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Abstract 

Two series of carbon dioxide adsorbents were prepared from almond shells, by 

carbonisation followed either by activation with CO2 or by heat treatment in the 

presence of ammonia gas (amination). Both procedures gave carbons with high CO2 

adsorption capacities in pure CO2 as well as in a binary mixture of 15 % CO2 in N2. 

Activation with carbon dioxide significantly developed porosity in the samples, mostly 

in the micropore domain, while amination at 800 ºC moderately developed narrow 

microporosity in the char and incorporated stable nitrogen functionalities, which 

enhanced CO2 selectivity. Amination showed two additional advantages over 

conventional activation with CO2: a greater carbon yield and a shorter soaking time. 
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1. Introduction 

It is widely accepted that CCS, carbon dioxide capture and storage, will be necessary to 

satisfy the energy demand without contributing to global warming in the forthcoming 

years, while alternatives to fossil fuels are developed. Adsorption is one of the 

technologies that can be applied to carry out the separation of CO2 (capture step). 

Among all adsorbents, activated carbons present a series of advantages as CO2 

adsorbents: high adsorption capacity, ease of regeneration, low cost, and insensitiveness 

to moisture.  

Almond shells are a low-cost, relatively abundant agricultural by-product, that can be 

used as a feedstock for the production of microporous activated carbons through a first 
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step of carbonisation followed by activation with CO2 [1-3]. The adsorption capacity of 

an activated carbon is mainly governed by its texture but it is also strongly influenced 

by the surface chemistry. The presence of nitrogen functionalities on the carbon surface 

have been reported in the past to be effective towards the adsorption of acid gases, such 

as H2S and SO2 [4, 5]. Attention has also been given to the introduction of nitrogen 

functionalities into the carbon for enhancing the CO2 adsorption capacity [6-12]. 

Among other possibilities, nitrogen can be introduced into the carbon matrix by reaction 

with gaseous ammonia [13-19]. Ammonia can react with surface oxides and active sites 

present at the edges of the graphene layers to form amines, amides, imides, lactams, 

nitriles, pyridine- or pyrrole-like functionalities [14, 15, 19-21]. 

In this work two different approaches for developing efficient carbon dioxide 

adsorbents are compared: conventional activation with carbon dioxide, and heat 

treatment with gaseous ammonia, from now on referred to as amination. The main 

objective of amination is the introduction of basic nitrogen functionalities, while the 

focus of activation is texture development. In both cases, the final aim is to enhance 

CO2 adsorption. 

2. Experimental 

Raw almond shells were ground and sieved, and a particle size between 1 and 3 mm 

was selected for further treatment. A first step of carbonisation was carried out at 600 ºC 

in N2 flow up to an average char yield of 24 %. The resulting char was denoted as A. 

A first series of samples were prepared by conventional activation of the char with 

10 cm3 min-1 of carbon dioxide at 700 ºC to obtain different burn off degrees: 20, 40 and 

50 %. The samples will be referred to as AA720, AA740 and AA750, respectively. 



A second series of samples were obtained by treating the char with 50 cm3 min-1 of 

ammonia gas for 2 h at four different temperatures: 400, 600, 800 and 900 ºC. These 

samples will be denoted as AN400, AN600, AN800 and AN900, respectively. 

The chemical characterisation of the samples involved proximate and ultimate analyses, 

estimation of the pHPZC (point of zero charge) and Temperature Programmed 

Desorption tests (TPD). Proximate analysis was carried out in a LECO TGA-601. The 

carbon, hydrogen, and nitrogen contents were determined using a LECO CHN-200, and 

the sulfur and oxygen content in a LECO S-144-DR and a LECO VTF-900, 

respectively. Estimation of the point of zero charge was accomplished by a mass 

titration method adapted from Noh and Schwarz [22]. It involves the measurement of 

the pH of carbon suspensions in distilled water, once the equilibrium was attained. 

Different carbon contents were used, up to 20 wt.%. The free space of the test tube was 

filled with nitrogen, and the suspensions were continually stirred at room temperature. 

The TPD tests were carried out in a thermogravimetric analyser coupled to a FTIR 

spectrometer. A flowrate of 50 cm3 min-1 of Ar and a heating rate of 15 ºC min-1 up to a 

maximum temperature of 1000 ºC were used.  

