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* Premise of the study: Permanent tetrads are the most common form of pollen aggregation in fl owering
plants. The production of pollen in monads is plesiomorphic in angiosperms, but the aggregation into
tetrads has arisen independently different times during the evolution of fl owering plants. The causes
behind the recurrent evolution of pollen aggregation from monads remain elusive. Permanent tetrad
pollen is quite common in the Annonaceae, the largest family in the early-divergent order Magnoliales. In
some genera, such as Annona , both tetrad- and monad-producing species can be found.

» Methods: In this comparative study of pollen development, we use immunolocalization, cytological
characterization, and enzymatic assays of four species in the genus Annona and one species in its closely
related genus Asimina that release pollen in tetrads and two species in the genus Annona that release
pollen in monads.

* Key results: The main difference between species with tetrad and monad pollen is a delayed digestion of
callose and cellulose at the pollen aperture sites that resulted in nonlayering of the exine in these areas,
followed by a rotation and binding of the young microspores at the aperture sites.

» Conclusions: Small changes in development resulted in clear morphological changes on pollen dispersal
time and open a window on the possible selective advantage of the production of aggregated pollen.
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Most angiosperms release pollen as monads at anther dehiscence ( Pacini and Franchi, 1999 ; Harder and
Johnson, 2008 ), but various forms of aggregated pollen have arisen independently several times during
the evolution of fl owering plants. Pollen can aggregate as dyads, triads, tetrads, or polyads, but

tetrads are the most common form of aggregation in angiosperms ( Willson, 1979 ). While pollen
development is a wellcharacterized and highly conserved process in angiosperms ( McCormick, 2004 ;
Scott et al., 2006 ; Blackmore et al., 2007 ), the ultimate causes behind the recurrent evolution of
aggregated pollen remain elusive. These aggregations are quite common in the Annonaceae ( Doyle and
Le Thomas, 1994 ), the largest family in the early-divergent order Magnoliales ( APG II, 2003 ; APG III,
2009).

Aggregated pollen is also common in other Magnoliids such as Lactoridaceae in the Piperales
and Winteraceae in the Canellales ( Walker and Doyle, 1975 ). Aggregated pollen has been reported in
mutants from the model plant Arabidopsis thaliana , a core eudicot that releases pollen in monads.
Genetic studies showed that a mutation in the QUARTET locus results in the release of tetrad pollen due
to failure of microspore separation during pollen development ( Preuss et al., 1994 ). The characterization
of these mutants revealed a defect in degradation of the wall of the pollen mother cell (PMC) that is
associated with tetrad pollen formation in the quartet mutants ( Rhee and Somerville, 1998 ). Later
studies showed that a similar phenotype could result from mutations of different loci, such as QUARTET2
( Ogawa et al., 2009 ) and QUARTET3 that code for polygalacturonases ( Rhee et al., 2003 ) and
QUARTETL that codes for a pectin methylesterase ( Francis et al., 2006 ). However, studies similar to
these with mutants in Arabidopsis are more diffi cult for other species where similar tools are scarce. This
is the case for most earlydivergent angiosperms, which could contribute signifi cantly to our
understanding of how aggregated pollen has evolved in flowering plants.

In a previous study in Annona cherimola , a species in the Annonaceae that releases pollen in
tetrads, we showed that the delayed digestion of the PMC wall and the tapetal chamber helped to hold
together the four microspores, that rotate and then bind through the aperture sites with small pectin
bridges, followed by joint sporopollenin deposition ( Lora et al., 2009 ). Similar studies with different
genera and species of the Annonaceae such as Pseuduvaria ( Su and Saunders, 2004 ), Annona glabra , A.
montana , and Cymbopetalum baillonii ( Tsou and Fu, 2002 , 2007 ) have shown differences in the
cohesion mechanism among the pollen grains. Thus, pollen grains in Pseuduvaria have cross-wall
cohesion with wall bridges involving both the exine and intine, while pollen grains of A. glabra, A.
montana , and Cymbopetalum baillonii are connected by a mass of callose and cellulose. These
differences among closely related species are puzzling and refl ect the need for additional ontogenetic
studies in this family that show a widely diverse pollen morphology ( Doyle and Le Thomas, 2012 ). The
fact that species with tetrad and species with monad pollen can be found in the same genus ( Annona )
provides an excellent opportunity for comparative studies to investigate the causes behind the formation
of tetrad pollen and its evolutionary implications.

