| 1  | Biomass and primary production of a 8-11 m depth meadow $versus < 3$ m depth       |
|----|------------------------------------------------------------------------------------|
| 2  | meadows of the seagrass Cymodocea nodosa (Ucria) Ascherson                         |
| 3  |                                                                                    |
| 4  |                                                                                    |
| 5  | Jorge Terrados*, María Grau-Castella, Dolors Piñol-Santiñà, and Pablo Riera-       |
| 6  | Fernández                                                                          |
| 7  |                                                                                    |
| 8  |                                                                                    |
| 9  | IMEDEA (CSIC-UIB), Grupo de Oceanografía Interdisciplinar, Instituto Mediterráneo  |
| 10 | de Estudios Avanzados, C/ Miquel Marqués, 21. 07190 Esporles, Baleares. Spain      |
| 11 |                                                                                    |
| 12 |                                                                                    |
| 13 |                                                                                    |
| 14 | * Corresponding author. Telephone: + 34 971 611 830; Fax: + 34 971 611 761; E-mail |
| 15 | address: jorge.terrados@uib.es                                                     |
| 16 |                                                                                    |
| 17 |                                                                                    |

18 Abstract

| 20 | Current knowledge about the abundance, growth, and primary production of the                                                              |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | seagrass <i>Cymodocea nodosa</i> (Ucria) Ascherson is biased towards shallow (depth $< 3 \text{ m}$ )                                     |
| 22 | meadows although this species also forms extensive meadows at larger depths along the                                                     |
| 23 | coastlines. The biomass and primary production of a C. nodosa meadow located at a                                                         |
| 24 | depth of 8-11 m was estimated at the time of maximum annual vegetative development                                                        |
| 25 | (summer) using reconstruction techniques, and compared with those available from                                                          |
| 26 | shallow meadows of this species. A depth-referenced data base of values at the time of                                                    |
| 27 | maximum annual development was compiled to that end. The vegetative development                                                           |
| 28 | of <i>C. nodosa</i> at 8-11 m depth was not different from that achieved by shallow (depth <                                              |
| 29 | 3 m) meadows of this species. Only shoot density, which decreased from 1637 shoots                                                        |
| 30 | $m^{-2}$ to 605 shoots $m^{-2}$ , and the annual rate of elongation of the horizontal rhizome,                                            |
| 31 | which increased from 23 cm apex <sup>-1</sup> year <sup>-1</sup> to 71 cm apex <sup>-1</sup> year <sup>-1</sup> , were different as depth |
| 32 | increased from $< 3$ m to 8-11 m. Depth was a poor predictor of the vegetative                                                            |
| 33 | development and primary production of C. nodosa. The biomass of rhizomes and roots                                                        |
| 34 | decreased with depth (g D.W. m <sup>-2</sup> = 480 ( $\pm$ 53, SE) - 32 ( $\pm$ 15, SE) depth (in m), R <sup>2</sup> =                    |
| 35 | 0.12, $F = 4.65$ , d.f. = 35, $P = 0.0381$ ) which made total biomass of the meadow to show a                                             |
| 36 | trend of decrease with depth but the variance of biomass data explained by depth was                                                      |
| 37 | low. The annual rate of elongation of the horizontal rhizome showed a significant                                                         |
| 38 | positive relationship with depth (cm apex <sup>-1</sup> year <sup>-1</sup> = $18 (\pm 5.1, SE) + 5.0 (\pm 1.33, SE)$                      |
| 39 | depth (in m); $R^2 = 0.50$ , F= 14.07, d.f. = 14, P = 0.0021). As shoot size and growth did                                               |
| 40 | not change significantly with depth, the reduction of shoot density should drive any                                                      |
| 41 | changes of biomass and productivity of C. nodosa as depth increases. The processes by                                                     |
| 42 | which this reduction of <i>C. nodosa</i> abundance with depth occur remain to be elucidated.                                              |

- 43
- 44 Keywords: Seagrasses, Cymodocea nodosa, depth gradient, biomass, shoot density,
- 45 primary production, Mediterranean Sea

46 1. Introduction

47

| 48 | Light availability sets the maximum depth of seagrass colonization (Duarte,                  |
|----|----------------------------------------------------------------------------------------------|
| 49 | 1991). Shoot density of seagrass meadows decreases as depth increases (Romero, 1989;         |
| 50 | West, 1990; Romero et al., 1998; Krause-Jensen et al., 2000) while seagrass biomass          |
| 51 | usually reaches a maximum at intermediate depths and decreases towards the depth             |
| 52 | limit (Duarte, 1991; Krause-Jensen et al., 2000). Strong correlations between light          |
| 53 | attenuation and the decline of shoot density and seagrass biomass with depth (Duarte,        |
| 54 | 1991; Krause-Jensen et al., 2000) suggest that light availability is the main factor         |
| 55 | driving the depth distribution of seagrasses. In situ manipulation of light availability and |
| 56 | transplant experiments have shown that the leaf growth and biomass of the seagrass           |
| 57 | Zostera marina L. at the deep limit of distribution is dependent on light availability       |
| 58 | (Dennison and Alberte, 1985; Dennison and Alberte, 1986). The decline of shoot               |
| 59 | density with depth is considered a plant response to reduce self-shading when light          |
| 60 | availability is low (Olesen and Sand-Jensen, 1993;Krause-Jensen et al., 2000).               |
| 61 | Additionally, the size of Z. marina shoots increases with depth, and more biomass is         |
| 62 | allocated to leaves than to rhizomes and roots (Krause-Jensen et al., 2000). Z. marina       |
| 63 | plants grown under an experimental light gradient showed that rhizome growth declined        |
| 64 | faster than leaf growth as light was reduced (Olesen and Sand-Jensen, 1993). These           |
| 65 | changes of biomass allocation are interpreted as a plant response to reduce respiration      |
| 66 | costs and maintain growth under low light availability (Olesen and Sand-Jensen, 1993;        |
| 67 | Krause-Jensen et al., 2000).                                                                 |
| 68 |                                                                                              |

69 Shoot density, leaf biomass, and productivity of the Mediterranean seagrass
70 *Posidonia oceanica* (L.) Delile decrease from the shallow to the deep limit of

distribution of this species (Pirc, 1984;Romero, 1989; Romero et al., 1998; Olesen et al.,
2002; Gobert et al., 2003). Shoot size has been shown to remain fairly constant (Pirc,
1984; Olesen et al., 2002) or decrease (Gobert et al., 2003) as depth increases, but the
number of leaves per shoot and the growth rate of individual shoots do not change with
depth (Pirc, 1984; Romero, 1989; Olesen et al., 2002; Gobert et al., 2003). Hence, the
decline of leaf biomass and productivity of *P. oceanica* meadows with depth seems to
be driven by the decline of shoot density mainly.