All the samples were characterised by physical adsorption of N2 and CO2 at -196 ºC and 

0 ºC, respectively, in a volumetric apparatus, TriStar 3000, from Micromeritics®. Prior 

to the adsorption measurements, the samples were outgassed overnight at 100 ºC under 

vacuum. The use of both adsorbates gave complementary information: the adsorption of 

CO2 at 0 ºC and up to 1 bar is restricted to pores narrower than 1 nm, whereas N2 

adsorption at -196 ºC covers wider pore sizes but presents diffusion limitations in the 

narrowest pores. SBET (apparent surface area) of the samples was evaluated from the N2 

adsorption isotherms by the BET equation. VP (total pore volume) was assessed from 

the amount of adsorbed nitrogen at a relative pressure of 0.99. VDR (micropore volume) 



and W0 (narrow micropore volume; pore width below 0.7 nm) were estimated by the 

Dubinin-Radushkevich method, from the N2 and CO2 adsorption isotherms, 

respectively. 

The CO2 capture capacity of the adsorbents was evaluated in a Setaram TGA 92 

thermogravimetric analyser, which recorded the mass uptake of the samples when 

exposed to a gas stream containing CO2. Prior to the CO2 adsorption tests, samples were 

dried in Ar at 100 °C for 1h. Further details can be found elsewhere [6].  

3. Results and discussion 

3.1. Chemical characterisation 

Table 1 presents the chemical analysis of the obtained carbons. The raw almond shells 

present low ash and sulphur content, thus being a good precursor for obtaining activated 

carbons. After the carbonisation step, the char presents a carbon content above 90 %, no 

sulphur and still relatively low ash content. The oxygen content was substantially 

reduced during the carbonisation step as it is associated to the volatile matter of the 

biomass (mainly constituted by cellulose and hemicellulose). However, the char still 

presents noticeable oxygen content that can play an important role in adsorption 

processes and also in the surface reactions with ammonia.  

Amination incorporated nitrogen into the carbon matrix throughout the studied 

temperature range, reaching a maximum of 4.5 wt. % at 800 ºC. This nitrogen content is 

relatively high, taking into account that the chars have not been subjected to oxidation 

prior to the ammonia treatment, as it is customary [18, 20]. The absence of an oxidation 

treatment with concentrated acids is an added advantage of the methodology presented 

in this work, as it simplifies the production process of the carbons. Moreover, the 

aminated carbons still present noticeable amounts of oxygen that can provide interesting 



properties to the adsorbents, such as a higher reactivity, polarity, and electrical 

conductivity[23]. 

Carbonisation results in an increase of the pHPZC, from 7 to 9, as a consequence of the 

loss of surface functionalities. This basicity may come from basic surface oxides 

formed, upon exposure to air, in the active sites generated during the heat treatment [21, 

24], but also from non-heteroatomic Lewis base sites, characterised by regions of π 

electron density on the carbon basal planes [25]. Activation with carbon dioxide 

increases the basicity of the carbons, according to the shift in pHPZC. This can be partly 

a consequence of the extended heat treatment at a temperature higher than that of the 

carbonisation step, but also of the formation of basic pyrone-type functionalities during 

the activation process [26, 27]. Notice that sample AA750 presents higher oxygen 

content than the starting char, A. Amination produced even more basic carbons, with 

pHPZC up to 12, due to the incorporation of basic nitrogen functionalities.  

To study the nature of the functional groups present on the surface of the samples, 

temperature programmed desorption tests were carried out. The corresponding CO2 and 

CO evolution profiles analysed by the FTIR are depicted in Figure 1; only one sample 

of the AA7 series has been included for illustrative purposes, taking into account the 

likeness of the TPD profiles between activated samples. For comparative purposes, the 

IR absorbed intensity has been normalised by the mass of sample used (ca. 20 mg). The 

starting char, A, presents CO2 evolution with maxima at 400 and 690 ºC. Although CO2 

evolution in that temperature range is commonly assigned to decomposition of 

carboxyls and lactones, the DRIFT (diffuse reflectance infrared Fourier transform) 

spectrum of A (Figure 2) does not show the characteristic band in the nearby of 

1700 cm-1. However, it does present a sharp band at 1600 cm-1 and a group of 

overlapping bands between 1100 and 1500 cm-1 that have been related to carboxyl-



carbonate structures [28, 29]. AA750 presents CO2 evolution at lower temperature, with 

maximum at 145 ºC, which might come from the decomposition of labile carboxyls 

formed upon exposure to air after the activation process [30]. Aminated samples present 

lower CO2 emissions than the starting char, A, due to the heat treatment and also to the 

surface reactions with ammonia.  

