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Abstract 

Char reactivity has a strong influence on the gasification process, since char gasification 

is the slowest step in the process. A sample of waste PET was devolatilised in a vertical 

quartz reactor and the resulting char was partially gasified under a CO2 atmosphere at 

925 ºC in order to obtain samples with different degrees of conversion. The reactivity of 

the char in CO2 was determined by isothermal thermogravimetric analysis at different 

temperatures in a kinetically controlled regime and its reactive behaviour was evaluated 

by means of the random pore model (RPM). The texture of the char was characterised 

by means of N2 and CO2 adsorption isotherms. The results did not reveal any variation 

in char reactivity during conversion, whereas the micropore surface area was affected 

during the gasification process. It was found that the intrinsic reaction rate of the char 

can be satisfactorily calculated by normalizing the reaction rate by the narrow 

micropore surface area calculated from the CO2 adsorption isotherms. It can be 

concluded therefore that the surface area available for the gasification process is the 

area corresponding to the narrow microporosity. 
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1. Introduction 

The amount of residues generated is projected to grow in the foreseeable future. Some 

materials in waste, such as plastics, metals or ceramics, are not biodegradable and their 

durability exacerbates the problem of landfill waste sites. It is therefore necessary to 

find an alternative means of disposal, such as energy recovery from waste, which is 

more environmentally acceptable [1]. 

The European Union represents 25% of the global plastics production, with 

approximately 60 million tonnes per year. Five types of plastic account for around 75% 

of all plastics demand in Europe: polyethylene (PE), polypropylene (PP), 

polyvinylchloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET). PET 

is one of the most frequently used raw materials for the manufacture of soft drink 

bottles. European post-sorting PET collection reached 1.26 million tonnes in 2008 [2]. 

The European Union Directive 2008/98/EC on waste lays down measures to prevent or 

reduce the adverse impacts of the generation and management of wastes. It establishes 

that by 2015, separate collection shall be set up for plastic and, by 2020, the preparing 

for re-use and the recycling of plastic waste shall be increased to a minimum of overall 

50 % by weight. The use as a fuel to generate energy is one of the options for waste 

recovery if the recovery of energy takes place with a high level of energy efficiency.  

Waste accumulation of such bottles in landfills can cause serious ecological problems in 

many developed countries [3]. Gasification or pyrolysis provide a means of producing 

sustainable energy from the growing amount of plastics in wastes and an alternative 

way of getting rid of the plastic wastes at the same time [4]. This would help to solve 

the problem of dumping plastic wastes in landfills [5]. Moreover, plastics have a higher 

heating value compared to the average heating value of cellulosic material. Plastics have 
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the average LHV of 40 MJ/kg, whereas the LHV for cellulosic wastes such as cardboard 

is 16 MJ/kg [4]. The gasification of coal and PET blends in a fluidized bed reactor has 

been studied by Pohořelý et al. [6] and a co-gasification study of biomass and plastic 

wastes has been carried out by Pinto et al. [7]. Recently, Al-Salem et al. [8] concluded 

that thermo-chemical methods (pyrolysis, gasification) and energy recovery (co-

incineration) will soon be developed enough to provide a sustainable solution to the 

problem of plastic solid waste disposal in the near future. 

Gasification involves combusting a fuel with insufficient oxygen to turn all the energy 

contained in the fuel into chemical energy in the gases produced. The process converts 

the fuel into a mixture of gases such as carbon monoxide, hydrogen and light 

hydrocarbons. The gasification process consists of a devolatilization stage of the fuel, 

when volatile matter such as hydrocarbon gases, tars and phenols are evolved, and a 

gasification stage of the resultant char, the latter being the controlling stage of the 

overall process. In gasification systems, there is usually a recirculation of synthesis gas 

that contains significant quantities of carbon monoxide and hydrogen, which will cause 

very high temperatures. The volatile matter produced during the devolatilization stage 

reacts with the oxidant surrounding atmosphere and the volatiles combustion will be 

therefore much more rapid than the heterogeneous char gasification. The slowest 

reactions in gasification are these gas-solid reactions with char carbon, such as 

Boudouard (C+CO2), water gas (C+H2O) and hydrogenation reactions (C+H2). The 

water gas shift reaction (CO+H2O) also can take place and will affect the CO/H2 ratio in 

the syngas produced. A good knowledge of char reactivity and its variation during 

gasification is essential for designing gasification reactors [9]. 
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To this end, thermogravimetric analysis is a useful, simple and fast tool for studying the 

thermal behaviour, reactivity and kinetics parameters of carbonaceous materials [9-13]. 