78

79 *Cymodocea nodosa* (Ucria) Ascherson is a common seagrass species in the 80 Mediterranean Sea and the North-Atlantic coast of Africa, including the Canary Islands 81 (den Hartog, 1970), which shows an ample depth distribution from the intertidal 82 (Vermaat et al., 1993) to depths of 33-35 m (Drew, 1978; Reyes et al., 1995a; Canals 83 and Ballesteros, 1997). It can be found on a wide range of substrata too, from coarse 84 sand to muddy sediments (Peduzzi and Vukovič, 1990; Pavón-Salas et al., 2000), and 85 forms extensive meadows in shallow, sheltered places such as lagoons (Terrados and Ros, 1992; Ribera et al., 1997; Agostini et al., 2003), bays (Pérez and Camp, 1986; 86 87 Pérez and Romero, 1994) or harbor areas (Reyes et al., 1995b). Most part of the 88 knowledge about the magnitude and seasonality of biomass, growth and primary 89 production of C. nodosa has been produced in shallow (depth < 3 m) meadows (Caye 90 and Meinesz, 1985; Pérez et al., 1991; van Lent et al., 1991; Terrados and Ros, 1992; 91 Vermaat et al., 1993; Pérez and Romero, 1994; Pérez et al., 1994; Sfriso and Ghetti, 92 1998; Cancemi et al., 2002; Guidetti et al., 2002; Agostini et al., 2003). Logistical 93 reasons (i.e., shelter from wave action, diving time) might be behind this bias in 94 knowledge for C. nodosa also forms extensive meadows at larger depths along the 95 coastlines (Reyes et al., 1995a; Calvín et al., 1999).

| 07  | The form analysis of the regestering development of Crimede each nodes a plana           |
|-----|------------------------------------------------------------------------------------------|
| 97  | The few analysis of the vegetative development of Cymodocea houosa along                 |
| 98  | depth gradients (from 2 to 6 m: Peduzzi and Vukovič, 1990; from 0.4 to 3.8 m: Olesen     |
| 99  | et al., 2002) show that shoot density and leaf biomass decrease with depth, while the    |
| 100 | rhizome plus roots to shoot biomass ratio either decreases or does not change, and shoot |
| 101 | size remains fairly constant.                                                            |
| 102 |                                                                                          |
| 103 | In this study we estimated plant size, shoot density, biomass and primary                |
| 104 | production of Cymodocea nodosa growing at depths of 8 m and 11 m, a common               |
| 105 | location of the meadows formed by this seagrass species in the Mediterranean, and        |
| 106 | compared the results obtained with those available from shallow (depth $< 3m$ ) meadows  |
| 107 | of this species to evaluate if the vegetative development of deep C. nodosa meadows is   |
| 108 | different from that of shallow meadows. By increasing the depth range from which         |
| 109 | knowledge about the vegetative development of this species is available we could         |
| 110 | evaluate if depth-related changes of plant size, shoot density, biomass and primary      |
| 111 | production of C. nodosa were consistent with those observed in other seagrass species.   |
| 112 |                                                                                          |
| 113 |                                                                                          |
| 114 | 2. Methods                                                                               |
| 115 |                                                                                          |
| 116 | The study was performed at Sant Pol beach, Sant Feliu de Guixols, NE Spain               |
| 117 | (41° 47.227'N, 3° 03.206'E), where Cymodocea nodosa forms a spatially homogeneous        |
| 118 | meadow (100 % cover of the substratum) between depths of 7 m and 11 m. The               |
| 119 | meadow is patchy at a depth of 18.5 m, and isolated plants can be found at a depth of 21 |
|     |                                                                                          |

120 m. C. nodosa is not present at depths < 7m. The main sampling station was located at a

| 121 | depth of 11 m with additional samples collected at a depth of 8 m. Sampling was                          |
|-----|----------------------------------------------------------------------------------------------------------|
| 122 | performed in July 2002, when the vegetative development of C. nodosa is near its                         |
| 123 | annual maximum (Terrados and Ros, 1992; Pérez and Romero, 1994; Cebrián et al.,                          |
| 124 | 1997; Marbà et al., 1996; Rismondo et al., 1997; Sfriso and Ghetti, 1998; Guidetti et al.,               |
| 125 | 2002; Agostini et al., 2003). The vertical attenuation coefficient for downward                          |
| 126 | irradiance $(K_d)$ was estimated by measuring scalar irradiance at noon just below the                   |
| 127 | surface of the sea and at the top of the leaf canopy at the depth of 11 m with a Li-Cor                  |
| 128 | spherical quantum sensor LI-193SB (Kirk, 1983; page 95). K <sub>d</sub> at Sant Pol beach in July        |
| 129 | 2002 was 0.095 m <sup>-1</sup> , a relatively low value for coastal waters (cf. Kirk, 1983; page 112).   |
| 130 |                                                                                                          |
| 131 | The abundance of Cymodocea nodosa was quantified as shoot density (number                                |
| 132 | of shoots m <sup>-2</sup> ) and biomass (g dry weight m <sup>-2</sup> ). Shoot and flower densities were |
| 133 | estimated by counting the number of shoots and flowers present in 25 samples collected                   |
| 134 | using a 10.2 cm in-diameter stainless-steel corer that was inserted in the sediment to a                 |
| 135 | depth of 40 cm. The biomass of C. nodosa in 10 of the corer samples was sorted into                      |
| 136 | leaves, rhizomes, roots, and flowers, and dried at 60°C during 48 hours to estimate dry                  |
| 137 | weight. Nitrogen in the leaves was determined using a Carlo-Erba NA-1500 CHN                             |
| 138 | analyzer, and phosphorus was determined spectrophotometrically (Parsons et al., 1984)                    |
| 139 | after wet oxidation with boiling $H_2SO_4$ . Seed abundance was estimated from the number                |
| 140 | of seeds that were collected in the corer samples.                                                       |
| 141 |                                                                                                          |
| 142 | Growth rates were estimated using reconstruction techniques (Duarte et al.,                              |
| 143 | 1994) which are based on the estimation of the age of the shoots using the                               |
| 144 | "plastochrone" concept, the time elapsed between the appearance of two consecutive                       |

145 structural modules (i.e., leaves) in plants (Erikson and Michelini, 1957). The age in

146 years of the shoots was estimated by counting the number of standing leaves and scars 147 left by fallen leaves on the vertical rhizome of each shoot and dividing the resultant 148 number by the average number of leaves produced by *C. nodosa* in one year. Such 149 average was estimated through the analysis of the sequence of lengths of the internodes 150 of large pieces of vertical rhizome (cf. Duarte et al., 1994) which were measured with a 151 stereomicroscope.

152

153 The length (cm) of the vertical rhizome of all the shoots collected in the corer 154 samples was measured, and the number of roots, root scars and flower scars present in 155 them was counted. These counts, when divided by the age of the shoots, provide an 156 estimate of the annual elongation of the vertical rhizome and the number of roots and 157 flowers produced by the shoots. Horizontal rhizome pieces of more than 30 cm in-158 length were collected haphazardly throughout the meadow by hand to estimate their 159 growth rate. The number of standing leaves and leaf scars (i.e. an age estimate) of all 160 the shoots in each rhizome piece collected was counted, as well as the number of 161 internodes and distance (cm) between them. The age difference between shoots in a 162 rhizome piece allowed us to calculate the average elongation and number of internodes 163 produced per leaf plastochrone. The annual rates of elongation and internode production 164 of the horizontal rhizome were estimated by multiplying those per-leaf-plastochrone 165 estimates by the average number of leaves produced during one year. A subsample of 166 10 fragments of both vertical and horizontal rhizomes was haphazardly chosen and the 167 number of internodes of each fragment was counted and its length measured before 168 drying to estimate average mass and length of vertical and horizontal rhizome 169 internodes. Similarly, three subsamples of 10 small and 10 large unbroken roots were 170 chosen and weighed after drying to estimate the average mass per root. The abundance

of apexes of horizontal rhizome was estimated by counting the number of them present
in 24 quadrats (1600 cm<sup>2</sup>) haphazardly placed within the meadow. Knowledge of the
age of each shoot allows to build the age distribution of the population of shoots (cf.
Duarte et al., 1994). Mean and median shoot age were estimated, and the resultant age
distributions were compared with those available in the literature (KolmogorovSmirnov two sample test, Sokal and Rohlf, 1981).