In this study, we compare pollen development in four species of Annona and one of Asimina that
release pollen in tetrads and in two species of Annona that release pollen in monads. We paid special
attention to the tetrad stage during microspore development, where clear developmental differences were
observed between species that release pollen as tetrads or monads. These results show that small changes
in development can result in clear morphological differences in pollen at dispersal time.

MATERIALS AND METHODS

Plant material — Two species with monad pollen [ Annona emarginata (Schltdl.) H. Rainer and Annona neosalicifolia H. Rainer]
and fi ve species with tetrad pollen [ Annona cherimola Mill., Annona squamosa L., the hybrid ( A. squamosa x A. cherimola )

‘atemoya’ ( Annona x atemoya Mabb.), Annona senegalensis Pers. and Asimina triloba (L.) Dunal] were used in this study. Asimina

is a closely related genus to Annona ( Richardson et al., 2004 ). Adult trees were located in a fi eld germplasm collection at the
IHSM La Mayora-CSIC, Malaga, Spain.

Light microscopy — To follow pollen development, we collected anthers from fl ower buds at a range of developmental stages,
from differentiation up to anther dehiscence, which usually takes 30 d under the environmental conditions of the experiments. The
anthers were fi xed in 2.5% v/v glutaraldehyde in 0.03 M phosphate buffer ( Sabatini et al., 1963 ), dehydrated in an ethanol series,
embedded in Technovit 7100 (Kulzer & Co, Wehrheim, Germany), and sectioned at 2 pum.

For general histological observations, sections were stained with 0.5% (w/v) periodic acid for 2 h, washed three times
with water and held in Schiff’s reagent in the dark for 1.5 h ( Feder and O’Brien, 1968 ). After three washes with water, the sections
were stained with aqueous 0.2% (w/v) toluidine blue. Intine and exine were observed with a 3 : 1 aqueous mixture of 0.01% (w/v)
auramine and 0.007% (w/v) calcofl uor ( Lora et al., 2009 ).

Additional fl ower buds were fi xed in FAA (70% ethanol-glacial acetic acidformalin [18 : 1 : 1; v/v/v]), dehydrated in an
ethanol series, and then embedded in paraffi n wax, sectioned at 10 pm and stained with 0.1% (w/v) aniline blue in 0.1 N PO 4K 3(
Currier, 1957 ) to observe callose. Preparations were observed with a Leica DM LB2 epifl uorescence microscope with a 340-380
excitation fi lter and an LP 425 barrier filter for auramine and calcofl uor, and with a 515-560 excitation fi lter and an LP 590
barrier filter for aniline blue.



For the study of pollen morphology and pollen size, dehisced anthers were sieved through a 0.26 mm mesh sieve, and
pollen was placed in glacial acetic acid and stored at room temperature until acetolysis. For acetolysis, following a modification of
the method by Erdtman (1960) , pollen grains were placed into a mixture of 9 : 1 acetic anhydride—concentrated sulphuric acid at
65°C for10 min, then washed with glacial acetic acid and washed again three times with water.

Scanning electron microscopy (SEM) — Pollen was fresh dried with silica gel and directly attached to SEM stubs using adhesive
carbon tabs and observed with a JSM-840 scanning electron microscope (JEOL) operated at 10 kV.

Immunocytochemistry — Anthers from three flowers per developmental stage were fixed in 4% v/v paraformaldehyde in
phosphate-buffered saline (PBS) at pH 7.3, left overnight at 4 °C, dehydrated in an acetone series, embedded in Technovit 8100
(Kulzer), polymerized at 4 °C, and sectioned at 2 pm. Sections were placed in a drop of water on a slide covered with 2% v/v 3-
aminopropyltrietoxy- silane (Sigma, St. Louis, Missouri, USA) and dried at room temperature ( Satpute et al., 2005 ; Solis et al.,
2008 ).

Different antibodies were used to localize specifi ¢ cell components: JIM7 and JIMS5 rat monoclonal antibodies
(Carbosource Service, University of Georgia, Athens, Georgia, USA), which recognize methyl-esterifi ed and unesterified
pectins, respectively ( Knox, 1997 ), and an anticallose mouse monoclonal antibody
(Biosupplies, Parkville, Australia) for callose.