By means of thermogravimetry, different models can be applied in order to calculate the 

parameters of reaction rates. The random pore model (RPM) proposed by Bhatia and 

Perlmutter [14] has been widely applied to the experimental data obtained from 

gasification of carbonaceous materials [15-18]. 

What is more, to fully understand the gasification process, it is necessary to study the 

pore structure of carbon. Most pore structure models assume that gasification occurs on 

the surface of the micropores, which make up most of the surface area of char. In the 

absence of diffusional effects, the intrinsic reactivity of chars can be obtained by 

dividing the reaction rate by the surface area [19]. However, there is controversy about 

which is the most suitable surface area to determine intrinsic reactivity [20]. 

The methods most frequently used to evaluate char microporosity are based on the 

physical adsorption of gases [21], N2 and CO2 being the adsorbates most widely 

employed to characterise char texture. N2 adsorption isotherms are usually performed at 

-196 ºC and, in these conditions, the results obtained are associated with larger 

microporosity [22]. CO2 adsorption is usually conducted at 0 ºC and in these conditions 

this adsorbate is able to penetrate the smaller micropores due to its greater diffusivity 

compared to N2 [23]. According to Lozano-Castelló et al. [24], CO2 adsorption 

isotherms should be used as a complement to N2 adsorption when assessing narrow 

microporosity (pore width < 0.7 nm). In contrast, the apparent surface area is usually 

determined by applying the Brunauer-Emmett-Teller (BET) method to the N2 

adsorption isotherms. However, microporosity can also be analysed from the Dubinin-

Radushkevich (DR) equation and its modifications, such as Dubinin-Asthakov (DA) or 
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Dubinin-Stoeckli (DS) methods, which are based on Dubinin’s theory of the volume 

filling of micropores, the density functional theory (DFT) and the Horvath-Kawazoe 

method. 

The surface area that determines intrinsic reactivity will be the one that produces a 

constant reaction rate/surface area ratio with conversion. The assumption of a constant 

ratio has been widely employed in modelling works [19]. 

In the present study, a PET sample was devolatilised in a vertical quartz reactor and the 

char obtained was partially CO2-gasified in order to achieve various degrees of 

conversion. The reactivity and kinetics of the chars were determined by using a 

thermogravimetric analyser. The objective was to study the variation of char reactivity 

with conversion and its relation to the properties of the char texture. 

 

2. Material and Methods 

2.1. Preparation of char samples 

PET from post-consumer soft-drink bottles was cut into small pieces (squares of 1x1 cm 

approximately), and batches of this raw material (40 g) were pyrolysed at 725 ºC for 2 h 

under a N2 flow rate of 50 Nml min-1 and a heating rate of 15ºC min-1 in a 35 mm 

internal diameter vertical quartz reactor, heated by an electric furnace. The final 

products included 58% of gaseous compounds (CO, CO2 and hydrocarbons), 20% of 

terephthalic acid and 22% of char (denoted as PET0). The CO2 gasification experiments 

were carried out at a previously optimised temperature of 925 ºC [25]; previously, PET0 

sample was subjected to a treatment at 925 ºC in a nitrogen atmosphere (50 Nml min-1) 

for 1 h, giving the initial char sample for CO2 gasification tests, which was denoted as 

PC00. Sample PC00 was then partially gasified in the same experimental device under a 
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CO2 flow rate of 10 Nml min-1 at 925 ºC to obtain additional char samples with different 

conversion degrees (12, 35, 58 and 76% of burn-off), which were denoted as PC12, 

PC35, PC58 and PC76, respectively;. Therefore, the CO2 reactivity tests will be applied 

to the PC00, PC12, PC35, PC58 and PC76 samples. 

 

2.2. CO2 reactivity tests 

The reactivity tests were conducted in a thermobalance (Setaram TAG24) at 

atmospheric pressure. Approximately 5 mg of char sample (0.5-1.0 mm) was placed in a 

crucible with a circular base (5 mm diameter and 2 mm height). A thermocouple was 

located close to the platinum basket to monitor temperature and to close the oven 

control loop. The following experimental procedure was applied to the PC00, PC12, 

PC35, PC58 and PC76 samples in the thermobalance. Firstly, the sample was heated up 

to 1125 ºC (100 ºC min-1) under N2 flow (50 Nml min-1). Secondly, sample reactivity 

was evaluated by means of isothermal thermogravimetric CO2 (50 Nml min-1) 

gasification until completion at five temperatures: 925, 975, 1025, 1075 and 1125 ºC. 