177

178 We searched the marine ecology an biology literature for studies describing the 179 vegetative development (plant size, shoot density, biomass, nutrient content of leaves, 180 growth, and productivity) of Cymodocea nodosa and compiled a depth-referenced data 181 base of values at the time of maximum annual development (listed in caption of Fig. 1). 182 To evaluate the differences of vegetative development between "shallow" and "deep" 183 meadows we compared the mean of the values obtained at the depths of 8 m and 11m at 184 our study site with the mean of the corresponding values reported by those compiled 185 studies which were performed at depths < 3 m (two-sample t test, two-tailed). Graphing 186 of compiled values against depth suggested that vegetative development was highly 187 variable at shallow meadows and that declines with depth of shoot density, biomass and 188 other variables describing vegetative development occurred at depths > 3 m. We 189 calculated the coefficient of variation of the mean (V\*, Sokal and Rohlf, 1981) of 190 selected variables describing the vegetative development of C. nodosa in shallow (depth 191 < 3 m) and deep (depth > 3 m) meadows to evaluate the significance of the differences 192 in variability of the vegetative development between them (two-tailed Z test for 193 difference between two coefficients of variation, Zar, 1999). Further, we used linear 194 regression to examine depth-associated changes of the vegetative development of C. 195 nodosa.

198 3. Results

| 200 | Shoot density of Cymodocea nodosa at 8-11 m depth in Sant Pol beach in July                      |
|-----|--------------------------------------------------------------------------------------------------|
| 201 | 2002 was lower than the annual maximum shoot density reported in most of the                     |
| 202 | meadows of this species studied previously (Fig. 1a). Leaf, rhizome plus roots, and total        |
| 203 | biomass of C. nodosa at the annual maximum at 8-11m depth were also at the low end               |
| 204 | of the range of reported values (Fig. 1b). The annual maximum shoot density of C.                |
| 205 | <i>nodosa</i> meadows at depth of 8-11 m was lower (two sample t-test, $P < 0.05$ ) than that of |
| 206 | meadows located at depths $< 3$ m (Table 1). The annual maximum of leaves, rhizome               |
| 207 | plus roots, and total biomass tended to be also lower at 8-11 m depth than at depths $< 3$       |
| 208 | m but the differences of the means were not significant (Table 1). The relative                  |
| 209 | allocation of biomass to leaves and rhizomes plus roots at 8-11 m depth was not                  |
| 210 | different than that of meadows located at depths $< 3$ m (Table 1, Fig. 1c).                     |
| 211 |                                                                                                  |
| 212 | The average number of leaves of Cymodocea nodosa shoots at the time of                           |
| 213 | maximum vegetative development at 8-11 m depth was not different from that of                    |
| 214 | meadows located at depths $< 3$ m (Table 1, Fig. 1d). The same occurred with the                 |
| 215 | average shoot mass (Table 1, Fig. 1e).                                                           |
| 216 |                                                                                                  |
| 217 | The annual average leaf plastochrone of Cymodocea nodosa at 8-11 m depth                         |
| 218 | was not different than that of meadows located at depths $< 3$ m (Table 1, Fig. 1f). The         |
| 219 | annual leaf and total production of C. nodosa at 8-11 m depth were at low end of the             |
| 220 | range of values published previously but was not different from the average values               |

| 221 | estimated in meadows located at depths $< 3$ m (Table 1, Figs. 1g and 1h). The                     |
|-----|----------------------------------------------------------------------------------------------------|
| 222 | elongation rate of the horizontal rhizome was, however, higher at 8-11 m depth than the            |
| 223 | average value estimated in meadows located at depths $< 3 \text{ m}$ (Table 1). The nitrogen       |
| 224 | and phosphorus content of C. nodosa leaves at 8-11 m depth was not different than the              |
| 225 | average of values found in meadows located at depths $< 3$ m (Table 1).                            |
| 226 |                                                                                                    |
| 227 | The coefficient of variation of vegetative features and production estimates of                    |
| 228 | Cymodocea nodosa was not different (two-tailed Z test for difference between two                   |
| 229 | coefficients of variation, $P > 0.05$ ) between meadows located at depths lower and higher         |
| 230 | than 3 m (Table 2). Depth was a poor predictor of the vegetative development of $C$ .              |
| 231 | nodosa for most of the linear regressions of the different variables used to describe the          |
| 232 | vegetative development against depth were not significant neither considering the whole            |
| 233 | range of data compiled nor only those data corresponding to depths $> 3$ m (Table 1).              |
| 234 | Rhizome plus roots biomass decreased with depth (- $32 \pm 14.6$ (SE) g D.W. m <sup>-1</sup> , P < |
| 235 | 0.05, Table 1) which made total biomass to show a marginally significant trend of                  |
| 236 | decrease with depth too (Fig. 1b, Table 1). The rate of elongation of the horizontal               |
| 237 | rhizome increased with depth ( $P < 0.05$ , Fig. 2a).                                              |
| 238 |                                                                                                    |
| 239 | The average age of <i>Cymodocea nodosa</i> shoots varied between 2.5 years and 3.2                 |
| 240 | years while the median age varied between 2 years and 3 years in meadows located at                |
| 241 | depths > 3 (Table 3), but were 1.7-1.8 years and 1 year only, respectively, in meadows             |
|     |                                                                                                    |

located at depths < 3 m. The comparison of the age distributions of living *C. nodosa* 

shoots obtained in this study (Fig. 3a) with those available in the literature showed that

- 244 most shoot age distributions were different (Table 3). The age distributions of dead
- shoots at 8 m and 11 m were different (Kolmogorov-Smirnov two sample test, D =0.186

| 246 | $> D_{0.05} = 0.169$ , Fig. 3b), with average and median ages of 2.0 years and 2 years at the |
|-----|-----------------------------------------------------------------------------------------------|
| 247 | depth of 8 m, and 1.7 years and 1 years, respectively, at the depth of 11 m.                  |

| 249 | The abundance of Cymodocea nodosa flowers at 8-11 m depth was not different                  |
|-----|----------------------------------------------------------------------------------------------|
| 250 | than that estimated in meadows located at depths $< 3$ m (Table 1) but likely mismatches     |
| 251 | between peak flowering and sampling time make literature comparisons of flower               |
| 252 | abundance difficult. The average and median age of shoots bearing a flower or flower         |
| 253 | scars on the vertical rhizome were 3.4 years and 3 years at depth of 8 m, and 3.5 years      |
| 254 | and 3 years, respectively, at depth of 11 m; the age distributions of these shoots were      |
| 255 | not different at 8 m and 11 m (Kolmogorov-Smirnov two sample test, $D$ =0.142 $<$ $D_{0.05}$ |
| 256 | = 0.290, Fig. 3c). We found flowers in shoots of only 5, 7 and 8 leaf plastochrones in       |
| 257 | age. Seed abundance tended to be lower at 8-11 m depth than at meadows located at            |
| 258 | depths $< 3$ m but the difference of the means was not significant (Table 1).                |
| 259 |                                                                                              |
|     |                                                                                              |

260

261 Discussion

262

263 Our results show that the vegetative development of Cymodocea nodosa at 8-11 264 m depth is not different from that achieved by shallow (depth < 3 m) meadows of this 265 species. Only shoot density, which decreased by a factor of 2.7, and the annual rate of 266 elongation of the horizontal rhizome, which increased by a factor of 3, at 8-11 m depth 267 were different. Our results also show that depth is a poor predictor of the vegetative 268 development and primary production of C. nodosa for most of the linear regressions of 269 the variables describing the vegetative development of C. nodosa against depth were 270 non-significant.

