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Abstract 

Coal pyrolysis is the initial, accompanying reaction of a number of coal conversion 

processes such as hydrogenation, combustion and gasification. However, because of the 

inherent complexity of coal composition, it is difficult to describe coal pyrolysis clearly. 

Single model compounds have been used before in order to provide additional insight 

into the complex processes that occur in the pyrolysis of coal. Yet the picture obtained 

is a simplified one and certain important aspects such as coal structure, interactions 

between different surface groups and cross-links are omitted. The approach used in this 

work involves the preparation of a synthetic coal, SC, with a known structure by curing 

a mixture of single, well-defined model compounds. By means of chemical 

characterisation, the SC was shown to contain the macroscopic features of a high 

volatile coal (proximate and ultimate analyses). FTIR characterisation revealed the 

presence of functional groups similar to those of coal in the structure of the SC. 

Temperature-programmed pyrolysis tests were performed in a thermobalance linked to a 

mass spectrometer and a Fourier transform infrared analyser (TG/MS/FTIR). The 

thermal behaviour of the synthetic coal (i.e., rate of mass loss and the evolution profiles 

of gaseous compounds during pyrolysis tests) is very similar to that of the high volatile 

bituminous coal which was used as a reference material. The great advantage of using 

SC lies in the fact that its composition and structure can be accurately determined and 

employed in subsequent applications in basic and mechanistic studies. 
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1. Introduction 

Coal pyrolysis is the basic process of cokemaking, and the initial, accompanying 

reaction of a number of coal conversion processes such as hydrogenation, combustion 

and gasification. In addition, pyrolysis, performed under defined conditions, is a useful 

tool for the elucidation of coal structure and for the assessment of its molecular 

reactivity. In particular, non-isothermal pyrolysis at a constant heating rate can supply 

mechanistic and kinetic data about the decomposition of coal [1]. However, the 

pyrolysis process includes a multitude of single reactions that proceed simultaneously 

and the experimental results represent the sum of the effects of all these reactions. 

Moreover, the inherent complexity of coal composition makes it difficult to describe 

coal pyrolysis clearly, although over the last decade many research works have been 

devoted to this topic [2-4]. 

 

Due to general environmental concerns, more effort needs to be put into research on the 

formation of a series of pollutants from coal combustion (i.e., NOx release). The 

pyrolysis step exerts an important influence, not only on the coal combustion process, 

but also on NOx formation, as this controls the distribution of gases, tar and char [5]. 

However, due to the heterogeneity and complexity of coal, the reaction mechanisms 

involved in the formation/reduction of NOx have not been completely defined, 

especially those involving coal char (i.e., heterogeneous reactions). A better knowledge 

of coal structure and the reaction mechanisms involving nitrogen compounds during 

pyrolysis may help to reduce and control NOx emissions from coal utilisation. 

 

Single model compounds have been used before in order to provide additional insight 

into the complex processes that occur in the pyrolysis of coal [6-12]. However, although 
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interesting results have been obtained in this way, the picture is a simplified one and 

some important aspects of coal structure, such as the interactions between different 

surface groups and cross-links, are omitted in the case of single compounds. 

Furthermore, in order to study the evolution of nitrogen during coal pyrolysis or 

combustion, single model compounds containing nitrogen or special surface treatments 

such as ammoxidation (i.e., treatment with ammonia) have been widely used [8-12]. To 

study nitrogen reaction mechanisms, the nitrogen must be distributed throughout the 

bulk of the coal and not just on the surface. In addition, the nitrogen functionalities in 

the sample must be known. 

 

In order to avoid these problems, we employed a mixture of model compounds that 

included nitrogen functionalities commonly present in coal. The main aim of the work 

was to obtain a synthetic coal which is sufficiently representative of the structure, 

composition and main functionalities of a common bituminous coal with a view to 

simulating the reaction mechanisms that take place during coal pyrolysis. 