Then, the char conversion, X, and reaction rate, dX/dt, were calculated.” 

The random pore model, RPM, [14] was used in order to evaluate the reactive behaviour 

of the chars. The reaction rate, dX/dt, is expressed as: 

dX/dt = k (1-X) [1-ψ ln(1-X)]1/2 (1) 

where X is the char conversion on a dry ash-free basis, k is the apparent gasification 

reaction rate and ψ is a parameter related to the pore structure of the unreacted sample 

(X=0). The apparent reaction rate, k, can be expressed using the Arrhenius equation, 

which is written as: 

k = k0 e-E/RT (2) 
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where k0 and E are the pre-exponential factor and activation energy, respectively. The 

parameter ψ can be calculated by the following equation: 

ψ = 4π L0(1- ε0)/ S0
2 (3) 

where S0, L0 and ε0 represent the pore surface area, pore length and solid porosity, 

respectively. Eq. (1) was linearised in order to calculate the values of k and ψ from the 

experimental data obtained in the isothermal thermogravimetric runs, giving: 

(2/ψ)[(1-ψ ln(1-X))1/2-1] = kt (4) 

The random pore model provides the following conversion-time relationship [26]: 

X = 1 – exp[-kt(1 + ktψ/4)] (5) 

Equation (5) was used to calculate Xcalc,i introducing the previously estimated k and ψ 

values. The X calculation was performed in order to calculate the quality of the fit and 

verify the capacity of the kinetic models to describe the char conversion by comparing 

the experimental and calculated X values. The deviation (DEV) between the 

experimental and calculated curves was calculated using the following expression: 

DEV X (%) = 100 [Σi=1,N(Xexp,i - Xcalc,i)2/N]1/2/maxXexp (6) 

where Xexp,i and Xcalc,i represent the calculated and experimental data of X, N is the 

number of data points, and maxXexp is the highest absolute value of the experimental 

curve. 

 

2.3. Textural characterisation 

Nitrogen adsorption isotherms at -196 ºC were obtained using a Micromeritics ASAP 

2010M instrument, while CO2 adsorption isotherms at 0 ºC were obtained using a 

Micromeritics Gemini 2375 device. 
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From the N2 adsorption isotherms, the apparent surface area of the samples was 

obtained by using the BET equation [27]. The Dubinin-Asthakov (DA) method [28] was 

also applied to both the N2 and CO2 adsorption isotherms in order to obtain the 

corresponding micropore volume, which then was used to calculate the micropore 

surface area of the chars [25]. 

 

3. Results and discussion 

The elemental analysis and the surface areas of the char samples are shown in Table 1. 

When the BET equation was applied to the N2 adsorption isotherms, an increase in the 

apparent surface area (BET surface area) with conversion was found (Table 1). 

Furthermore, the physical structure of the solid reactant changed as the reaction 

proceeded. This evolution may have affected the kinetics of the reaction by altering the 

amount of surface area available for the reaction [29]. 

In order to follow and analyse the extent of adsorption by the micropores, it is useful to 

use CO2 at 0 ºC together with N2 at -196 ºC, since by including the CO2 data it is 

possible to extend the range of analysis to the narrow microporosity [30]. The critical 

dimensions of both molecules are similar, but the higher temperature of the CO2 

experiments avoids the kinetic restrictions that prevent the N2 probe from gaining 

access to the narrow micropores. Moreover, because of the much lower relative pressure 

range covered by the CO2 adsorption isotherms (up to p/p0 < 0.035), the data correspond 

solely to the domain of the narrow microporosity [24]. 

In this study, the micropore surface area obtained from the CO2 adsorption isotherms 

was higher than that obtained from the N2 adsorption data up to 35% of conversion, 

whereas it was lower at higher values of conversion (Table 1). This indicates that the 
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porosity present in the initial sample and at a low degree of burn-off (PC00 and PC12) 

consisted mostly of narrow micropores. Ballal and Zygourakis [31] stated that the pore 

volume obtained from N2 adsorption is lower than that obtained from CO2 adsorption 

because most of the smaller pores are not accessible to N2. 