| 272 | The reduction of seagrass shoot density and biomass with depth has been                  |
|-----|------------------------------------------------------------------------------------------|
| 273 | recognized before and attributed to the parallel decrease of light availability (Duarte, |
| 274 | 1991). Further, the reduction of shoot density with depth has been considered the most   |
| 275 | effective mechanism for seagrasses to acclimate to reductions of light availability as   |
| 276 | depth increases (Olesen et al., 2002). A threshold light for rhizome branching to occur  |
| 277 | has been proposed as a mechanism to explain the decrease of shoot density with depth     |
| 278 | of Zostera noltii (Peralta et al., 2002) and Posidonia oceanica (Romero, 1989).          |
| 279 |                                                                                          |

280 Previous studies that have examined the vegetative development of Cymodocea 281 nodosa along depth gradients (Peduzzi and Vukovič, 1990; Olesen et al., 2002) show 282 that shoot density and leaf biomass decrease with depth. Given that the range of depths 283 examined by these studies is narrower (from 0.4 m to 6 m) than that examined by us 284 (from 0.3 m to 11 m) we expected to find stronger negative relationships of these 285 variables with depth than we did. The low predicting value that depth had to explain the 286 vegetative development and primary production of C. nodosa in our compiled data set might be due to wide spatial variation of water turbidity and light availability among the 287 sites included in it, and apparently higher  $K_d$  values at shallow sites (0.57 m<sup>-1</sup> to 0.35 m<sup>-1</sup>) 288 <sup>1</sup> in the 0.4-1.5 m depth range, cf. Duarte, 1991; Terrados and Ros, 1995; Guidetti et al., 289 2002) than at deep sites (0.19 m<sup>-1</sup> to 0.095 m<sup>-1</sup> in the 4-11 m depth range (Cancerni et 290 291 al., 2002; this study). Unfortunately, data about irradiance attenuation were not 292 available from most of the sites. Our results are consistent with previous studies on this 293 species (Peduzzi and Vukovič, 1990; Olesen et al., 2002) for neither shoot mass and the 294 number of leaves per shoot nor the average annual leaf plastochrone and productivity of 295 individual shoots changed significantly with depth. Shoot density, leaf biomass and

productivity of *Posidonia oceanica* decrease significantly with depth while shoot size
and growth remain fairly constant (Pirc, 1984; Romero, 1989; Romero et al., 1998;
Olesen et al., 2002; Gobert et al., 2003). In the case of *Zostera marina*, shoot density
decreases exponentially with depth while shoot size increases linearly; as a result
biomass peaks at intermediate depths (Krause-Jensen et al., 2000).

301

302 We found that the rhizome plus roots to shoot biomass ratio of *Cymodocea* 303 nodosa did not change with depth. However, the biomass of rhizomes plus roots 304 decreased significantly with depth driving a marginally significant reduction of total 305 biomass of the meadow which suggests that a slight change of the mass allocation 306 pattern might take place. Previous studies on this species are inconclusive for the 307 rhizome plus roots to shoot biomass ratio either did not change (Olesen et al., 2002) or 308 decreased (Peduzzi and Vukovič, 1990) as depth increased. The rhizome plus roots to 309 shoot biomass ratio of *Posidonia oceanica* does not seem to change with depth (Romero 310 et al., 1998; Olesen et al., 2002) but decreases in Zostera marina (Olesen and Sand-311 Jensen, 1993; Krause-Jensen et al., 2000). Preferential allocation of biomass to leaves as 312 depth increases should not be considered, therefore, a general response of seagrasses to 313 reduce respiration costs and maintain growth under low light availability. Further, our 314 results do not provide support to the hypothesis that the variability of seagrass 315 vegetative development is higher at shallow depths where physical disturbance and light 316 availability are high than at deep meadows where physical disturbance and light 317 availability are low (Krause-Jensen et al., 2000; Middelboe et al., 2003). 318

Linear regression of the elongation rate of the horizontal rhizome of *Cymodocea nodosa* against depth predicted a rate of increase rate of 5 cm apex<sup>-1</sup> year<sup>-1</sup> per m depth,

321 which is consistent with the results of Olesen et al. (2002). However, Peduzzi and 322 Vukovič (1990) did not find any change of the rate of elongation the horizontal rhizome 323 of *C. nodosa* between depths of 2 m and 6 m. The rate of elongation of the horizontal 324 rhizome of *Posidonia oceanica* did not change between depths of 0.7 m and 15.6 m 325 (Olesen et al., 2002). It has been suggested that the elongation of the horizontal rhizome 326 of seagrasses might depend on shoot density (Caye and Meinesz, 1985; Marbà and 327 Duarte, 1998), likely through a self-shading constraint. Shoot density, however, 328 explained little of the variability of the rate of elongation of the horizontal rhizome data included in our depth-referenced data base (Fig. 2b;  $R^2 = 0.15$ , F = 2.34, d, f. = 13, P = 0.15 329 330 0.1496).

331

332 The age distributions of Cymodocea nodosa shoots show exponential reductions 333 of shoot density since the  $\leq 1$  year class at shallow meadows (cf. Pérez, 1989; Terrados 334 and Ros, 1992) and since the 2 year class at deep meadows (Reyes et al., 1995b, and 335 this study). These results suggest that shoot turnover decreases with depth. Indeed, the 336 maximum age of shoots at 8-11 m depth was 11-12 years but only 4 to 8 years at 337 shallow meadows (Pérez, 1989; Terrados and Ros, 1992), and median shoot age was 338 lower at shallow than at deep meadows. The age distributions of dead shoots at 8-11 m 339 depth suggest, however, that most part of the shoots die within one year of being 340 produced.

341

In conclusion, the vegetative development of *Cymodo cea nodosa* at 8-11 m depth was not different from that achieved by shallow (depth < 3 m) meadows of this species. Only shoot density, which decreased by a factor of 2.7, and the annual rate of elongation of the horizontal rhizome, which increased by a factor of 3, were different as

| 346 | depth increased from < 3 m to 8-11 m. Depth was a poor predictor of the vegetative       |
|-----|------------------------------------------------------------------------------------------|
| 347 | development and primary production of C. nodosa. As shoot size and growth did not        |
| 348 | change significantly with depth, the reduction of shoot density should drive any changes |
| 349 | of biomass and productivity of C. nodosa as depth increases. The processes by which      |
| 350 | this reduction of C. nodosa abundance with depth occur remain to be elucidated.          |
| 351 |                                                                                          |
| 352 |                                                                                          |
| 353 | Acknowledgements                                                                         |
| 354 |                                                                                          |
| 355 | This study was funded by the Specific Programme "Energy, Environment and                 |
| 356 | Sustainable Development" of the Fifth Framework Programme of the European Union          |
| 357 | (contract number EVK3-CT-2000-00044, Monitoring and Managing of European                 |
| 358 | Seagrass Beds). We thank Jens Borum for the analysis of nitrogen and phosphorus          |
| 359 | content of C. nodosa leaves, and the comments of the reviewers and Jan E. Vermaat        |
| 360 | which improved the manuscript significantly.                                             |
| 361 |                                                                                          |
| 362 |                                                                                          |
| 363 | References                                                                               |
| 364 |                                                                                          |
| 365 | Agostini, S., Pergent, G., Marchand, B., 2003. Growth and primary production of          |
| 366 | Cymodo cea nodosa in a coastal lagoon. Aquat. Bot. 76, 185-193.                          |
| 367 | Buia, M.C., Mazzella, L., 1991. Reproductive phenology of the Mediterranean              |
| 368 | seagrasses Posidonia oceanica (L.) Delile, Cymodocea nodosa (Ucria)                      |
| 369 | Aschers., and Zostera noltii Hornem. Aquat. Bot. 40, 343-362.                            |