The starting char, A, presents CO evolution with maximum at 740 ºC, see Figure 1b, 

which may come from the decomposition of ethers, phenols and carbonyls. Sample 

AA750 presents CO evolution at higher temperatures, with maximum at 900 ºC, which 

probably come from the decomposition of pyrone groups formed upon activation with 

carbon dioxide [31]. Aminated samples present lower CO emissions than the starting 

char, mainly due to the surface reactions with ammonia, taking into consideration the 

high thermal stability of the CO-evolving groups. 

With the exception of AN600, emissions of HCN and NH3 were almost negligible. 

Therefore, AN800 and AN900, which present the highest nitrogen contents of the 

series, have nitrogen functionalities that are stable to heating up to 1000º C, i.e. pyridine 

type [6]. AN600 presents HCN and NH3 emissions (see Figure 3) with maxima at 

800 ºC, and 700-750 ºC, respectively, that might come from the decomposition of 

amides and lactams [20]. 

3.2. Textural characterisation 

The starting char presents only incipient microporosity, not accessible to N2 molecules 

at -196 ºC, due to diffusion limitations. All the samples present type I nitrogen 

adsorption isotherms (see Figure 4a), characteristic of microporous materials. 

Activation with carbon dioxide develops substantially the texture of the starting char, 

leading to carbons with BET surface areas up to 1090 m2 g-1 and total pore volumes up 

to 0.50 cm3 g-1 (see Table 2). As the burn off increases, the pore volume is gradually 



developed at the expense of a reduction in the final carbon yield. In Table 2 a 

progressive widening of LDR (micropore width) with carbon dioxide activation can also 

be seen.  

Amination at temperatures above 600 ºC also develops the porous structure of the char 

although to a lesser extent than activation with carbon dioxide. To study the effect of 

heat treatment over the texture development of the char, a sample was prepared by 

heating the char, A, in 50 cm3 min-1 of N2 flowrate at 800 ºC for 2 h. This sample, called 

A800, presents very narrow microporosity, with N2 diffusion limitations at -196 ºC (see 

Table 2). On the other hand, AN800 is a highly microporous carbon with slightly wider 

micropores, accessible to N2 at -196 ºC. Ammonia is known to decompose at high 

temperatures, producing atomic H and NH2 and NH free radicals that react with the 

carbon releasing gaseous H2, CH4, HCN and (CN)2 [13, 17], developing the narrow 

microporosity of the char. 

Figure 4b represents the CO2 adsorption isotherms of the samples at 0 ºC. The shape of 

the isotherms of the activated samples tends to be more rectilinear as the burn off 

increases. This is due to a progressive widening of the micropore size with the extent of 

activation. From the CO2 isotherms of the aminated samples, it can be seen that creation 

of new microporosity (narrower than 1 nm) is maximum at 800 ºC. Below that 

temperature, the CO2 isotherms of the starting char and the aminated samples at 400 and 

600 ºC are almost coincident, and above 800 ºC, gasification is so severe that the narrow 

micropore volume is reduced due to the collapse of adjacent pore walls. If the narrow 

micropore volume (W0), obtained from the CO2 isotherms, is compared with the total 

pore volume, obtained from the N2 isotherms (Vp), it can be seen that the latter is 

smaller for the aminated samples, with the exception of sample AN900. This is due to 



the existence of diffusion limitations to the entrance of N2 molecule at -196 ºC in 

narrow micropores. Thus, the porosity created by amination is very narrow. 

3.3. CO2 capture 

Figure 5a summarises the CO2 capture capacities of the samples at 25 ºC and 100 ºC 

obtained at 1 bar in 50 cm3 min-1 of pure CO2 flow, by means of a thermogravimetric 

analyser. The CO2 capture capacities at 25°C of two commercial activated carbons, C 

and R, have been included for comparison purposes; further details about these carbons 

can be found elsewhere [6]. As expected for any physisorption processes, the adsorption 

capacity of the carbons decreases with increasing temperature.  