Furthermore, the surface area value obtained from the N2 adsorption isotherms, N2 

(micro), remarkably increased from 0% to 35% of conversion but remained 

approximately constant at conversion values higher than 35%, whereas that obtained 

from the CO2 adsorption isotherms reached a maximum at 35% of conversion but 

decreased as conversion increased to higher values (Table 1). Therefore, as the degree 

of conversion increased (PC35 to PC76), the surface area corresponding to narrow 

micropores decreased, whereas that associated with larger micropores did not 

appreciably change. When narrow micropores participate in the reaction, they initially 

become larger due to the fact that the reaction occurs on the pore surface, and this 

results in an increase in the surface area. However, as these pores get even bigger, they 

coalesce with neighbouring pores, with the result that the pore surface area decreases 

[32]. And at the same time, an increase in the surface area of higher micropore sizes 

occurs, leading to an increase in BET surface area (Table 1), again due to pore 

coalescence. 

The linearised form of the RPM model, Eq. (4), was used to represent the experimental 

data obtained at all the temperatures studied (Fig. 1) in order to find the parameters k 

and ψ of best fit. The parameter ψ was calculated assuming that its value is constant for 

each char sample at all the temperatures, since it is related to the pore structure. Table 2 

shows the values of k and ψ that better fit the experimental data to the Eq. (4). The value 

of the ψ parameter obtained for all the char samples hardly changed with the degree of 
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conversion. Although the ψ parameter is related to the textural properties of the solids, a 

relationship between the BET surface area (Table 1) and the ψ values cannot be 

established. However, the ψ values and the CO2 surface areas (Table 1) seem to present 

an inverse linear correlation. 

The calculated conversion, Xcalc,i, of the chars during gasification was obtained with Eq. 

(5) by using the previously estimated k and ψ values (Table 2). In order to quantify the 

errors produced by the kinetic models in predicting the values of conversion, the 

experimental and calculated X values were compared by calculating the deviation, DEV 

X (%), between the experimental and calculated curves using Eq. (6). Table 3 shows the 

results for this deviation for all the char samples and temperatures studied. 

The Arrhenius plot (lnk vs. 1/T) was then employed (Fig. 2) to calculate the activation 

energy, E, and the pre-exponential factor, k0, for each of the char samples at different 

degrees of conversion (Eq. 2). All the regression analysis carried out resulted 

statistically significant (confidence interval 95%). The results corresponding to 1125 ºC 

are not included in the regression because they were obtained under the diffusion-

controlled regime, as can be observed in the plot. The change from chemical to 

diffusion-controlled regime was detected from the change in slope on the Arrhenius 

plots. 

The E and lnk0 values were represented in relation to the conversion degree of each of 

the char samples studied (Fig. 3). As can be seen, there is no variation between these 

values with burn-off which seems to indicate that the reactivity parameters did not 

change with the conversion of the PET char. 

However, the surface areas of the char samples were observed to change with 

conversion (Table 1). The reaction rate, dX/dt, of the initial char sample, PC00, was 



 11

therefore normalized by each of the surface areas in order to be able to calculate the 

intrinsic reactivity. Only when the reaction rate was normalized by the narrow 

micropore surface areas calculated from the CO2 adsorption isotherms, was its value 

constant for all the degrees of conversion (Fig. 4), indicating that the variations in 

reaction rate are controlled by the narrow microporosity during the gasification reaction. 

Several authors have studied solid gasification kinetics related to development of the 

textural characteristics under different conditions. Su and Perlmutter [29] found that the 

coal char gasification kinetics is controlled by pore structural changes, although these 

authors worked with air instead of CO2. Arias et al. [33] studied the reaction kinetics by 

RPM model and found that the available surface area during coal combustion was best 

represented by N2 surface area. Salatino et al. [34] compared the gasification of coal by 

oxygen and carbon dioxide; they found that the micropores participate to a lesser extent 

to carbon gasification by O2 than by CO2. Feng and Bathia [20] found that the coal char 

reaction rate normalized by the total surface area for CO2 gasification was constant at 

conversions higher than 20%. However, according to some authors, the micropores 

have not been completely filled. Hurt et al. [35] studied the gasification of chars from a 

sub-bituminous coal and found that the rate of CO2 gasification remained insensitive to 

large changes in total surface area during reaction, but these authors attributed this 

behaviour to an enhancement of active catalytic sites on the large pore surface areas. 

Ballal and Zygourakis [31] studied the evolution of pore surface area during gasification 

of coal chars and concluded that a large number of submicropores are probably not 

completely filled during the reaction with O2, whereas they are in the case of 

gasification with CO2. These authors also pointed out that N2 adsorption properties do 
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not always give a good indication of the amount of microporosity accessible to CO2 

gasification. 