| 370 | Calvín, J.C., Franco Navarro, I., Marín, A., Martínez Inglés, A.M., Belmonte Ríos, A.,    |
|-----|-------------------------------------------------------------------------------------------|
| 371 | Ruiz Fernández, J.M., Belando Franco, A., Vicente Albaladejo, M.,                         |
| 372 | Rocamora Tomás, J.M., 1999. El Litoral Sumergido de la Región de Murcia.                  |
| 373 | Cartografía bionómica y valores ambientales. Consejería de Medio                          |
| 374 | Ambiente, Agricultura y Agua, Región de Murcia.                                           |
| 375 | Canals, M., Ballesteros, E., 1997. Production of carbonate particles by phytobenthic      |
| 376 | communities on the Mallorca-Menorca shelf, northwestern Mediterranean                     |
| 377 | Sea. Deep-Sea Research 44, 611-629.                                                       |
| 378 | Cancemi, G., Buia, M.C., Mazzella, L., 2002. Structure and growth dynamics of             |
| 379 | Cymodocea nodosa meadows. Scient. Mar. 66, 365-373.                                       |
| 380 | Caye, G., Meinesz, A., 1985. Observations on the vegetative development, flowering        |
| 381 | and seeding of Cymodocea nodosa (Ucria) Ascherson on the mediterranean                    |
| 382 | coasts of France. Aquat. Bot. 22, 277-289.                                                |
| 383 | Cebrián, J., Duarte, C.M., Marbà, N., Enríquez, S., 1997. Magnitude and fate of the       |
| 384 | production of four coocurring Western Mediterranean seagrass species. Mar.                |
| 385 | Ecol. Prog. Ser. 155, 29-44.                                                              |
| 386 | Cunha, A.H., Duarte, C.M., 2005. Population age structure and rhizome growth of           |
| 387 | Cymodocea nodosa in the Ria Formosa (southern Portugal). Mar. Biol. 146,                  |
| 388 | 841-847.                                                                                  |
| 389 | Den Hartog, C., 1970. The Sea-grasses of the World. North-Holland Publishing Co.,         |
| 390 | Amsterdam, London, 275 pp.                                                                |
| 391 | Dennison, W.C., Alberte, R.S., 1985. Role of daily light period in the depth distribution |
| 392 | of Zostera marina (eelgrass). Mar. Ecol. Prog. Ser. 25, 51-61.                            |
| 393 |                                                                                           |
|     |                                                                                           |

| 394 | Dennison, W.C., Alberte, R.S., 1986. Photoadaptation and growth of Zostera marina L.   |
|-----|----------------------------------------------------------------------------------------|
| 395 | (eelgrass) transplants along a depth gradient. J. Exp. Mar. Biol. Ecol. 98,            |
| 396 | 265-282.                                                                               |
| 397 | Drew, E.A., 1978. Factors affecting photosynthesis and its seasonal variation in the   |
| 398 | seagrasses Cymodocea nodosa (Ucria) Ascherson and Posidonia oceanica                   |
| 399 | (L.) Delile in the Mediterranean. J. Exp. Mar. Biol. Ecol. 31, 173-194.                |
| 400 | Duarte, C.M., 1991. Seagrass depth limits. Aquat. Bot. 40, 363-377.                    |
| 401 | Duarte, C.M., Sand-Jensen, K., 1990. Seagrass colonization: Biomass development and    |
| 402 | shoot demography in Cymodocea nodosa patches. Mar. Ecol. Prog. Ser. 67,                |
| 403 | 97-103.                                                                                |
| 404 | Duarte, C.M., Marbà, N., Agawin, N.S.R., Cebrián, J., Enríquez, S., Fortes, M.D.,      |
| 405 | Gallegos, M.E., Merino, M., Olesen, B., Sand-Jensen, K., Uri, J.S., Vermaat,           |
| 406 | J.E., 1994. Reconstruction of seagrass dynamics: age determinations and                |
| 407 | associated tools for the seagrass ecologist. Mar. Ecol. Prog. Ser. 107, 195-           |
| 408 | 209.                                                                                   |
| 409 | Duarte, C.M., Merino, M., Agawin, N.S.R., Uri, J.S., Fortes, M.D., Gallegos, C.L.,     |
| 410 | Marbà, N., Hemminga, M.A., 1998. Root production and belowground                       |
| 411 | seagrass biomass. Mar. Ecol. Prog. Ser. 171, 97-108.                                   |
| 412 | Erikson, R.O., Michelini, F.J., 1957. The plastochrone index. Am. J. Bot. 44, 297-305. |
| 413 | Gobert, S., Kyramarios, M., Lepoint, G., Pergent-Martini, C., Bouquegneau, J.M., 2003. |
| 414 | Variations à différentes échelles spatiales de l'herbier à Posidonia oceanica          |
| 415 | (L.) Delile; effects sur les paramètres physico-chimiques du sédiment.                 |
| 416 | Oceanologica Acta 26, 199-207.                                                         |
| 417 | Guidetti, P., Lorenti, M., Buia, M.C., Mazzella, L., 2002. Temporal dynamics and       |
| 418 | biomass partitioning in three Adriatic seagrass species: Posidonia oceanica,           |

- 419 *Cymodo cea nodosa, Zostera marina*. P. S. Z. N. I. : Marine Ecology 23, 51-
- 420 67.

- 421 Kirk, J.T.O., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge
- 422 University Press, Cambridge, 401 pp.
- 423 Krause-Jensen, D., Middelboe, A.L., Sand-Jensen, K., Christensen, P.B., 2000. Eelgraas,
- 424 *Zostera marina*, growth along depth gradients: upper boundaries of the 425 variation as a powerful predictive tool. Oikos 91, 233-244.
- 427 Mediterranean seagrasses: species- specific responses to seasonal forcing.

Marbà, N., Cebrián, J., Enríquez, S., Duarte, C.M., 1996. Growth patterns of Western

- 428 Mar. Ecol. Prog. Ser. 133, 203-215.
- Marbà, N., Duarte, C.M., 1998. Rhizome elongation and seagrass clonal growth. Mar.
  Ecol. Prog. Ser. 174, 269-280.
- 431 Marbà, N., Duarte, C.M., 2001. Growth and sediment space occupation by seagrass
  432 *Cymodo cea nodosa* roots. Mar. Ecol. Prog. Ser. 224, 291-298.
- 433 Middelboe, A.L., Sand-Jensen, K., Krause-Jensen, D., 2003. Spatial and interannual
- variations with depth in eelgrass populations. J. Exp. Mar. Biol. Ecol. 291, 115.
- 436 Nielsen, S.L., Pedersen, M.F., 2000. Growth, photosynthesis and nutrient content of
- 437 seedlings and mature plants of *Cymodocea nodosa* the importance of clonal
  438 integration. Aquat. Bot. 68, 265-271.
- Olesen, B., Sand-Jensen, K., 1993. Seasonal acclimatization of eelgrass *Zostera marina*growth to light. Mar. Ecol. Prog. Ser. 94, 91-99.
- 441 Olesen, B., Enríquez, S., Duarte, C.M., Sand-Jensen, K., 2002. Depth-acclimation of
- 442 photosynthesis, morphology and demography of *Posidonia oceanica* and

- 443 *Cymodocea nodosa* in the Spanish Mediterranean Sea. Mar. Ecol. Prog. Ser.
  444 236, 89-97.
- Parsons, T.R., Maita, Y., Lalli, C.M., 1984. A Manual of Chemical and Biological
  Methods for Seawater Analysis. Pergamon Press, Oxford.
- Pavón-Salas, N., Herrera, R., Hernández-Guerra, A., Haroun, R., 2000. Distributional
  pattern of seagrasses in the Canary Islands (Central-East Atlantic Ocean).