 

2. Experimental 

2.1. Preparation of the synthetic coal 

A series of model compounds, shown in Figure 1, were selected and mixed in order to 

obtain a synthetic coal with a well known structure and composition. Phenol-

formaldehyde resin (PFR) was synthesised from phenol, formaldehyde and sodium 

hydroxide [13], and used as a carbonaceous matrix. The resin was then mixed with three 

model compounds supplied by Aldrich: 3,4,9,10-perylenetetracarboxilic dianhydride 

(PTC), poly-4-vinylpyridine (p4VP), the source of pyridinic nitrogen, and 

polyvinylpyrrolidone (PVP), a pyrrolic nitrogen source. In order to create linkages 
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between the individual model compounds comparable to those of a real coal, a curing 

step for the mixture was performed under Ar flow at 5 ºC min-1 from room temperature 

up to a previously optimised temperature of 425 ºC. The final cured mixture was 

denoted as synthetic coal, SC. It must be pointed out that it was not the aim of this work 

to simulate the behaviour of a particular coal, but to obtain a material with a well known 

composition and structure that would be representative of a real coal for subsequent 

basic and mechanistic studies. Thus, for the purposes of comparison a Spanish high 

volatile bituminous coal, CA, was used as a reference material. 

 

2.2. FTIR analysis of solids 

The samples were prepared for solid FTIR analysis following the standard procedure for 

this type of materials. A coal:KBr mixture (1:100 ratio) was ground with a mortar and 

pestle. Pellets were then pressed and dried at 100 °C overnight. Several pellets were 

prepared for each sample, one spectrum obtained for each pellet, and an average 

spectrum produced from the individual ones, in order to minimise any eventual errors 

arising from grinding and weighing. All absorbance spectra were recorded on a Nicolet 

Magna IR-560 spectrometer by co-adding 100 interferograms obtained at a resolution of 

4 cm-1. Each spectrum was corrected for scattering, using two baselines (3800-1800 and 

1800-400 cm-1) and was then normalised to 1 mg (daf) cm-2. 

 

2.3. TG coupled to MS/FTIR 

Thermogravimetric (TG) analysis has proven to be a very useful technique for studying 

the thermal behaviour of a wide variety of solid samples. However, TG analysis by 

itself does not identify the decomposition products. When TG analysis is coupled with 

evolved gas analysis, a great deal of additional information can be obtained. In this 
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work the pyrolysis tests were performed in a TGA92 thermogravimetric analyser from 

Setaram (TG) under an argon flow rate of 50 mL min-1, employing a heating rate of 15 

ºC min-1 up to a final temperature of 850 ºC. An MSC200 quadrupole mass 

spectrometer from Balzers (MS), and a Nexus infrared spectrometer from Nicolet 

(FTIR), linked to the thermobalance, were used for evolved gas analysis. To avoid 

secondary reactions, a probe was placed very close to the sample crucible of the 

thermobalance in the direction of the gas flow. The gas lines between the TG and the 

MS/FTIR were heated to 200 ºC in order to avoid cold points and thus prevent the 

condensation of some of the gaseous products.  

 

The MS operated on 100 eV of ionisation energy, using a Channeltron detector (1000 

V). The number of m/z signals selected gave a temporal resolution of 20 seconds. 

Although a qualitative analysis was performed in this work, the intensities registered by 

the MS needed to be repeated in order that the intensity of the peaks of the different 

samples could be compared (i.e., semi-quantitative analysis). Thus, the signals were 

normalised to the initial mass of the sample and to the maximum of the total intensity of 

the experiment [14].  

 

FTIR measurements were carried out using a DTGS detector and a KBr window, in a 

specifically developed low-volume gas cell, which was kept at a constant temperature of 

225 ºC. The interferometer and the gas cell compartments were purged with dry and 

CO2 free air. The spectra were collected at a resolution of 4 cm-1, and 200 scans were 

co-added per spectrum. This resulted in a temporal resolution of 106 seconds. 
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Each compound detected in the MS and FTIR had its own response factor. By means of 

the semi-quantitative analysis conducted in this work, it was possible to compare the 

peak height of the same compound released from different samples. However, in the 

case of the peaks from different compounds, it was only possible to compare the shape 

and characteristic temperatures of the peaks. According to the literature on coal 

pyrolysis, the most important products evolved during the devolatilisation process are 

H2, CO, CO2, H2O and hydrocarbons [3, 15]. Although it is known that hydrocarbons 

give several m/z signals in the MS corresponding to their fragments, it was found that 

with the mass spectrometer used in this work, provided with 100 eV of ionisation 

energy, the main m/z signals observed for hydrocarbons were m/z 15 and 16, 

corresponding mainly to the CH3
+ and CH4

+ ions, respectively. Although other ionic 

species were detected during the pyrolysis tests, special attention was paid to the 

following m/z signals (which correspond mainly to the fragments in parenthesis after 

correcting the possible interferences from other ions): 2 (H2
+), 15 (CH3

+), 18 (H2O+), 27 

(HCN+), 28 (CO+), 30 (NO+) and 44 (CO2
+). For the sake of simplicity, the mass 

spectrometer signals will be assigned to the following gaseous species (H2, CH4, H2O, 

HCN, CO, NO and CO2), although they really correspond to the ionic species 

mentioned above. 

