1	Metschnikowia drakensbergensis sp. nov. and Metschnikowia caudata
2	sp. nov., two endemic yeasts associated with Protea flowers in South
3	Africa
4	
5	Clara de Vega ^{1*} , Beatriz Guzmán ² , Sandy–Lynn Steenhuisen ³ , Steven D. Johnson ⁴ ,
6	Carlos M. Herrera ¹ , and Marc–André Lachance ⁵
7	
8	¹ Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas
9	(CSIC), Avenida de Américo Vespucio s/n, 41092 Sevilla, Spain
10	² Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
11	³ Department of Biological Sciences, University of Cape Town, P/Bag, Rondebosch,
12	7701, South Africa
13	⁴ School of Life Sciences, University of KwaZulu–Natal, P/ Bag X01, Scottsville,
14	Pietermaritzburg 3209, South Africa
15	⁵ Department of Biology, University of Western Ontario, N6A 5B7, London, Ontario,
16	Canada
17	
18	* Author for correspondence: Clara de Vega. Tel.: +34 954466700. Fax: +34
19	954621125. e-mail: cvega@ebd.csic.es
20	
21	Running title: Two South African Metschnikowia species
22	
23	The subject category: New taxa, Unicellular Eukaryotes
24	

- 25 The GenBank/EMBL/DDBJ accession numbers for the sequences determined in this
- study are listed in Table 1 and Table S1.
- 27 Abbreviations: NJ, Neighbor–Joining; ACT1, actin gene; RPB2, RNA polymerase II
- 28 gene; *EF2*, elongation factor 2 gene.

29 Abstract

30	In a taxonomic study of yeasts recovered from nectar of flowers and associated insects
31	in South Africa, eleven strains were found to represent two novel species.
32	Morphological and physiological characteristics and sequence analyses of the D1/D2
33	large subunit rRNA gene, as well as the actin, RNA polymerase II, and elongation
34	factor 2 genes showed that the two novel species belonged to the genus Metschnikowia.
35	Metschnikowia drakensbergensis sp. nov. was recovered from nectar of Protea
36	roupelliae and the beetle Heterochelus sp. This species belongs to the large-spored
37	Metschnikowia clade and is closely related to M. proteae, with which mating reactions
38	and single-spored asci were observed. Metschnikowia caudata sp. nov. was isolated
39	from nectar of <i>P. dracomontana</i> , <i>P. roupelliae</i> , <i>P. subvestita</i> and a honey bee, and is a
40	sister species to Candida hainanensis and M. lopburiensis. Analyses of the four genes
41	demonstrated the existence of three separate phylotypes. Intraspecies matings lead to
42	the production of mature asci of unprecedented morphology, with a long, flexuous tail.
43	A single ascospore was produced in all compatible crosses, regardless of sequence
44	phylotype.
45	The two species appear to be endemic to South Africa. The ecology and habitat
46	specificity of these novel species is discussed in terms of host plant and insect host
47	species. The type cultures are: Metschnikowia drakensbergensis (type strain EBD-
48	CdVSA09-2 ^T =CBS 13649 ^T =NRRL Y-63721 ^T , MycoBank no. MB809688; allotype
49	EBD-CdVSA10-2 ^A =CBS13650 ^A =NRRL Y-63720 ^A); and <i>Metschnikowia caudata</i> (type
50	strain EBD-CdVSA08-1 ^T =CBS 13651 ^T =NRRL Y-63722 ^T , MycoBank no. MB809689;
51	allotype EBD-CdVSA57-2 ^A =CBS 13729 ^A =NRRL Y-63723 ^A).
52	

53

54 Introduction

55	Flowers offer different food rewards to pollinators in exchange for pollination service.
56	The primary floral reward is floral nectar, a complex fluid mainly containing sugars and
57	amino acids that play a decisive role in the establishment of most plant-pollinator
58	mutualisms (Simpson & Neff, 1983; Dupont et al., 2004; Nicolson, 2007). However,
59	floral nectar is not exclusively used by pollinators. Its composition makes it a
60	favourable environment for the growth of microorganisms, and it is exploited by
61	floricolous yeasts that are vectored from flower to flower by floral visitors (Brysch-
62	Herzberg, 2004; Herrera et al., 2008; Belisle et al., 2012; de Vega & Herrera, 2013).
63	A large number of novel yeast species have been isolated from flowers and pollinators,
64	reflecting the high microbial diversity associated to them. The genus Metschnikowia
65	(and anamorphs in the genus Candida) is one of the dominant taxa found in these
66	substrates (Lachance <i>et al.</i> , 2001; Lachance, 2011). For example, the cosmopolitan <i>M</i> .
67	reukaufii, M. gruessii and M. koreensis have been repeatedly isolated from a wide
68	diversity of flowers and associated bee, butterfly and bird pollinators in both the Old
69	World and the New World (Hong et al., 2001; Pozo et al., 2011; Belisle et al., 2012).
70	Interestingly, flowers visited by a distinct pollinator guild, the beetles, harbour different,
71	highly specific yeast communities that are not found in plant species pollinated by other
72	animals (Marinoni & Lachance, 2004; Lachance et al., 2005; Guzmán et al., 2013).
73	Particularly well-studied is the yeast biota recovered from nitidulid beetles and
74	associated flowers, mostly including large-spored haplontic Metschnikowia species (e.g.
75	Marinoni & Lachance, 2004; Lachance et al., 2005).
76	Large-spored Metschnikowia species associated with beetles have distinct