Following the protocol of Lora et al. (2009) , sections were incubated with PBS for 5 min and later with 5% w/v bovine
serum albumin (BSA) in PBS for 5 min. Then, different sections were incubated for 1 h with the primary antibodies: JIM5 and JIM7
undiluted and anticallose diluted 1/20 in PBS. After three washes in PBS, the sections were incubated for 45 min in the dark with
the corresponding secondary antibodies (antirat for JIMS5 and JIM7, and antimouse for anticallose) conjugated with Alexa 488 fl
uorochrome (Molecular Probes, Eugene, Oregon, USA) and diluted 1/25 in PBS. After three washes in PBS and water, the sections
were mounted in Mowiol 4-88 (Sigma) or ProLong Gold Antifade Reagent (Invitrogen), examined with a Leica TCS SP5 II
confocal microscope and with a Leica DM2500 epifl uorescence microscope equipped with a Leica DFC310 FX camera. Filters
were 470/525 nm for the Alexa488 fluorescein label of the antibodies. Overlapping photographs were obtained with the Leica
Acquisition Station AF6000 E.

Fluorescence measurement — Callose from microspore tetrads was stained with 0.8 pg/uL sirofl uor in water (Biosupplies), and
the fl uorescence intensity signal was measured with the program Image J (National Institutes of Health, Bethesda, Maryland, USA)

and evaluated with an ANOVA. Duncan’s multiple range test was used to separate means ( P < 0.01). Statistical analyses were

performed with SPSS 12.0 statistical software. The photographs were obtained in a Leica TCS SP5 II confocal microscope using an
LP 590 barrier fi Iter for sirofluor.

Digestion assays — Callose was digested with 1.3 pg/uL lyticase (2000 U/mg protein, Sigma); 8 x 10 -4 pg/uL sirofluor in water

was added to detect callose. This protocol was used for anthers previously screened with the microscope to confi rm the presence of
young microspores in the tetrad stage. Such detection was done every hour for 7 h. At the same developmental stage of the anthers,

cellulose was digested using 13 pg/uL of cellulase with 2.3 x 10 -7 pg/pL of calcofluor in water to detect cellulose. The young

microspores were then observed after 30 min, 60 min, 90 min, 120 min, and 180 min. For simultaneous digestion of cellulose and
callose, 8 pug/uL of cellulase (Macerozyme R-10, Duchefa, Haarlem, Netherlands) and 0.8 pg/puL of lyticase were jointly used.

For callose detection, 5 x 10 -4 pg/uL of sirofl uor in water was also added. Samples were observed for callose digestion every hour

for 7 h. Microspore tetrads that showed signal close to the microspore wall were considered with signal for callose and cellulose
detection.

RESULTS

Pollen had a globose shape in all the species examined ( Walker and Doyle, 1975 ). Tetrads were
tetragonal in Annona squamosa ( Fig. 1A ) and rhomboidal in atemoya, A. senegalensis, and Asimina
triloba ( Fig. 1C, E, G ). Punctuated exine cohesion ( Fig. 1B, D, F, H ) could be observed in all examined
species with tetrad pollen. Annona emarginata and A. neosalicifolia showed inaperturate monad pollen (
Fig. 1L, J).

Microsporogenesis and microspore tetrad release — Microsporogenesis in atemoya, a species with
tetrad pollen ( Fig. 2A, B ), was similar to that of A. emarginata , a species with monad pollen ( Fig. 2E,
F). These similarities remained when compared with three other species with tetrad pollen

(A. senegalensis , A. squamosa , and Asimina triloba ) and an additional species with monad pollen
(Annona neosalicifolia ) (Appendix S1, see Supplemental Data with the online version of this article). In
all the species studied, the PMCs increased in size ( Fig. 2A, E ), then successive cytokinesis was
observed, and starch grains appeared in the young microspore just after meiosis ( Fig. 2F ; Appendix S1).
The main developmental difference between microspores that form permanent tetrads and monads was
that, just after meiosis, the microspores that will be released as tetrads showed a wide aperture site devoid
of exine ( Fig. 2C, D, H ; Appendix S1C). In contrast, in microspores that will be released as monads, the
exine was generally uniform all around the microspore ( Fig. 2G ; Appendix S1F). Upon completion of
meiosis, in the pollen that will be released as tetrads, the aperture site was initially located distally in the
tetrad ( Fig. 2C, H ; Appendix S1C). The young microspores then rotated 180 °, so that the aperture site
faced the center of the tetrad ( Fig. 1D ) ( Lora et al., 2009 ). In the species with monad pollen, since the
aperture site is not apparent, the existence of a similar rotation could not be determined.