 

3. Results and discussion 

3.1. Characterisation of the individual model compounds 

The ultimate analysis of the individual model compounds is presented in Table 1. These 

compounds are free of mineral matter and sulphur, implying the absence of catalytic 

effects during the pyrolysis tests. The p4VP sample has a high hydrophilic character 

(48.7 % moisture). 
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Figure 2 shows the infrared spectra of the individual model compounds. According to 

the reference data [16-17] a correspondence between the absorption bands and 

functional groups can be established. Thus a very broad and intense absorption band at 

3700-2800 cm-1, arising from O-H bonds, is observed in the spectrum of PFR, due to 

the high concentration of phenolic groups. The presence of a small absorption in this 

area in the spectrum of p4VP is due to the high hydrophilic character of the compound. 

In the 3050-2850 cm-1 area, clear differences can be observed in the spectra, due to 

different proportions of aliphatic and aromatic C-H bonds in the samples. PTC presents 

very clear absorption in the 1800-1700 cm-1 area and at ≈1030 cm-1, due to anhydride 

groups. As for the N functional groups, PVP displays a strong absorption at ≈1600 cm-1, 

typical of the C=O stretching of amides. Sample p4VP shows several bands between 

1650 and 1200 cm-1, which are characteristic of the ring breathing vibration of pyridinic 

compounds. Finally, PTC and PFR also display bands of benzenic breathing vibration in 

the 1600-1500 cm-1 area, and a great complexity in the 1350-1000 cm-1 area, with 

numerous bands arising from C-O stretching and O-H deformation vibrations. 

 

The individual model compounds were pyrolysed in the TG/MS/FTIR system. Variation 

in the rate of mass loss with temperature for each compound is shown in Figure 3. The 

profiles obtained from the TG analysis were deconvoluted, using a mixture of 

Lorentzian and Gaussian functions. Thus, the PFR profile can be divided into 5 different 

peaks, due to its complex structure, while the other three compounds (PTC, p4VP and 

PVP) present a single peak profile. The results from the TG analysis were related to the 

evolution of different gaseous compounds detected by MS and FTIR (H2, CH4, H2O, 
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CO, CO2, HCN, NO, phenol and monomers e.g. pyrrolidone and 4-vinylpyridine). 

These are shown in Figure 4 (MS profiles) and Figure 5 (FTIR profiles).  

 

The advantages of using model compounds are that their functional groups are already 

known, they can be easily related to the TG and the evolution profiles of the gaseous 

compounds and reaction mechanisms can be proposed. For instance, the PTC single 

peak (between 500 and 650 ºC) observed on the DTG curve (see Figure 3) is due to the 

breaking up of anhydride groups (single process) with the formation of CO and CO2, as 

can be seen in the MS profiles of Figure 4 and corroborated by FTIR in Figure 5.  

 

The DTG curve for p4VP (Figure 3) again shows a single peak but at lower 

temperatures (350-500 ºC). This indicates that a single process is also occurring during 

the pyrolysis of this compound. As no nitrogen compounds were detected either by MS 

or FTIR, it seems clear that the rupture of the six-member ring (cf. Figure 1) has not 

taken place. CH4 detection, from lateral chains of the polymer, was negligible according 

to the MS (Figure 4) and was not detected by FTIR due to its lower level of sensitivity. 

The only gaseous compounds detected, apart from moisture, were H2 by MS (see Figure 

4) due to condensation reactions, and the monomer 4-vinylpyridine by FTIR (see Figure 

5), indicating that the breaking up of the polymer into monomers seems to be the main 

process occurring during the pyrolysis of p4VP. 

 

A single peak between 350 and 500 ºC was also observed in the DTG profile of PVP 

(Figure 3). Breakage of the five-member ring leads to the formation of CO and CO2 due 

to the oxygen content of the sample, as can be seen in Figures 4-5. The rupture of the 

ring leads to the formation of nitrogen compounds (i.e., HCN and NO) presented in 
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Figure 4. The interferences of other fragments in m/z signals 27 and 30 have been taken 

into account and subtracted [18]. The formation of NO in a reducing environment can 

be justified by the presence of oxygen in the PVP composition, as in coals, where NO 

has also been detected [18-22]. The fact that the detection of HCN and NO by FTIR is 

negligible, is surely due to the lower sensitivity of the equipment compared to the MS. 