biogeographies, and their association with particular beetles and plants with restricted

78	distributions may have favoured speciation by allopatry or peripatry (Lachance et al.,
79	2001, 2003a,b, 2005, 2006a; Lachance & Fedor, 2014). The most striking example is
80	the M. hawaiiensis subclade, composed of six described and undescribed species
81	associated with endemic nitidulid beetles of the genus Prosopeus and endemic plants of
82	Hawaii (Lachance et al., 2005; Guzmán et al., 2013). Another interesting case is a
83	subclade typified by <i>M. arizonensis</i> (Lachance & Fedor, 2014), represented by six
84	described and undescribed species restricted to specific locations, sometimes to a single
85	locality in the USA, Costa Rica, Brazil, or Belize, mainly in association with species of
86	the nitidulids Carpophilus and Conotelus. Other Metschnikowia species associated with
87	flowers and beetles, but not included in the large-spored clade, also have distinct
88	ecologies and restricted geographical distributions, for example M. corniflorae,
89	associated with chrysomelid beetles and flowers in the USA (Nguyen et al., 2006), M.
90	orientalis, isolated from nitidulid beetles in the Cook Islands and Malaysia (Lachance et
91	al., 2006b), and Candida chrysomelidarum, found in Panama in chrysomelid beetles
92	(Nguyen et al., 2006).
93	The diversity of beetle-associated yeasts of flowers has been explored mostly in North,
94	Central and South America, Hawaii, and to a lesser extent in Asia. Yeasts living in
95	association with African plants and their beetles are only beginning to receive attention,
96	even though their diversity may plausibly be as high as or even higher than that
97	observed in other continents. Three beetle-associated Metschnikowia species have been
98	described so far in Africa (Lachance et al., 2006a, 2008; de Vega et al., 2012). In an
99	effort to gain further insight into the yeast biota associated with plants visited by beetles
100	in poorly studied areas, we conducted a survey in the KwaZulu-Natal Region of South
101	Africa.

102	Eleven strains of two novel species were isolated from floral nectar of three species of
103	Protea and associated insects. Sequence analyses of the D1/D2 regions of the large
104	subunit rRNA gene as well as the actin (ACT1), RNA polymerase II (RPB2) and
105	elongation factor 2 (EF2) genes showed that the two novel species belonged to the
106	genus Metschnikowia and were phylogenetically distinct from any currently recognized
107	species. One is part of the large-spored Metschnikowia clade and is closely related to
108	the South African species <i>M. proteae</i> . The other has moderately-sized ascospores with a
109	novel morphology. Its closest described relatives are M. lopburiensis and Candida (iter.
110	nom. Metschnikowia) hainanensis, neither of which forms asci. We now describe the
111	new species as Metschnikowia drakensbergensis sp. nov and Metschnikowia caudata
112	sp. nov.

113 Methods

114 <u>Collections</u>

115 The origins of the strains considered in this study are described in Table 1. We

examined 83 nectar samples from the following species: Protea dracomontana (N =

117 16), Protea roupelliae (N = 19), Protea subvestita (N = 16), and Protea simplex (N = 16)

118 16). Flowers of *P. dracomontana* were collected from the Garden Castle area and *P.*

subvestita from the Sani Pass area of the uKhahlamba-Drakensberg Park, and *P*.

120 *roupelliae* and *P. simplex* from Mount Gilboa Estate. Sixteen samples from *P*.

121 *welwitschii*, sampled in Winston Park (29°49'S 30°47'E, 530 m asl), did not yield any

- 122 Metschnikowia species. All sites were located in KwaZulu-Natal Province, South
- 123 Africa. The distances between sites ranged from 20 to 150 km. Flowers of all the
- 124 plants were host to beetles and in addition, those of *P. roupelliae* and *P. subvestita* were

frequently visited by birds and those of *P. welwitschii* by bees. Samples were collectedin 2011.