No apparent differences were detected in the timing of pollen development relative to the timing
of tapetum degeneration between species that release pollen in tetrads or monads. All the species studied
showed a secretory tapetum with tapetal septa, as previously observed in A. squamosa ( Periasamy and
Kandasamy, 1981 ) and A. cherimola ( Lora et al., 2009 ) ( Fig. 2C, D, G, H ; Appendix S1).

Microspore wall — Remnants of cellulose stained with calcofluor were visible before and during the
rotation phase in two species with tetrad pollen, atemoya and A. squamosa ( Fig. 3A, B ) whereas they
were missing in the two species with monad pollen ( Fig. 3C, D ). Similarly, antibodies against callose
also showed remnants of callose in the aperture sites in species with tetrad pollen ( Fig. 3E, F ), while no
remnants were observed at this stage in species with monad pollen ( Fig. 3G, H ). Remnants of callose
and cellulose were also observed in the other species with tetrad pollen, A. cherimola ( Lora et al., 2009 ),
A. senegalensis, and Asimina triloba (Appendix S2, see online Supplemental Data).

To study with more detail the differences observed between tetrad and monad pollen, enzymatic
assays were also performed in tetrad pollen of atemoya and Annona cherimola and monad pollen of A.
emarginata and A. neosalicifolia . Upon completion of meiosis, and before digestion, cellulose was
observed at the tetrad stage surrounding all the microspores analyzed ( Fig. 4A-D ). The tetrad
microspores of A. cherimola and atemoya still showed cellulose remnants 1 h after cellulose digestion (
Fig. 4E, F ), and digestion was not completed until 3 h after the treatment ( Fig. 41 ). However, monads
did not show remnants of cellulose 1 h after the treatment ( Fig. 4G, H ).

Similarly, upon completion of meiosis, callose was also present in the tetrad stage of all species
examined with a similar intensity signal measured as relative fl uorescence units (RFU) ( Fig. 5A-D ).
There was a signifi cant difference in fl uorescence intensity among species ( F 2,34 = 3.67, P = 0.036);
however, when species means were analyzed with a post hoc Duncan’s multiple range test at P < 0.01, no

differences were found between any two species, whether they had tetrad pollen (93 [} 9 RFU, N = 14

for A. cherimola ; 89 1} 12 RFU, N = 7 for atemoya or monad pollen; 83 [1} 10 RFU, N = 16 for A.

neosalicifolia ). The digestion of callose with lyticase also revealed that the initiation of digestion of
callose was delayed by 3 h in atemoya and 6 h in A. cherimola ( Fig. 5E, F, ) and at this time continued
to be present at the aperture sites. However, monad pollen species A. neosalicifolia and A. emarginata
showed a quicker digestion, with no callose 1 h after the treatment ( Fig. 5G-1).

The digestion of callose was earlier when cellulase was also used with the species with
permanent tetrad pollen, atemoya, and A. cherimola . The digestion was completed in monads 1-2
h after the treatment. However, in species with tetrad pollen, digestion was not completed until 5-7 h
after treatment ( Fig. 5J ). In all cases, callose and cellulose remnants were located in the aperture zone of
the microspores in species with tetrad pollen, but not in the microspores of species with monad pollen (
Figs. 4,5).

Pectin distribution — Since pectins are one of the main components of the microspore walls involved in
the formation of the exine ( Majewska-Sawka and Rodriguez-Garcia, 2006 ), we used
immunocytochemistry to assay for the presence of methylesterified and unesterifi ed pectins in the cell
wall during pollen development. We used the antibodies JIM7 and JIMS5 that react to methyl-esterified
and unesterified pectins, respectively.