This also explains the small detection of CH4 by MS and the negligible intensity in the 

FTIR. However, FTIR is sensitive enough to detect the monomer, pyrrolidone, shown in 

Figure 5. 

 

The DTG curve of PFR can be divided into 5 peaks (see Figure 3). The first and second 

peaks appear at temperatures lower than 300 ºC. They therefore arise mainly from 

moisture, CO, and CO2, as can be observed in Figures 4-5. The elimination of ether and 

methylol functions from the PFR [23] or the evolution of unreacted formaldehyde could 

be the main source of the CO and CO2 at such low temperatures. However, in the field 

of coal research the presence of the so-called mobile phase is generally accepted, 

comprising the compounds evolved at the very first stage of coal pyrolysis (<400 ºC). 

These compounds (i.e., water and volatile organics) are due mainly to evaporation as 

they are not chemically bonded to the coal structure [24-29]. Bearing in mind that 

phenol formaldehyde resins are considered as good representatives of coal structure, the 

term mobile phase could also be applied to in-lab synthesised resin, which may also 

make a small, parallel contribution to compounds evolved at low temperatures.  

 

The third peak, between 350 and 500 ºC, comes mainly from pyrolytic water and CO2, 

while the fourth peak (400-600 ºC) coincides with the evolution of CH4, H2O, CO, CO2, 

and phenol (see Figures 4-5). The rupture of aryl methyl ethers and methylene bridges 
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from the PFR leads to the formation of methane [1, 30] and probably some CO and 

CO2. 

The fifth peak, centred at 650 ºC, can be assigned to some CO, phenol and H2 formation 

at high temperature. The cleavage of high condensed heterocyclic structures occurs at 

this temperature [30] with the evolution of CO and probably some phenolic groups. 

However, other possible pathways for the production of CO, H2O and H2 have also been 

suggested by other authors [31-33]. 

 

3.2. Characterisation of the synthetic coal 

The first step in the preparation of a synthetic coal involved the mixing of a series of 

individual model compounds. After testing different model compounds and proportions, 

the optimum mixture selected for further studies was 50% PFR, 10% PTC, 39% PVP 

and 1% p4VP. The proximate and ultimate analyses of this physical mixture are shown 

in Table 1. The differences between the values given in Table 1 and the theoretical ones, 

calculated from the percentages of the single compounds, are negligible. It can be 

observed that the volatile matter and oxygen contents of the physical mixture present 

quite high values (67.1 % wt and 20.2 % wt, respectively). 

 

The thermal behaviour of the physical mixture under inert atmosphere was conducted in 

the TG/MS/FTIR system and the DTG profile obtained is shown in Figure 6. This 

profile can be deconvoluted into four different peaks, which can be assigned to the 

species followed by MS and FTIR. In addition, the characterisation of the individual 

model compounds previously described allowed the MS profiles of the physical mixture 

to be related to the individual model compounds and their functionalities. Thus, the 

DTG curve presented in Figure 6 can be divided into two main zones: the first one 
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between 100 and 300 ºC, and the second one in the temperature range of 350-600 ºC. 

DTG deconvolution gave two peaks in the first zone that correspond to the moisture, 

CO and CO2, released from the resin, PFR. The second zone of the DTG curve can also 

be divided into two peaks. The main one (peak 3 in Figure 6) corresponds mainly to 

CO, CO2, pyrolytic water and the evolution of monomers, mainly phenol and 

pyrrolidone due to the high weight of PFR and PVP in the mixture (50% and 39%, 

respectively). The small peak at high temperature (>500 ºC) could be due to the 

additional evolution of CO and CO2 mainly from PTC, and CH4 from PFR. 

 

Although the gaseous compounds evolved during the pyrolysis of the physical mixture 

are also the most important products obtained during the thermal decomposition of 

bituminous coals (i.e., H2, H2O, CH4, CO, CO2, etc.), the DTG curve of the mixture is 

not representative of that of common bituminous coals. The peaks at low temperature 

(<300 ºC) do not usually appear in this high proportion, and the main peak is not usually 

symmetrical, as coal pyrolysis is a complicated process which involves many more 

reactions than just the breakage of aliphatic chains. Obviously, coal is not a mixture of 

single compounds but a complex and heterogeneous carbonaceous matrix with different 

functionalities. Thus, in order to promote linkage formation between the individual 

model compounds, the physical mixture was cured (i.e., treated at a heating rate of 5 ºC 

min-1 up to 425 ºC under Ar flow). During the curing step, release of CO, CO2 and CH4 

took place. The evolution of these compounds is usually related to cross-linking 

reactions [34].  