Journal of Coastal Research 16, 329-335.

- 450 Peduzzi, P., Vukovič, A., 1990. Primary production of Cymodocea nodosa in the Gulf
- 451 of Trieste (Northern Adriatic Sea): a comparison of methods. Mar. Ecol.
  452 Prog. Ser. 64, 197-207.
- 453 Peralta, G., Pérez Lloréns, J.L., Hernández, I., Vergara, J.J., 2002. Effects of light
- 454 availability on growth, architecture and nutrient content of the seagrass
  455 *Zostera noltii* Hornem, J. Exp. Mar. Biol. Ecol. 269, 9-26.
- 456 Pérez, M., 1989. Fanerógamas marinas en sistemas estuáricos: producción, factores
- 457 limitantes y algunos aspectos del ciclo de nutrientes. Tesis Doctoral,
- 458 Universidad de Barcelona, Barcelona.
- 459 Pérez, M., Camp, J., 1986. Distribución espacial y biomasa de las fanerógamas marinas
  460 de las bahías del delta del Ebro. Inv. Pesq. 50 (4), 519-530.
- 461 Pérez, M., Romero, J., Duarte, C.M., Sand-Jensen, K., 1991. Phosphorus limitation of
  462 *Cymodocea nodosa* growth. Mar. Biol. 109, 129-133.
- 463 Pérez, M., Romero, J., 1994. Growth Dynamics, Production and Nutrient Status of the
- 464 Seagrass *Cymodocea nodosa* in a Mediterranean Semi-Estuarine
- 465 Environment. P. S. Z. N. I. : Marine Ecology 15, 51-64.

| 466 | Pérez, M., Duarte, C.M., Romero, J., Sand-Jensen, K., Alcoverro, T., 1994. Growth        |
|-----|------------------------------------------------------------------------------------------|
| 467 | plasticity in Cymodocea nodosa stands: the importance of nutrient supply.                |
| 468 | Aquat. Bot. 47, 249-264.                                                                 |
| 469 | Pérez, M., Manzanera, M., Invers, O., Romero, J., 1996. Estudio de las praderas de la    |
| 470 | fanerógama marina Cymodo cea nodosa de la isla de Menorca: evaluación                    |
| 471 | del estado biológico actual. Revista de Menorca 1, 219-233.                              |
| 472 | Pirc,H., 1984. Depth adaptation in Posidonia oceanica (L.) Delile. In:                   |
| 473 | Boudouresque, C.F., Jeudy de Grissac, A., Olivier, J. (Eds.), International              |
| 474 | Workshop on Posidonia oceanica beds, G.I.S. Posidonie, Marseille, pp. 227-               |
| 475 | 234.                                                                                     |
| 476 | Pirc, H., Mazzella, L., Russo, G.F., 1983. Record of Cymodocea nodosa (Ucria)            |
| 477 | Ascherson fruiting in a prairie of the isle of Ischia (Gulf of Naples). Rapp.            |
| 478 | Comm. int. Mer Medit. 28 (3), 121-122.                                                   |
| 479 | Pranovi, F., Curiel, D., Rismondo, A., Marzocchi, M., Scattolin, M., 2000. Variations of |
| 480 | the macrobenthic community in a seagrass transplanted area of the Lagoon                 |
| 481 | of Venice. Scient. Mar. 64, 303-310.                                                     |
| 482 | Reyes, J., Sansón, M., Afonso-Carrillo, J., 1995a. Distribution and reproductive         |
| 483 | phenology of the seagrass Cymodocea nodosa (Ucria) Ascherson in the                      |
| 484 | Canary Islands. Aquat. Bot. 50, 171-180.                                                 |
| 485 | Reyes, J., Sansón, M., Afonso-Carrillo, J., 1995b. Leaf Phenology, Growth and            |
| 486 | Production of the Seagrass Cymodocea nodosa at El Médano (South of                       |
| 487 | Tenerife, Canary Islands). Bot. Mar. 38, 457-465.                                        |
| 488 | Ribera, G., Coloreu, M., Rodríguez-Prieto, C., Ballesteros, E., 1997. Phytobenthic       |
| 489 | assemblages of Addaia Bay (Menorca, Western Mediterranean):                              |
| 490 | Composition and distribution. Bot. Mar. 40, 523-532.                                     |

| 491 | Rismondo, A., Curiel, D., Marzocchi, M., Scattolin, M., 1997. Seasonal pattern of      |
|-----|----------------------------------------------------------------------------------------|
| 492 | Cymodocea nodosa biomass and reproduction in the lagoon of Venice.                     |
| 493 | Aquat. Bot. 58, 55-64.                                                                 |
| 494 | Romero, J., 1989. Primary production of Posidonia oceanica beds in the Medas Islands   |
| 495 | (Girona, NE Spain). In: Boudouresque, C.F., Meinesz, A., Fresi, E., Gravez, V.         |
| 496 | (Eds.), International Workshop on Posidonia Beds 2, GIS Posidonie,                     |
| 497 | Marseille, pp. 85-91.                                                                  |
| 498 | Romero, J., Pérez, M., Alcoverro, T., Mateo, M.A., Sánchez-Lizaso, J.L., 1998.         |
| 499 | Production ecology of Posidonia oceanica (L.) Delile meadows in Nueva                  |
| 500 | Tabarca Marine Reserve: growth, biomass and nutrient stocks along a                    |
| 501 | bathymetric gradient. Oecol. aquat. 11, 111-121.                                       |
| 502 | Sfriso, A., Ghetti, P.F., 1998. Seasonal variation in biomass, morphometric parameters |
| 503 | and production of seagrasses in the lagoon of Venice. Aquat. Bot. 61, 207-             |
| 504 | 223.                                                                                   |
| 505 | Sokal, R.R., Rohlf, F.J., 1981. Biometry. 2nd Edition. W.H. Freeman and Company,       |
| 506 | New York, 859 pp.                                                                      |
| 507 | Terrados, J. 1986. Pigmentos fotosintéticos y producción primaria de las comunidades   |
| 508 | bentónicas del Mar Menor, Murcia. Tesis de Licenciatura, Universidad de                |
| 509 | Murcia, Murcia.                                                                        |
| 510 | Terrados, J., 1991. Crecimiento y producción de las praderas de macrófitos del Mar     |
| 511 | Menor, Murcia. Tesis Doctoral, Universidad de Murcia, Murcia.                          |
| 512 | Terrados, J., 1993. Sexual reproduction and seed banks of Cymodocea nodosa (Ucria)     |
| 513 | Ascherson meadows on the southeast Mediterranean coast of Spain. Aquat.                |
| 514 | Bot. 46, 293-299.                                                                      |