In all the cases studied, the PMC walls had methyl-esterified and unesterified pectins upon
completion of meiosis ( Fig. 6A-D ; online Appendix S3, A-D). The young microspores at the tetrad
stage reacted to these antibodies, but a weaker signal was present in the aperture sites of the species with
tetrad pollen ( Fig. 6E-H ; Appendix S3, E-H). Although the presence of a strong or weak signal in the
aperture sites was the main difference between monad and tetrad pollen, respectively, additional
differences in the pattern of pectin deposition were observed when the pollen became joined together.
Pectins were conspicuous at this stage in all the analyzed species with tetrad pollen ( Fig. 61, J ; Appendix
S3, 1, J), excluding A. senegalensis , but were faintly detected in the young microspores of species with
monad pollen ( Fig. 6K, L ; Appendix S3, K, L). Later on pectin signal was strong in mature pollen in all
tetrad and monad pollen species examined ( Fig. 6M—P ; Appendix S3, M—P).

Annona senegalensis followed the same pattern as other tetrad pollen species examined, with
pectin layering at the pollen mother cell ( Fig. 7A-D ), and a weak signal at the aperture site ( Fig. 7E-H
). But pectin labeling could not be detected after the 180 ° rotation, when microspores began to increase in
size and pollen joined together ( Fig. 71, J ), unlike the species with tetrad pollen ( Figs. 7K, 7L vs. 61, 6J ;
Appendix S3, I, J). In mature pollen, the pectin signal was again strong ( Fig. 7M, N ) as in all other
monad and tetrad pollen species examined ( Figs. 70, 7P vs. 6M—P ; Appendix S3, M—P).

Pollen from the species with permanent tetrads showed the inner wall of microspores adjacent to
each other, when the microspores started to increase in size and the main callose vanished. Inter-intine



connections of unesterifi ed pectins were observed in mature pollen of atemoya, A. squamosa , and
Asimina triloba ( Figs. 6N , 7P ; Appendix S3N). These connections were not observed in Annona
senegalensis ( Fig. 7N ) or in the species with monad pollen ( Fig. 6P ; Appendix S3P). However, all the
species with permanent tetrad pollen resisted separation during acetolysis, revealing the permanence of
joint sporopollenin.

The mature pollen of species with tetrads retained the differences in exine distribution observed
in the young microspore stage. The intine covering was similar in species with tetrad and monad pollen.
However, the exine covering was not completed, leaving a big aperture site in species with permanent
tetrad pollen ( Fig. 8A—C ; Appendix S4, A), while it fully covered the mature pollen grain in species with
monad pollen ( Fig. 8D, E ). Following the 180 ° rotation of the microspores, this large aperture site was
the area where microspores joined together in the species with permanent tetrad pollen ( Fig. 8F-H ;
Appendix S4, B), whereas microspores remained isolated in species with monad pollen ( Fig. 81, J).

DISCUSSION

Microspore development in Annona species with monad and permanent tetrad pollen followed a similar
sequence of events, but variations in the timing of the digestion of callose and cellulose was a starting
point for the difference between further development of pollen as monads or as permanent tetrads. A
longer retention of callose at the microspore wall aperture was associated with the absence of exine at the
aperture site in permanent tetrad pollen. Microspore development was followed by rotation and binding of
the young microspores at the aperture sites, resulting in subsequent joint sporopollenin deposition.

Different pollen apertures and callose remnants — Significant differences between tetrad and monad
pollen were found in exine distribution. All species with permanent tetrad pollen had a large aperture
devoid of exine, as compared with a homogenous exine all around the pollen grain in monad pollen.

The difference of exine distribution is related to the sequence of events near the time of callose digestion
in the tetrad during microspore development.