 

The sample obtained after the curing step was denoted as synthetic coal, SC. The values 

of the proximate and ultimate analyses are very close to those of the reference coal CA 
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(i.e., high volatile bituminous coal), as can be observed in Table 1. The main differences 

lie in the absence of ash and sulphur in the SC sample. 

 

Figure 7 shows the FTIR spectra of the physical mixture, the synthetic coal, and coal 

CA. The differences between the spectra of the physical mixture and the synthetic coal 

should be noted. The curing step has modified the proportions of aliphatics and 

aromatics, producing absorption differences in the regions of 3000-2800 cm-1 and 1400 

cm-1 (C-H bonds) and also in the 1600 cm-1 band (aromatic C-C bonds) [16-17]. There 

is a clear difference in the 700-900 cm-1 area arising from the aromatic C-H out-of-plane 

bending vibration [16-17]. The overlapping of bands between 1700 and 1000 cm-1 in the 

case of SC, clearly indicates the existence of links between the model compounds, as a 

result of which they form a unique structure.  

 

Although there are some differences between the SC and CA spectra (see Figure 7), it 

can be observed that, individually, the SC spectrum shows a striking similarity to a 

typical coal spectrum [35-36]. At least it is much more representative of the structure of 

the coal than the individual model compounds or their physical mixture. The main 

differences are due to the higher content of C=O groups (1700 cm-1 band) and the 

absence of mineral matter (1100-1000 cm-1 bands) in SC. The high concentration of 

C=O groups in SC is in accordance with its high oxygen content in the ultimate 

analysis. Apart from this, the SC spectrum presents most of the typical absorption bands 

of coal [35-36] (i.e., aromatics and aliphatics vibrations). Taking into account the 

complexity and heterogeneity of mineral coals, it can be concluded that the synthetic 

coal obtained in this work, provides a very good representation of the composition of 

the bituminous coal taken as a reference material. 
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The thermal behaviours of SC and CA were compared in the TG/MS/FTIR system. 

Figure 8 shows the mass loss profiles during pyrolysis for both samples. It can be seen 

that the curves almost match, giving practically the same total mass loss and a similar 

rate of mass loss. From the curves, two characteristic temperatures can be obtained: the 

temperature of maximum rate of mass loss, Tmax, and the initial thermal decomposition 

temperature, Ti, which are parameters that depend on the nature of the sample [14]. The 

Ti (388 ºC for SC and 380 ºC for CA), and Tmax values (445 ºC for SC and 467 ºC for 

CA) were very similar for both samples. This indicates that they present an analogous 

thermal response during pyrolysis. The TG results together with the ultimate, 

proximate, and FTIR analyses are indicative of many similarities in composition and 

structure between SC and CA. However, a comparison between the evolution of the 

gaseous compounds released during the pyrolysis of both samples is also needed, as this 

is related to the functional groups present in the samples. 

 

Figure 9 shows the DTG curve for SC, which can be deconvoluted into four peaks. The 

main peak is not a symmetrical one, in contrast with the DTG curve of the physical 

mixture (Figure 5). The curing step has removed the peaks at very low temperature 

(<300 ºC) and has created links between the functionalities, making the pyrolysis 

process more complex, which is what really occurs during coal pyrolysis. The DTG 

curve for coal CA is very similar to the one presented in Figure 9 and it can also be 

divided into four different peaks centred at the same temperatures.  

 

The first peak in Figure 9 is mainly due to H2O. Between 400 and 600 ºC, bridge 

breaking starts to fragment the macromolecular network and functional groups begin to 
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decompose, producing light species. Degradation of the carbonaceous matrix (peak 2 in 

Figure 9) starts with the production mainly of CO2 and H2O from the more labile 

oxygenated functional groups (see Figures 10-11 for the MS and FTIR profiles, 

respectively). The third peak is due to the structural degradation of SC, with some CO 

evolution resulting from the break-up of ether-type bonds in PTC, and also from the 

decomposition of phenols [1], in agreement with the phenolic groups from PFR, as can 

be seen in Figure 11. The degradation of the carbonaceous structure in this temperature 

range (500-600 ºC) is also corroborated by the evolution of CH4, the rupture of C-C 

bonds and the formation of methyl radicals. CH4 comes mainly from PFR, which is the 

compound that confers the carbonaceous matrix to the synthetic coal. The evolution of 

HCN and NO also occurs in this temperature range (see Figure 10), due to the 

degradation of the carbonaceous structure, but the amount of these gases is small, and 

their contribution to the weight loss in the TG is insignificant. The condensation of 

aromatic structures to char occurs at a higher temperature. This may be associated 

primarily with the formation of CO and H2 (peak 4 in Figure 9), PFR being the main 

contributor to their formation. 