| 515 | Terrados, J., Ros, J.D., 1992. Growth and primary production of Cymodocea nodosa        |
|-----|-----------------------------------------------------------------------------------------|
| 516 | (Ucria) Ascherson in a Mediterranean coastal lagoon: the Mar Menor (SE                  |
| 517 | Spain). Aquat. Bot. 43, 63-74.                                                          |
| 518 | Terrados, J., Ros, J.D., 1993. Limitación por nutrientes del crecimiento de Cymodocea   |
| 519 | nodosa (Ucria) Ascherson en sedimentos carbonatados en el Mar Menor,                    |
| 520 | Murcia, SE de España. Publicaciones Especiales del Instituto Espanol de                 |
| 521 | Oceanografia 11, 9-14.                                                                  |
| 522 | Terrados, J., Ros, J.D., 1995. Temperature effects on photosynthesis and depth          |
| 523 | distribution of the seagrass Cymodocea nodosa (Ucria) Ascherson in a                    |
| 524 | mediterranean coastal lagoon: the Mar Menor (SE Spain). P. S. Z. N. I. :                |
| 525 | Marine Ecology 16, 133-144.                                                             |
| 526 | van Lent, F., Nienhuis, P.H., Verschuure, J.M., 1991. Production and biomass of the     |
| 527 | seagrasses Zostera noltii Hornem. and Cymodocea nodosa (Ucria) Aschers.                 |
| 528 | at the Banc d'Arguin (Mauritania, NW Africa): a preliminary approach.                   |
| 529 | Aquat. Bot. 41, 353-367.                                                                |
| 530 | Vermaat, J.E., Beijer, J.A.J., Gijlstra, R., Hootsmans, M.J.M., Philippart, C.J.M., van |
| 531 | den Brink, N.W., van Vierssen, W., 1993. Leaf dynamics and standing stocks              |
| 532 | of intertidal Zostera noltii Hornem. and Cymodocea nodosa (Ucria)                       |
| 533 | Ascherson on the Banc d'Arguin (Mauritania). Hydrobiologia 258, 59-72.                  |
| 534 | Vermaat, J.E., Agawin, N.S.R., Duarte, C.M., Enríquez, S., Fortes, M.D., Marbá, N.,     |
| 535 | Uri, J.S., van Vierssen, W., 1997. The capacity of seagrasses to survive                |
| 536 | increased turbidity and siltation: the significance of growth form and light            |
| 537 | use. Ambio 26, 499-504.                                                                 |
| 538 | West, R.J., 1990. Depth-Related Structural and Morphological Variations in an           |
| 539 | Australian Posidonia Seagrass Bed. Aquat. Bot. 36, 153-166.                             |

- 540 Zar, J.H., 1999. Biostatistical Analysis, 4th edition. Prentice Hall International, Inc.,
- 541 New Jersey, 663 pp.
- 542 Zavodnik, N., Travizi, A., De Rosa, S., 1998. Seasonal variations in the rate of
- 543 photosynthetic activity and chemical composition of the seagrass
- 544 *Cymodo cea nodosa* (Ucr.) Asch. Scient. Mar. 62, 301-309.

545 Figure captions

| 547              | Figure 1  | Shoot densit   | v(a)   | total hiomass  | (h) | rhizome      | nhis roots to  | shoot ratio | (c)  |
|------------------|-----------|----------------|--------|----------------|-----|--------------|----------------|-------------|------|
| J <del>4</del> / | riguit I. | . Shoot uch sh | y (a). | , what biomass | (U) | , IIIIZOIIIC | pius 100 ls il |             | (0), |

- 548 number of standing leaves per shoot (d), and shoot mass (e) at the annual maximum of
- 549 vegetative development of *Cymodocea nodosa*, and annual average leaf plastochrone
- 550 interval (f), leaf (g), and total production (h) against depth. Triangles represent the 8-11
- m depth meadow studied. Data sources: Pirc et al., 1983; Caye and Meinesz, 1985;
- 552 Pérez and Camp, 1986; Terrados, 1986; Duarte and Sand Jensen, 1990; Peduzzi and
- 553 Vukovič, 1990; Buia and Mazzella, 1991; Terrados, 1991; Terrados and Ros, 1992;
- 554 Terrados, 1993; Terrados and Ros, 1993; Pérez and Romero, 1994; Pérez et al.,
- 555 1994; Reyes et al., 1995a, 1995b; Vermaat et al., 1997; Pérez et al., 1996; Cebrián et al.,
- 556 1997; Ribera et al., 1997; Rismondo et al., 1997; Duarte et al., 1998; Zavodnik et al.,
- 557 1998; Pranovi et al., 2000; Nielsen and Pedersen 2000; Marbà and Duarte, 2001;
- 558 Cancemi et al., 2002; Guidetti et al., 2002; Olesen et al., 2002; Agostini et al., 2003;
- 559 Cunha and Duarte, 2005.
- 560
- 561 Figure 2. Linear regression of the annual rate of horizontal rhizome elongation against
- depth (a) and shoot density (b) of *Cymodocea nodosa*. Triangles as in Fig. 1
- 563
- 564 Figure 3. Age distribution of living shoots (a), dead shoots (b), and of shoots that bore a
- flower and/or a flower scar in the vertical rhizome (c) of *Cymodocea nodosa* at the
- 566 depths of 8 and 11 m at the study site.
- 567







1 Table 1. Vegetative features and production estimates of Cymodocea nodosa at depths of 8 m and 11 m in Sant Pol beach (NE Spain),

2 corresponding values reported previously of shallow (depth < 3 m) meadows of this species (see caption Fig. 1 for data sources), and results of

3 two-sample t-tests evaluating the significance of the difference between them, and of the linear regressions against depth considering the whole

4 range of depth data compiled and only those depths > 3 m. Bold face indicates significant differences.