During meiosis, the PMC is surrounded by a callose—cellulose material. Callose, deposited on
the outer surface of the plasma membrane ( Carpita and Gibeaut, 1993 ; Parre and Geitmann, 2005 ) acts
as a permeability barrier and leak sealant ( Parre and Geitmann, 2005 ). When meiosis is completed,
callose is digested by an enzyme cocktail secreted from the tapetum ( Scott et al., 2006 ). Interestingly,
the pollen aperture location appears to be linked to the last point of callose deposition ( Blackmore
et al., 2007 ; Albert et al., 2010 ; Albert et al., 2011 ), and our results support this view, further showing
that formation of the pollen aperture is related to delayed digestion of callose with no layering of exine at
this site. A similar pattern has been described previously in other species of the Annonaceae with
permanent tetrad pollen ( Tsou and Fu, 2002 , 2007 ; Lora et al., 2009 ), supporting the idea that the
pattern of exine layering is established at the tetrad developmental stage, when callose digestion is closely
followed by the formation of the exine ( Blackmore et al., 2007 ). Pectins are also involved in exine
formation ( Majewska-Sawka and Rodriguez-Garcia, 2006 ), and in species with permanent tetrad pollen,
the aperture sites showed a weaker signal for methyl-esterifi ed and unesterifi ed pectins. Conversely,
remnants of the callose—cellulose material were not observed in the developing microspores of the two
species that produce pollen in monads, A. neosalicifolia and A. emarginata , where exine was layered all
around the microspore and the signal against pectins was also homogeneous.

Callose and cellulose were digested earlier in species with monad pollen than in species with
permanent tetrad pollen, in which the last remnants of callose and cellulose were always located at the
aperture site, remaining even in mature pollen in species such as A. squamosa and atemoya. A delay in
tapetum degeneration could explain this delay, but no differences in the timing of pollen development
relative to the tapetum degeneration in the species studied were observed. Our results on callose remnants
and exine layering are not unique to permanent tetrad pollen; they are shared by monoaperturate monad
pollen ( Toghranegar et al., 2013 ). However, the subsequent joining of the four microspores together,
once they are free, is more intriguing.

Joining and binding of the microspores — Once the four microspores are shed free, they synchronize by
rotating around themselves. In this way, after the 180 ° rotation, the initially distal aperture sites face
inward, and the thinner aperture sites of the four sibling microspores face each other. The rotation of the
four microspores has been observed in other species in the Annonaceae, A. glabra , A. montana ( Tsou
and Fu, 2002 ), A. cherimola ( Lora et al., 2009 ), and Cymbopetalum baillonii ( Tsou

and Fu, 2007 ). The reasons behind this rotation remain puzzling, but it has been suggested that the
remnants of callose in the aperture sites pull the microspores for the 180 ° rotation ( Tsou and Fu, 2002 ,
2007 ).



Once the microspores face each other, the question remains on how they adhere to each other.
Results for three of the tetrad pollen species here studied show a similar pattern to that previously
reported in A. cherimola ( Lora et al., 2009 ). The thin microspore walls, at the aperture sites, adhere to
each other through pectin bridges. Sporopollenin is then jointly deposited, further establishing a strong
union resistant to acetolysis. Intine and exine cohesion was also reported for Pseuduvaria ( Su and
Saunders, 2004 ), also belonging to the Annonaceae. However, while sporopollenin bridging also occurs
in A. senegalensis , intine cohesion was not observed in the mature permanent tetrad pollen of this
species. Also a different pattern was reported for Annona glabra , A. montana ( Tsou and Fu, 2002 ), and
Cymbopetalum baillonii ( Tsou and Fu, 2007 ) in which pollen grains are connected by a mass of callose
and cellulose. Thus, the tetrad cohesion process could involve different steps.

The confi ned space where the microspores develop surely contributes to the establishment of
these different cohesion mechanisms. Thus, a relationship between the locular space and the types of
dispersal unit was previously suggested ( Pacini, 2010 ). Studies with the quartet mutants of the model
plant Arabidopsis thaliana show that a delay in the PMC wall dissolution is key to keeping the four
pollen grains together ( Rhee and Somerville, 1998 ). This conclusion obtained for a core eudicot was also
observed in our previous study of Annona cherimola ( Lora et al., 2009 ) and is supported by the results
of the present study in which we also observed remnants of pectin in the PMC wall. Moreover, a
degenerated septal tapetum still surrounds the four microspores, forming the tapetal chamber.

Pollen development in Annonaceae — Results herein show that, even within the same genus, different
origins may account for the presence of mature tetraspore pollen. However, all the species here examined,
except for the fi rst cohesion mechanism, share a common developmental sequence of events. A strong
reduction of exine at the pollen contact area is also found in other species of Annonaceae with aggregated
pollen in the form of dyads, tetrads, or polyads ( Le Thomas et al., 1986 ). In fact, although with some
exceptions as the genus Isolona , where the presence of monads is probably a reversion from tetrads (
Doyle and Le Thomas, 2012 ), a reduction of the exine in this area is correlated with compound pollen (
Doyle and Le Thomas, 1994 , 2012 ).