127 Flowers were cut and carried aseptically in a cooler to the lab where nectar sampling was done within a few hours after collection. Each nectar sample corresponded to a 128 129 flower with fully dehisced anthers, each taken from a different plant, exposed to natural 130 pollinator visitation. Additionally, two samples that yielded isolates of the new species 131 were isolated from a hopliinid beetle (Heterochelus sp.; Scarabaeidae) and a honey bee (Apis mellifera scutellata) in previous sampling carried out in 2008 from insects visiting 132 133 *Protea* flowers. Collection details for the insect isolates were given by de Vega *et al.* (2012). 134

135 <u>Strain isolation and characterization</u>

136 Five microliters of nectar were collected from each flower with a sterile microcapillary pipette. Nectar was diluted in 500 µl sterile MilliQ water, and 25 microliters of each 137 nectar dilution was streaked with a sterile loop onto YM agar plates (2.0% agar, 1.0% 138 glucose, 0.5% peptone, 0.3% malt extract, 0.3% yeast extract, 0.01% chloramphenicol, 139 pH 6.0). Yeasts from insects were isolated by allowing specimens to walk for 10 min 140 141 on YM agar plates supplemented with 0.01% chloramphenicol. Plates with isolates 142 from flowers and insects were incubated at room temperature $(22 - 25^{\circ}C)$ for 3-8 days. 143 A representative colony of each different morphotype was purified by repeated streaking on solid medium and preserved at -80 °C in 10% glycerol and using the 144 Microbank system (Pro-Lab diagnostics). Cultures were characterized by the standard 145 146 methods of Kurtzman et al. (2011). Dalmau plates were prepared using Yeast Carbon Base agar supplemented with 0.01% yeast extract (YCBY) and 1.5% agar. 147

148	Evaluation of mating compatibility was performed by mixing pairs of active cultures on
149	Yeast Carbon Base supplemented with 0.01% ammonium sulfate (YCBAS), with 0.01%
150	yeast extract (YCBY), and dilute (1:10 and 1:20) V8. Cultures were incubated both at
151	16°C and 25°C and examined periodically by phase contrast microscopy for the
152	formation of zygotes, asci, and ascospores. Strains of Metschnikowia drakensbergensis
153	sp. nov. were also mixed in all possible combinations with the type and allotype of its
154	closest relative, <i>M. proteae</i> , as well as with strain <i>Metschnikowia</i> sp. EBDM2Y3. This
155	last strain, also a member of the Metschnikowia clade, was obtained from a specimen of
156	Heterochelus sp. in one of the study populations, on Mount Gilboa, in 2010 (de Vega et
157	al., 2012). It was considered premature to describe a new species from this single
158	strain.

159 DNA sequencing and phylogenetic analysis

160 Strains were identified by sequencing the D1/D2 domain of the 26S rRNA gene

161 following the methods of Kurtzman & Robnett (1998) and Lachance *et al.* (1999). The

162 D1/D2 domain was amplified by PCR using the primer combination NL1 and NL4. In

addition, three protein-coding genes, *ACT1*, *EF2*, *RPB2*, were amplified and sequenced.

164 Methods for DNA extraction, PCR amplifications and sequencing were described in

165 Guzmán *et al.* (2013).

166 PCR products were purified with Exo-SAP-IT enzyme mix (USB, Cleveland, OH) and

sequenced on an ABI PRISM 3130xl DNA automatic sequencer. Sequences were

assembled and edited using Sequencher 4.9 (Gene Codes, Ann Arbor, MI). Alignment

169 of generated sequences with related species from type strains was carried out using M-

170 Coffee (Wallace *et al.*, 2006). D1/D2 sequences of type strains of related species were

171 retrieved from the GenBank database. The alignment was used to reconstruct

172	phylogenetic relationships using the Neighbor–Joining (NJ) method (Saitou & Nei,
173	1987). To avoid the presence of ambiguously aligned regions a NJ analysis was
174	performed separately for the two new species. The analyses were performed in MEGA6
175	(Tamura et al., 2013) using the Kimura 2-parameter distance correction (Kimura,
176	1980). The rate variation among sites was modelled with a gamma distribution
177	determined using jModeltest (Posada, 2008; shape parameter = 0.39 for <i>Metschnikowia</i>
178	<i>drakensbergensis</i> and shape parameter = 0.55 for <i>Metschnikowia caudata</i>). Bootstrap
179	values (Felsenstein, 1985) were obtained from 10,000 random resamplings. Candida
180	hawaiiana CBS 9146 and Candida asparagi CBS 9770 were used as outgroups for
181	Metschnikowia drakensbergensis sp. nov. and Metschnikowia caudata sp. nov.
182	analyses, respectively. See supplementary material for additional multi-locus (ACT1,
183	EF2, RPB2) phylogenetic analyses using Bayesian Inference (BI) and Maximum
184	Likelihood (ML) (Table S1, S2, Fig. S1, S2).

