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HENIIGGE! * We consider perturbed FRW universes

filled with a massive scalar field.
@ The scalar field is minimally coupled.

* The model can generate inflation.

@ The most interesting case is flat spatial
\ \ topology. It is also the simplest.

* The effects of spatial curvature can be
studied by considering, e.g., spherical topology.

s \WWe assume compact spatial sections.




IENTIOUE] It's been well studied, even in LQC, though...

» Anomalies: Incorporate quantum effects, not
the starting point for quantization.

s Effective dynamics: Needs a true derivation.

» Approximations: As few as possible. Should
be derived or at least checked for consistency.

* |n many cases these checks are only internal,
within the approximated description.




Partureetiorns snout et FiAYY

a

» Truncation at quadratic order in the action.
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A A 4 2 |ncludes backreaction at that order.
A 4

-

@ Tests the validity of less refined truncations and
provides the way to develop approximation
methods, controlling their range of application.
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Effects of quantum geometry are only accounted
for in the background
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2 Infinite ambiguity in selecting a Fock representation in QFT in curved space-
times.

@ This can be restricted by appealing to background symmetries.
@ Typically this is not sufficent in non-stationarity.

@ Proposal: demand the UNITARITY of the quantum evolution.
The conventional interpretation of QM is guaranteed.

This goes beyond the viewpoint of algebraic quantizations.

@ There is a natural ambiguity in the separation of the background from the field.
In cosmology, this introduces time-dependent canonical field transformations.

@ Remarkably, symmetry invariance and dynamical unitarity select a UNIQUE
canonical pair and a UNIQUE Fock representation for their CCR's.
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@ Recent works DO NOT incorporate the correct scaling (AA&N). This affects the
quantum description, and in particular the effective approaches therein dereived.

~ @ Moreover, one can even consider non-local canonical transformations,
- respecting the decoupling of field modes.

The UNIQUENESS of the quantization, up to unitary equivalence, is guaranteed.

i = |
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+ Avoids the Big Bang.

+ Specific proposal such that:

+~ Evolution can be defined even without ideal clocks (masless field).
~ The WdW limit is unambiguous in each superselection sector.
+~ |t is optimal for numerical computation.

+ Control of changes of densitization in the scalar constraint.
The lapse function is not a function on phase space.
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Hamiltonian constraint:
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@ We expand inhomogeneities in a (real) Fourier basis:

1 - 1 : -
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Q; =——zcosn-0, Q, =—=7sinn-0. neZ, n=0.
21T 21T

@ The basis is orthonormal, and we exclude the zero mode in the expansions.

@ These functions are eigenmodes of the Laplace-Beltrami operator of the
standard flat metric on the three-torus, with eigenvalue

—w'=—n-n.

@ We only consider scalar perturbations: decoupled from vector and tensor
perturbations at dominant order.
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@ Mode expansion of the inhomogeneities:
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@ Truncating the action at quadratic order in perturbations, one obtains:
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2 \We can adopt longitudinal gauge by imposing:

w, —M.a;.—3m,f;.=0, b;.=0.

aﬁy
@ This removes the constraints /inear in perturbations.

T nﬁgﬂemnfaap—3n&ngjl+

n,x

2 2 4«
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a Together with dynamical stability, this fixes gu+=—ds ., k;.=0.

The shift vanishes, and the spatial metric is proportional to Ohl.j.
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@ After REDUCTION, a canonical set is:
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The genuine background variables are corrected with quadratic perturbations.

We have already scaled the matter field variables.
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@ The modes of the scaled matter field satisfy a
quasi-KG equation with time-dependent mass:

(1T§+21 né+3 e m o’ (PZ).

-2
Vur Sy Py» 4, areoforder w, .

@ For any given background, there exists a UNIQUE Fock quantization with the
symmetry of the three-torus and unitary dynamics.

@ The system can be put in the form of a KG field with time-dependent mass by
means of a mode-dependent canonical quantization, varying in time.

