3 - 0.127 0.238 0.335 0.420 0.495 0.563 0.624 0.679 0.729 0.774 

ZrO2 2.435 2.260 2.108 1.975 1.858 1.754 1.661 1.578 1.502 1.434 1.371 

Al 0.712 0.759 0.801 0.837 0.869 0.897 0.922 0.945 0.965 0.984 1.001 

 