 

Figures 10-11 show the striking similarity (i.e., shape of the peaks and maximum 

temperatures) between the main gaseous compounds evolved during the pyrolysis of SC 

and CA. This clearly indicates that the pathways for the formation of the gaseous 

compounds during the pyrolysis of both SC and CA are similar. The main differences 

observed come from the evolution of H2, with a better defined peak for SC than in the 

case of the bituminous coal CA due to the condensation of residual phenolic groups 

from PFR. The CO2 profile for coal CA presents an additional peak that does not appear 

in the case of SC, due to the decomposition of carbonates at high temperature, which are 
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present in CA [14] but absent in SC. It is also significant that SC presents a higher 

moisture content than CA, but the same temperature peak (at around 600 ºC) for the 

pyrolytic water. It should again be emphasised that the main aim of this work was not to 

simulate a real coal but to obtain a synthetic coal that is acceptably representative of the 

structure, composition and main functionalities of a common bituminous coal. Taking 

this into account together with the high heterogeneity and complexity of coal, it can be 

concluded that the synthetic coal obtained here is representative of a real coal, although 

some differences in structure and composition were found. 

 

It is worth noting that similarities were found not only for the usual pyrolysis 

compounds but also for nitrogen compounds (i.e., HCN and NO). This is of special 

relevance, as the synthetic coal obtained in this work, whose composition and structure 

are known and which is free of the catalytic influence of mineral matter, may prove very 

useful for the study of the reaction mechanisms that involve nitrogen during coal 

pyrolysis and combustion.  
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Table 1. Proximate and ultimate analyses of the samples studied 

Proximate analysis (% wt) Ultimate analysis (% wt, daf) 
Sample 

Moisture Ash (db) VM (db) C  H  N  S  O   

PVP 10.4 0.0 97.0 64.1 7.9 12.7 0.0 15.3 

p4VP 48.7 0.0 95.7 84.8 6.0 9.2 0.0 0.0 

PTC 0.3 0.0 91.4 73.9 2.1 0.0 0.0 24.0 

PFR 2.7 0.0 52.7 71.3 5.7 0.0 0.0 23.0 

Mixture 5.8 0.0 67.1 70.0 5.7 4.1 0.0 20.2 

SC 2.9 0.0 39.2 81.8 5.4 2.6 0.0 10.2 

CA 1.4 7.6 37.7 84.4 5.5 1.8 1.6 6.7 

db: dry basis 
daf: dry ash free 
 
 
 



 

 

List of figures: 

 

Figure 1. Model compounds used for the preparation of the synthetic coal. 

 

Figure 2. FT-IR spectra of the individual model compounds. 

 

Figure 3. Deconvolution of the rate of mass loss curve obtained during the pyrolysis of 

the individual model compounds. 

 

Figure 4. Gaseous compounds evolution followed by MS during the pyrolysis of the 

individual model compounds. 

 

Figure 5. Gaseous compounds evolution followed by FTIR during the pyrolysis of the 

individual model compounds. 

 

Figure 6. Deconvolution of the rate of mass loss curve obtained during the pyrolysis of 

the physical mixture of the model compounds. 

 

Figure 7. FT-IR spectra of the physical mixture of model compounds, the synthetic coal 

(SC) and the bituminous coal (CA). 

 

Figure 8. Mass loss profiles during the pyrolysis of the synthetic coal (SC) and the 

bituminous coal (CA). 

 

Figure 9. Deconvolution of the rate of mass loss curve obtained during the pyrolysis of 

the synthetic coal. 

 

Figure 10. Gaseous compounds evolution followed by MS during the pyrolysis of the 

synthetic coal (SC ⎯) and the bituminous coal (CA □). 

 

Figure 11. Gaseous compounds evolution followed by FTIR during the pyrolysis of the 

synthetic coal (SC ⎯) and the bituminous coal (CA □). 
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Figure 4 
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Figure 5 
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Figure 7 
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