@ This transformation is unitarily implementable in the privileged quantization.
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@ The Mukhanov-Sasaki modes and their momenta
have the expression:
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@ |f we construct annihilation and creation variables with these invariants (for
zero mass), the Bogoliubov transformation, which is mode dependent, is
UNITARY in the privileged Fock quantization .
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@ Moreover, the same symplectic structure for gauge invariants is obtained.
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- @ We quantize the homogeneous sector with standard loop techniques, using -
improved dynamics and the MMO proposal.

@ In the volume basis Hv>;veIR], with I7=|j9|3/2,

A

Nﬂ|v>=|v—l—l>, j?|v>=sgn(v)(21TyGh\/Z|v|)2/3|v>.

kin °

s a  The kinematic Hilbert spaceis H,. “‘®H}"

@ The inverse volume is regularized as usual.
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@ The gravitational part, with the MMO proposal, is:
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After decoupling the zero-volume state, we change densitization for the FRW =
constraint:

A

1 1/2 1 1/2 6 R A
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Q,= 4i1/Z 171/2lsgn(p)(NZH—N_M)—i—(NM—N_M)Sgn(p)] v

Takes into account the triad orientation (manifest in anisotropic scenarios).
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This operator has the generic form

Q)=o) v+4)+ f(0)|v)+ - (v)|[v—4).
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. 2 .
@ (2, can be seen as a difference operator.

Q)=o) v+4)+ f(0)v)+ f_(v)|v—4).

» The real function f,(v) (/_(v)] vanishes in the interval [—4,0] [0,4]).

@ The operator preserves the superselection sectors 3(142_: : =[i (e+4n), nEIN}
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@ This operator is selfadjoint in those sectors. Its eigenfunctions are real, and
determined by their value at the minimum volume €€ (0,4].
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@ Solutions to the constraint are determined, e.g., by their initial values at
minimum volume.

@ |f the scalar field serves as a clock, an alternate possibility is to give the value
at a section of constant field. This is not always possible.

@ The space of physical states
can be identified, e. g., with

L (R,d ¢).
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proceed to a hybrid quantizatisrmwith~Hilbert space

HFRW LQC®Hmarl®
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® ‘ aint is not trivial.
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We quantize the quadratic contribution of the perturbations to the Hamiltonian
adapting the quantization proposals of the homogeneous sector and using a
symmetric factor ordering:

ITH,

* \We symmetrize products of the type b Ty
k12 1) k/2

* We take a symmetric geometric factor ordering VEA—-T" 41
2

% We adopt the LQC representation (cp )™ H[Qo]m.
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# In order to preserve the FRW superselection sectors, we adopt the

prescription (¢p)’ +1—>[f2ﬂm Ao[f)é]mu, where

A

= = i IA/llzlsgn(p)(Nw—N_4a)+(N4H—N_4ﬁ)sgn(p)l171/2.

The situation is similar to that found with the Hubble parameter in LQC.
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We can pass to an interaction picture and use a Born-Oppenheimer-like
approximation.

This can be done even without the above perturbative expansion.

This leads to a sort of effective QFT for the inhomogeneities.
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@ An alternate perturbative scheme:
w|=(v|"+e (..
» FRW solution: v|”¢,=o,
¢ = 6 O L2, 24240
0= —— Q8T G +m’ V7).
Y
@ Evolution of the perturbations:

v e =y (T i)

@ Solutions are characterized by their initial data at minimum volume.

s From these data we arrive, e.g., at the physical Hilbert space H,, ®.7 .
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Cornclusions

4 % The action has been truncated to second order in the perturbations.
# A hybrid quantization scheme has been adopted.

@ First complete quantization of a model with inflation within LQC (k=1).

@ Backreaction has been included.
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Coriclusion

@ For quantum simulations, the FRW prescription is optimal.

8 @ Opposite to the situation in other analyses, the inhomogeneities have
UNITARY dynamics in an (effective) QF T approximation.

2 No internal time (matter clock) is needed. If a matter clock is available, one
can obtain the inhomogeneities evolution adopting an interaction picture.

@ Generally, one can construct quantum states perturbatively from data at
minimum volume. This allows one to get a physical Hilbert space.
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