All the activated samples present higher CO2 capture capacity than that of the starting 

char at both temperatures, due to the substantial texture development produced during 

carbon dioxide activation. Moreover, the CO2 capture capacity at 25 ºC reaches its 

maximum value, 11.7 wt. %, for sample AA750. This capture capacity is above that of 

the commercial activated carbons. Even at 100 ºC, the samples still present significant 

capacities, up to 4.1 wt. %. Comparing these results with those of a previous work from 

our group [32], it has been found that for the same burn off (and very close textural 

development), and the same starting char, A, activation at 700 ºC results more effective 

than at 800 ºC, when the aim is to maximise CO2 adsorption at atmospheric pressure. 

Amination, on the other hand, does not always result in an increase in the CO2 

adsorption capacity of the char, despite the introduction of nitrogen functionalities. The 

best result was obtained for the sample aminated at 800 ºC, in good agreement with 

previous results [6, 27]. This sample is also the carbon with the highest nitrogen content 

and the highest narrow micropore volume among the aminated samples presented in this 

work. The CO2 capture capacity of AN800 lies between that of AA720 and AA740, 



although its porous volume is significantly lower. Therefore, ammonia treatment seems 

to be playing an enhancement effect in the adsorption of CO2.  

In an attempt to study the effect of the nitrogen functionalities over CO2 adsorption, 

sample AN800 was subjected to heat treatment at 800 ºC in 50 cm3 min-1 of N2 flow. 

The resultant carbon was denoted as AN800P. The nitrogen content was only slightly 

reduced by the heat treatment, due to the high thermal stability of the N-functionalities 

introduced during amination at 800 ºC. As can be seen from Table 2, post-amination 

heat treatment widened the microporosity of the sample. As a result, microporosity in 

AN800P results more accessible to N2 at -196 ºC. The CO2 adsorption capacity of 

AN800P is slightly lower than that of AN800 (Figure 5a), despite the higher pore 

volume of AN800P, probably due to the small reduction in the nitrogen content. 

Figure 5b presents the CO2 adsorption capacity of samples AA740, AA750 and AN800 

at 25 ºC and 1 bar in a flowrate of 30 cm3 min-1 of a gas stream containing 15 % of CO2 

in N2. These tests were carried out to evaluate the performance of selected adsorbents in 

a binary mixture containing N2 and CO2, in a ratio that simulated that of a flue gas 

stream. As expected, the attained adsorption capacity is lower than in pure CO2 flow, 

due to the diminished partial pressure of CO2. However, the samples still present a 

significant adsorption capacity. Moreover, the difference between the adsorption 

capacity of AN800 and that of the activated samples becomes smaller when CO2 partial 

pressure diminishes, indicating that amination enhances CO2 selectivity. This is a 

promising result for postcombustion capture applications where low CO2 partial 

pressures are involved. Currently, CO2 adsorption-desorption cyclic tests under more 

realistic conditions are being conducted in a purpose-built lab-scale fixed bed reactor. 

Thus, amination at 800 ºC is proposed here as an alternative pathway to conventional 

activation with carbon dioxide for the production of carbon-based CO2 adsorbents. 



Carbons with similar CO2 capacities can be obtained, with the added advantages of 

greater carbon yield (see Table 2) and shorter treatment times (2 vs. 5-45 h). Similar 

findings have been observed in our group departing from a different biomass by-product 

[27]. 

4. Conclusions 

Basic activated carbons with a CO2 adsorption capacity at 25 ºC up to 11.7 wt. %, in 

pure CO2 flow, and up to 5.2 wt. %, in a binary mixture of 15 % CO2 in N2, have been 

obtained from low-cost biomass by-products, through conventional activation with 

carbon dioxide.  

Amination is proposed as an alternative pathway to conventional activation with carbon 

dioxide, for producing effective CO2 adsorbents. Nitrogen was successfully 

incorporated into the carbon structure without the need of a previous oxidation step. The 

effect of the temperature of the amination treatment has been studied, and 800 ºC has 

been proven as the optimum temperature, as CO2 adsorption capacity and nitrogen 

incorporation reached the maximum values. Aminated carbons achieved CO2 capture 

capacities at 25 ºC up to 9.6 wt. % in pure CO2 flow, and up to 4.8 wt. % in a binary 

mixture of 15 % of CO2 in N2. Compared to activation with carbon dioxide, amination 

has additional advantages: greater carbon yields and shorter soaking times. 
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Tables 