 

5. Conclusions 

The kinetic parameters that define the reactivity of PET char in CO2 did not change 

during conversion, unlike the micropore surface areas. Determination of the intrinsic 

reactivity from the narrow micropore surface area gave satisfactory results. Thus, 

narrow micropore surface area appears to be a good parameter for describing the 

reactivity of PET char, since the ratio between the reaction rate and this type of surface 

area remained constant with conversion, indicating that the gasification process was 

governed by narrow microporosity. 
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Figure captions 

Fig. 1. RPM linearised model for the PET char samples at different conversion degrees 

(a: PC00; b: PC12; c: PC35; d: PC58; and e: PC76) during CO2 gasification at different 

temperatures. 

Fig. 2. Arrhenius plot for the RPM model of the PET char samples at different 

conversion degrees (PC00, PC12, PC35, PC58; and PC76) during CO2 gasification. 

Fig. 3. Variation of the RPM model pre-exponential factor, lnk0, and the activation 

energy, E, with conversion during the CO2 gasification of PET char. 

Fig. 4. Variation of the normalized reaction rate of char sample PC00 for the different 

micropore surface areas with conversion during the CO2 gasification of PET char (a: 

925 ºC; b: 975 ºC; c: 1025 ºC; and d: 1075 ºC). 
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Table 1 
Elemental analysis and surface areas of char samples 
Char sample Elemental analysis (wt%, dry basis)  Surface areas (m2/g)  
 C H O BETa N2 (micro)b CO2 (narrow micro)c 
PC00 98.2 0.5 0.9 340 490 746 
PC12 98.8 0.3 0.6 668 629 882 
PC35 98.9 0.3 0.6 1405 909 969 
PC58 98.7 0.2 0.6 1920 930 748 
PC76 99.0 0.2 05 2468 870 480 
a Determined by the BET method applied to the N2 adsorption isotherms at -196 ºC. 
b Determined by the DA method applied to the N2 adsorption isotherms at -196 ºC. 
c Determined by the DA method applied to the CO2 adsorption isotherms at 0 ºC. 
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Table 2 
Values of the parameters k and ψ that better fit the experimental data from CO2 gasification at different temperatures to the RPM 
Char sample ψ k ± standard error (x10-5 s-1)  
  925ºC 975ºC 1025ºC 1075ºC 1125ºC 
PC00 3.0 ± 0.01 8.9 ± 0.02 21.4 ± 0.05 66.6 ± 0.34 141.3 ± 0.71 254.2 ± 0.92 
PC12 2.8 ± 0.01 9.1 ± 0.01 25.5 ± 0.07 50.7 ± 0.21 150.8 ± 0.96 199.4 ± 0.28 
PC35 2.6 ± 0.01 9.8 ± 0.02 29.5 ± 0.04 64.9 ± 0.12 148.8 ± 0.76 276.7 ± 0.34 
PC58 3.3 ± 0.01 9.4 ± 0.01 26.2 ± 0.03 65.1 ± 0.13 168.9 ± 0.59 288.0 ± 1.10 
PC76 3.9 ± 0.01 9.7 ± 0.01 25.4 ± 0.05 59.4 ± 0.14 140.7 ± 0.71 254.2 ± 1.19 
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Table 3 
Deviation (%) between the experimental and calculated 
conversion (X) data for RPM during CO2 gasification at 
different temperatures 
Char DEV X (%)  
sample 925ºC 975ºC 1025ºC 1075ºC 1125ºC 
PC00 1.8 1.4 2.0 2.2 0.7 
PC12 1.3 1.3 1.7 2.0 0.4 
PC35 1.2 0.7 0.6 1.7 0.4 
PC58 0.5 0.6 0.8 1.1 0.6 
PC76 0.8 0.8 0.9 1.7 1.5 
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Fig. 1. RPM linearised model for the PET char samples at different conversion degrees 

(a: PC00; b: PC12; c: PC35; d: PC58; and e: PC76) during CO2 gasification at different 

temperatures. 
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Fig. 2. Arrhenius plot for the RPM model of the PET char samples at different 

conversion degrees (PC00, PC12, PC35, PC58 and PC76) during CO2 gasification. 
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Fig. 3. Variation of the RPM model pre-exponential factor, lnk0, and the activation 

energy, E, with conversion during the CO2 gasification of PET char. 
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Fig. 4. Variation of the normalized reaction rate of char sample PC00 for the different 

micropore surface areas with conversion during the CO2 gasification of PET char (a: 

925 ºC; b: 975 ºC; c: 1025 ºC; and d: 1075 ºC). 

 