Cladistic analyses ( Doyle and Le Thomas, 1994 , 2012 ) showed that the monosulcate condition
could represent the ancestral pollen type in Annonaceae as in other Magnoliales and that loss of the sulcus
took place in the more evolutionarily derived species of the family including some groups (such as the
Miliuseae in the subfamily Malmeoideae) with mostly monad pollen and other groups (such as the
subfamily Annonoideae) with mostly aggregated pollen. Although tetrads have arisen independently
in some lines of the Annonaceae, most taxa with tetrads belong to the subfamily Annonoideae ( Doyle
and Le Thomas, 2012).

A putative adaptive benefi t of permanent tetrad pollen with a big aperture could be a
cooperative strategy between the four sibling pollen grains to prevent desiccation and the entrance
of pathogens. In the case of monad pollen in A. neosalicifolia
or A. emarginata , this strategy is not needed because
the complete covering of the pollen wall does not leave any
unprotected area. While such cooperative protection has not been previously suggested, the fact that
pollen aggregation occurs mostly in insect-pollinated taxa ( Hesse et al., 2000 ) has been related to an
advantage in species where pollination visits are scarce ( Harder and Johnson, 2008 ). This strategy could
be the case in Annona where cantharophily (pollination by beetles) is the most common pollinating
system ( Gottsberger, 2012 ; Saunders, 2012 ), and usually these insects are less mobile than other
pollinating insects such as flies or bees ( Willmer, 2011 ). Moreover, pollen aggregation is often
combined with floral thermogenesis and/or floral gigantism that increase pollination effi ciency ( Davis et
al., 2008 ; Endress, 2010 ).

Conclusions — Results herein revealed the key events during pollen development behind this adaptive
advantage of permanent tetrad pollen. The main difference between Annona species with tetrad and
monad pollen is the delayed digestion of callose and cellulose at the pollen aperture sites, thus resulting

in the lack of exine layering in these areas. The young microspores then rotate and bind at the aperture
sites, fi rst via cohesion of the intine layers and later via cohesion of the adjacent exine layers at the
margin of the apertures. These results could represent a widespread situation of the independent, recurrent
appearance of aggregated pollen in fl owering plants and could be explained by relatively minor
ontogenetic changes.
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Asimina triloba

A. emarginata A. neosalicifolia

Fig. 1. Scanning electron microscopy of mature pollen. Mature pollen is globose in all species examined. Permanent tetrads
are tetragonal in (A, B) Annona squamosa , whereas they are rhomboidal in (C, D) atemoya, (E, F) A. senegalensis , and (G,
H) Asimina triloba . Exine cohesion (arrow) is shown in the upper square of species with tetrad pollen. (I) Annona
emarginata and (J) A. neosalicifolia show inaperturate monad pollen. Scale bars: A, C, E, G=10 um; B, D, F, H=5 pm; I,
J =20 pm.



Fig. 2. Microsporogenesis in species with permanent tetrad (A-D, H), and monad (E-G) pollen. (A) Pollen mother cell
(PMC) just before meiosis. (B) Successive cytokinesis. (C, D, H) Young microspores have rotated (white arrows), turning
the distal thin wall aperture toward the center of the tetrad (black arrowhead in D). (E) PMC showing the fi rst meiosis. (F)
Successive cytokinesis. (G) Young microspores showing starch grains and homogeneous thickness of the microspore wall.
Anthers were stained with periodic acid—Schiff’s reagent and toluidine blue. Scale bars = 20 pm.