 

Table 1 Point of zero charge and chemical analysis of the samples 

 

VM: volatile matter; db: dry basis; daf: dry and ash free basis 

 

Proximate analysis (%, db)  Ultimate analysis (%, daf) 

Sample pHPZC 

VM Ash  C H N S O 

Raw A 6.7 82.3 1.3  51.4 6.1 0.3 0.6 41.6 

A 9.3 13.6 4.7  91.0 2.0 0.4 0.0 6.6 

AA720 9.7 11.3 4.4  93.6 0.8 0.7 0.0 4.9 

AA740 9.9 12.1 5.7  91.8 0.7 0.9 0.0 6.6 

AA750 10.1 11.8 10.2  90.2 0.8 1.0 0.0 8.0 

AN400 9.3 7.8 5.2  91.1 1.9 1.0 0.0 6.0 

AN600 11.6 6.85 5.10  88.9 1.5 3.2 0.0 6.4 

AN800 10.9 3.92 4.75  89.2 0.6 4.5 0.0 5.7 

AN900 12.4 3.63 5.30  90.8 0.4 4.2 0.0 4.6 

AN800P 11.3 4.6 5.1  87.7 0.5 4.0 0.0 7.8 



 

Table 2 Carbon yield and textural characterisation of the samples 

 

SBET: apparent BET surface area; Vp: total pore volume; VDR: micropore volume; W0: narrow 
micropore volume; LDR: mean micropore width; L0: mean narrow micropore width 
 

N2 adsorption at -196 ºC  CO2 adsorption at 0 ºC 

Sample 

Carbon  

yield 

(%) 
SBET  

(m2 g-1) 

Vp  

(cm3 g-1) 

VDR  

(cm3 g-1) 

LDR  

(nm) 

 
W0 

(cm3 g-1) 

L0  

(nm) 

A 24 21 0.01 – –  0.16 0.5 

AA720 19 526 0.24 0.20 0.8  0.18 0.5 

AA740 14 831 0.37 0.32 1.0  0.19 0.5 

AA750 12 1090 0.50 0.42 1.2  0.12 0.4 

AN400 23 8 0.03 – –  0.16 0.5 

AN600 23 91 0.05 – –  0.15 0.5 

AN800 21 326 0.24 0.23 0.8  0.20 0.5 

AN900 18 350 0.16 0.13 1.4  0.08 0.4 

A800 21 41 0.04 – –  0.19 0.5 

AN800P 19 448 0.19 0.18 1.2  0.17 0.5 



Figures 

Figure 1. (a) CO2 and (b) CO evolution profiles analysed by FTIR during temperature 

programmed desorption tests carried out at a heating rate of 15 ºC min-1 up to 1000 ºC 

in a flowrate of 50 cm3 min-1 of Ar. 

Figure 2. DRIFT spectrum of the starting char, A. 

Figure 3. (a) HCN and (b) NH3 evolution profiles analysed by FTIR during temperature 

programmed desorption tests carried out at a heating rate of 15 ºC min-1 up to 1000 ºC 

in a flowrate of 50 cm3 min-1 of Ar. 

Figure 4. Adsorption isotherms of the prepared carbons: (a) N2 at -196 ºC and (b) CO2 

at 0ºC.  

Figure 5. CO2 capture capacity evaluated in a thermogravimetric analyser at 1 bar: (a) 

100 % CO2 and (b) 15 % CO2 in N2. 
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Figure 1. (a) CO2 and (b) CO evolution profiles analysed by FTIR during temperature 

programmed desorption tests carried out at a heating rate of 15 ºC min-1 up to 1000 ºC 

in a flowrate of 50 cm3 min-1 of Ar. 



 

 

Figure 2. DRIFT spectrum of the starting char, A. 
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Figure 3. (a) HCN and (b) NH3 evolution profiles analysed by FTIR during temperature 

programmed desorption tests carried out at a heating rate of 15 ºC min-1 up to 1000 ºC 

in a flowrate of 50 cm3 min-1 of Ar. 
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Figure 4. Adsorption isotherms of the prepared carbons: (a) N2 at -196 ºC and (b) CO2 

at 0ºC.  
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Figure 5. CO2 capture capacity evaluated in a thermogravimetric analyser at 1 bar: 

(a) 100 % CO2 and (b) 15 % CO2 in N2. 

 

 