| Variable                                                                      | This study<br>Depth: 8 m<br>Mean ± SE | This study<br>Depth: 11 m<br>Mean ± SE | Shallow meadows<br>Depth < 3 m<br>Mean ± SE, n | t-value, d.f., P-value | Linear regression<br>whole depth range<br>R <sup>2</sup> , F-value, P-value | Linear regression<br>depths > 3 m<br>R <sup>2</sup> , F-value, P-value |
|-------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------------|------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|
| Annual maximum shoot density, shoots m <sup>2</sup>                           | 623 ± 49                              | 588 ± 38                               | 1637 ± 106.5, 30                               | 2.50, 30, 0.0179       | 0.06, 2.29, 0.1391                                                          | 0.18, 1.35, 0.2892                                                     |
| Leaf biomass, g DW m <sup>-2</sup>                                            | 46 ± 7.7                              | 33±3.6                                 | 188±33.1,29                                    | 1.18, 29, 0.2457       | 0.03, 1.17, 0.2852                                                          | 0.07, 0.58, 0.4685                                                     |
| Rhizome and root biomass, $g DW m^2$                                          | $186 \pm 36.7$                        | $116 \pm 16.3$                         | $454 \pm 48.3, 28$                             | 1.68, 28, 0.1043       | 0.12, 4.65, 0.0381                                                          | 0.07, 0.56, 0.4794                                                     |
| Annual maximum total biomass,                                                 | $235 \pm 44.9$                        | $150 \pm 20.6$                         | 664±81.7,25                                    | 1.64, 25, 0.1141       | 0.09, 4.13, 0.0504                                                          | 0.08, 0.67, 0.4382                                                     |
| g DW m <sup>-2</sup>                                                          |                                       |                                        |                                                |                        |                                                                             |                                                                        |
| Rhizome and roots to shoot ratio                                              | 5.6 ± 2.11                            | $3.8 \pm 0.66$                         | $3.1 \pm 0.37, 28$                             | 1.15, 28, 0.2594       | 0.01, 0.35, 0.5565                                                          | 0.09, 0.68, 0.4369                                                     |
| Abundance of flowers, flowers m <sup>-2</sup>                                 | $243\pm 60$                           | $153 \pm 27$                           | 124±33.7,7                                     | 1.15, 7, 0.2876        | 0.03, 0.37, 0.5537                                                          | 0.03, 0.10, 0.7767                                                     |
| Abundance of seeds, seeds m <sup>-2</sup>                                     | $7\pm5$                               | $65 \pm 29$                            | 243 ± 62.8, 7                                  | 1.80, 7, 0.1148        | 0.04, 0.95, 0.3389                                                          | 0.18, 2.63, 0.1307                                                     |
| Number of leaves per shoot                                                    | $4.2 \pm 0.1$                         | $3.6 \pm 0.1$                          | $3.72 \pm 0.265, 9$                            | 0.32, 9, 0.7539        | 0.01, 0.10, 0.7514                                                          | 0.00, 0.00, 0.9422                                                     |
| Shoot mass, mg DW shoot-1                                                     | $73.8 \pm 10.2$                       | 58.3 ± 3.1                             | 97 ± 12.4, 25                                  | 0.71, 25, 0.4867       | 0.02, 0.68, 0.4156                                                          | 0.48, 2.77, 0.1944                                                     |
| Leaf plastochrone, days                                                       | 38.5                                  | 40.1                                   | 31.4±1.82, 15                                  | 1.58, 15, 0.1339       | 0.07, 1.52, 0.2321                                                          | 0.21, 1.34, 0.2989                                                     |
| Elongation of horizontal rhizome,<br>cm apex <sup>-1</sup> year <sup>-1</sup> | 88.2±19.1                             | 54.7± 8.0                              | 23.3±3.9,12                                    | 4.40, 12, 0.0009       | 0.50, 14.07, 0.0021                                                         | 0.37, 1.17, 0.3928                                                     |
| Leaf production, g DWm <sup>-2</sup> year <sup>-1</sup>                       | $104 \pm 114.3$                       | 87±93.4                                | 594±187.3, 10                                  | 1.21, 10, 0.2551       | 0.07, 1.23, 0.2850                                                          | 0.14, 0.81, 0.4083                                                     |
| Total production, g DWm <sup>-2</sup> year <sup>-1</sup>                      | $275 \pm 192.9$                       | 169 ± 128.3                            | 998±432.3, 5                                   | 1.20, 5, 0.2844        | 0.18, 1.58, 0.2489                                                          | 0.50, 2.01, 0.2919                                                     |
| Leaf N, % of dry weight                                                       | $2.00 \pm 0.040$                      | $2.06 \pm 0.045$                       | $1.99 \pm 0.089, 22$                           | 0.04, 22, 0.9677       | 0.05, 1.31, 0.2635                                                          | 0.54, 3.57, 0.1551                                                     |
| Leaf P, % of dry weight                                                       | $0.206 \pm 0.0016$                    | $0.149 \pm 0.0016$                     | $0.138 \pm 0.0115, 21$                         | 1.04, 21, 0.3085       | 0.11, 2.82, 0.1074                                                          | 0.91, 10.80, 0.1880                                                    |

- 1 Table 2. Coefficient of variation of vegetative features and production estimates of
- 2 *Cymodocea nodosa* in shallow (depth < 3 m) and deep (depth > 3 m) meadows, and Z
- 3 test to evaluate the significance of the difference between them. See caption Fig. 1 for
- 4 data sources.

| Variable                                                                   | Depth < 3 m<br>V* $\pm$ SE | Depth > 3 m<br>V* ± SE | Z value<br>Critica $ Z_{0.05} _{(2)} = 1.960$ |
|----------------------------------------------------------------------------|----------------------------|------------------------|-----------------------------------------------|
| Annual maximum shoot density, shoots m <sup>2</sup>                        | 35±5.1                     | 55 ± 17.4              | 1.430                                         |
| Leaf biomass, g DW m <sup>-2</sup>                                         | 94±20.3                    | 61 ± 17.9              | 0.923                                         |
| Rhizome and root biomass, g DW m <sup>-2</sup>                             | $56 \pm 9.5$               | $77 \pm 26.6$          | 0.891                                         |
| Annual maximum total biomass, g DW m <sup>-2</sup>                         | 61 ± 11.3                  | 67 ± 21.3              | 0.194                                         |
| Rhizome and roots to shoot ratio                                           | $62 \pm 11.0$              | 64 ± 19.9              | 0.013                                         |
| Abundance of flowers, flowers m <sup>-2</sup>                              | 69±25.3                    | $122 \pm 65.1$         | 0.864                                         |
| Abundance of seeds, seeds m <sup>-2</sup>                                  | 66±23.5                    | $219 \pm 117.7$        | 0.960                                         |
| Number of leaves per shoot                                                 | 21 ± 5.1                   | $43 \pm 14.5$          | 1.739                                         |
| Shoot mass, mg DW shoot-1                                                  | 63 ± 12.0                  | 22 ± 7.2               | 1.507                                         |
| Leaf plastochrone, days                                                    | $22\pm4.2$                 | $19 \pm 5.3$           | 0.392                                         |
| Elongation of horizontal rhizome, cm apex <sup>-1</sup> year <sup>-1</sup> | 58±15.1                    | 53 ± 22.7              | 0.217                                         |
| Leaf production, g DWm <sup>-2</sup> year <sup>-1</sup>                    | $97 \pm 36.2$              | $79\pm30.8$            | 0.362                                         |
| Total production, g DWm <sup>-2</sup> year <sup>-1</sup>                   | 91±45.5                    | $67 \pm 31.9$          | 0.381                                         |
| Leaf N, % of dry weight                                                    | $21 \pm 3.2$               | $17 \pm 5.5$           | 0.562                                         |
| Leaf P, % of dry weight                                                    | $38\pm 6.6$                | $55\pm27.6$            | 0.573                                         |

Table 3. Number of shoots aged, average and median shoot age (on main diagonal) of *Cymodocea nodosa* at the study location and other meadows of this species. D values and critical  $D_{0.05}$  values (below main diagonal) of Kolmogorov Smirnov two sample tests performed to evaluate the significance of the difference between the age distribution of *C. nodosa* shoots at each meadow. Bold face indicates significant differences in shoot age distribution.

|                                                                                                                        | 11 m, this study                                                                                                                                                                            | 8 m, this study                                                                                                     | 6 m, Reyes et al., 1995a                                                                             | 1 m, Pérez, 1989                                        | 0.5 m, Terrados and Ros, 1992 |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|
| 11 m, this study<br>8 m, this study<br>6 m, Reyes et al., 1995a<br>1 m, Pérez 1989<br>0.5 m, Terrados and Ros,<br>1992 | 588, 2.5, 2<br>$\mathbf{D} = 0.141 >> D_{0.05} = 0.078$<br>$\mathbf{D} = 0.156 >> D_{0.05} = 0.069$<br>$\mathbf{D} = 0.223 >> D_{0.05} = 0.064$<br>$\mathbf{D} = 0.224 >> D_{0.05} = 0.065$ | 623, 3.2, 3<br>$D = 0.054 < D_{0.05} = 0.068$<br>$D = 0.320 >> D_{0.05} = 0.062$<br>$D = 0.320 >> D_{0.05} = 0.064$ | 1112, 3.1, 3<br>$\mathbf{D} = 0.347 >> D_{0.05} = 0.051$<br>$\mathbf{D} = 0.339 >> D_{0.05} = 0.053$ | 1920, 1.7, 1<br>$\mathbf{D} = 0.056 > D_{0.05} = 0.046$ | 1641, 1.8, 1                  |