A. squamosa (OA. emarginata OA. neosalicifolia

Fig. 3. Staining for cellulose (A-D) and callose (E-H) at the end of the tetrad developmental stage. Remnants of cellulose
and callose were present in the aperture sites (arrows) of (A, E) atemoya and (B, F) Annona squamosa , but not in (C, G) A.
emarginata or (D, H) A. neosalicifolia . Sections were stained with (A-D) a 3 : 1 mixture of auramine and calcofluor, and
(E-H) callose was detected using an antibody against callose. Scale bars =20 pm.
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Fig. 4. Visualization of cellulose at the tetrad developmental stage. (A—D) Cellulose was detected in all examined species in
the tetrad developmental stage. After 1 h of cellulose digestion, (E, F) remnants of cellulose were found in the aperture site
(arrow) of the species with permanent tetrad pollen, whereas (G, H) cellulose digestion was completed in species with
monad pollen. The percentage of microspores with cellulose is shown in the lower right corners. (I) Percentage of tetrads
with cellulose staining, at different times of cellulose digestion, showing earlier digestion of cellulose in species with monad
pollen than in species with tetrad pollen. Bars indicate SD. Cellulose was stained with calcofluor. Scale bars = 20 pm.
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Fig. 5. Staining for callose at the tetrad developmental stage. (A—D) Callose was detected in all examined species in the
tetrad developmental stage. After 1 h of callase digestion, (E, F) callose remnants were still present at the pollen aperture
sites (arrows) in some of the tetrad pollen, whereas (G, H) callose was absent in species with monad pollen. The percentage
of microspores with callose is shown in the lower right corners. (I, J) Percentage of tetrad microspores with (I) callose after
digestion with callase or (J) with callase and cellulase together. Bars indicate SD. Callose was stained with sirofluor. Scale
bars =20 um.
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Fig. 6. Labeling with monoclonal antibody JIM 7 for methyl-esterifi ed and JIM 5 for unesterifi ed pectins, during pollen
development, in tetrad (A, B, E, F, I, J, M, N) and in monad pollen (C, D, G, H, K, L, O, P). (A-D) Pollen mother cell walls
showed both kinds of pectins. Tapetal cells showed (A, C) methyl-esterified pectins in both species, but (B, D) the signal
was weaker for unesterified pectins. (E, F) Microspore wall of atemoya tetrad pollen showing (E) methyl-esterified and (F)
unesterified pectins, but the signal is weaker in the aperture site (arrow). (G, H) Microspore pollen of Annona emarginata
shows a homogeneous signal around the microspore wall for (G) methyl-esterifi ed and faintly detected for (H) unesterified
pectins. (I-L) As microspores increased in size both pectins were labeled in the microspore wall of (I, J) atemoya tetrad
pollen but not in (K, L) monad pollen of A. emarginata. (M—P) Mature pollen both pectins labeled in (M, N) tetrad and (O,
P) monad pollen. Scale bars =20 pm.
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Fig. 7. Labeling with monoclonal antibody JIM 7 for methyl-esterifi ed and JIM 5 for unesterifi ed pectins, during pollen
development in Annona senegalensis (A, B, E, F, 1, J, M, N) and Asimina triloba (C, D, G, H, K, L, O, P). (A, C) Pollen
mother cell (PMC) walls and tapetal cells showing methylesterified pectin in (A) A. senegalensis and (C) Asimina triloba .
(B, D) Similarly, PMC walls also show unesterified pectins but weaker signal in the tapetal cells. (E, F) Microspore wall of
A. senegalensis and Asimina triloba showing (E, G) methyl-esterifi ed and (F, H) unesterifi ed pectins but weaker signal in
the aperture site (arrow). (I-L) Microspore has rotated 180° and increased in size; (K, L) methyl-esterified and unesterified
pectins are detected only in the microspore wall of A. triloba . (M—P) Mature pollen showing methyl-esterifi ed and
unesterifi ed pectins in (M, N) Annona senegalensis and (O, P) Asimina triloba in which cross-wall cohesion is present.
Scale bars = 20 pm.
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Fig. 8. Exine and intine distribution in mature pollen of species with tetrad (A—C, F-H) and monad (D, E, I, J) pollen. The
intine (red arrow) covering is similar in all species, but the exine (white arrow) has a large, thinner aperture in species with
tetrad pollen (A—C, F-H), whereas it is uniform around the pollen grain in species with monad pollen (D, E, I, J). (A-E)
Exine was stained with auramine and intine with calcofluor after treatment with 3 : 1 auramine—calcofluor solution. (F-J)
For general histological observations, the anthers were stained with periodic acid—Schiff’s reagent and toluidine blue. Scale
bars =20 pum.