185 **Results and Discussion**

186 Species boundaries and phylogenetic position

- 187 The 83 nectar samples yielded 43 ascomycetous yeast isolates. Of these, three were
- assigned to the new large-spored species *Metschnikowia drakensbergensis* sp. nov. and
- 189 six to the new caudate ascus-forming species *Metschnikowia caudata* sp. nov. Other
- 190 yeast isolates from *Protea* nectar samples included *Hanseniaspora thailandica*,
- 191 Metschnikowia proteae, Candida corydalis, C. orthopsilosis, and fifteen strains of two
- 192 undescribed *Wickerhamiella* species.
- 193 *Metschnikowia drakensbergensis* sp. nov. was isolated exclusively from flowers of *P*.
- 194 *dracomontana* and from a hopliinid beetle (Table 1). Phylogenetic analyses of both the

195

196

197

198

199

200

201

large subunit rRNA gene D1/D2 domain and the three protein-coding genes consistently
placed isolates of Metschnikowia drakensbergensis sp. nov. into a sister clade to
Metschnikowia proteae (Fig. 1a, S1 and S2). The D1/D2 sequence differed by 22-25
substitutions (4.6-5.2%) and five indels (1-4 bp) from that of the <i>M. proteae</i> , confirming
the divergent status of the two species. Metschnikowia drakensbergensis sp. nov. is
polymorphic in the sequences examined. In particular, strain EBD-M8Y1 differed from
the other three strains by 4-5 substitutions, although the formation of mature asci with

two ascospores in all mating pairs demonstrated their conspecificity (Fig. 2d). This is in

203 contrast to crosses with *M. proteae*, which gave rise to mixtures of single-spored and

204 empty asci (Fig. 2e). Neighbor–Joining, Bayesian and ML phylogenetic analyses

suggested an affinity of the clade that comprises *M. proteae* and *M. drakensbergensis*

sp. nov. with the large-spored *Metschnikowia* clade (Fig. 1a, S1 and S2), which is

207 consistent with the striking similarity of their ascus morphologies. In addition, the

208 growth characteristics of *M. drakensbergensis* sp. nov. (Table 2) are typical of those of

209 most Metschnikowia species in the large-spored clade. Metschnikowia drakensbergensis

sp. nov. differed by 97 substitutions and 20 indels in the D1/D2 sequence from strain

211 *Metschnikowia* sp. EBDM2Y3, isolated from the same locality, and showed no signs of

212 conjugation with this isolate.

213 Seven strains of *M. caudata* sp. nov. were recovered from three plant species (*P.*

214 *dracomontana*, *P. subvestita*, and *P. roupelliae*) and a single honey bee in three

215 different populations (Table 1). Three D1/D2 phylotypes were found. Strains EBD-

216 CdVSA08-1 and EBD-CdVSA57-2 (type A) were isolated from nectar of *P*.

217 *dracomontana* and *P. subvestita*, respectively (Table 1). Strains EBD-CdVSA21-2,

EBD-CdVSA23-1, EBD-SA53, and EBD-SA54 (type B) were recovered from the

219 nectar of *P. roupelliae* in a single population (Table 1). They differed from type A by

220	four substitutions. Strain EBD-B8Y1 (type C), isolated from a honeybee in Mount
221	Gilboa, differed by three substitutions from type A and by seven substitutions from type
222	B. The phylogenetic relationships elicited by analysis of D1/D2 sequences (Fig. 1b)
223	were corroborated by both Bayesian and ML analyses of concatenated protein-coding
224	genes (Figs. S1 and S2), indicating that a case might be made for considering strains of
225	types A, B, and C to represent three species. The similarity among patterns arising from
226	all four genes might even be seen as an example of genealogical concordance.
227	However, the sample size for each phylotype is small and the four loci used are not
228	particularly polymorphic (maximum total divergence of 39 substitutions, no indels, in
229	the four concatenated gene sequences). Moreover, the different sequence types do not
230	signify sufficient genetic differentiation to inhibit cross-breeding. When strains were
231	mixed in every possible combination, compatible pairs conjugated and gave rise to asci
232	with a long, flexuous tail and one fusiform spore with a tapered protuberance. A single
233	ascospore (Fig. 2f) was produced in all compatible crosses, regardless of sequence type
234	The ascus morphology is unprecedented, although the ascospore shape is vaguely
235	reminiscent of that seen in <i>M. lachancei</i> (Giménez-Jurado et al., 2003). As shown by
236	Marinoni & Lachance (2004), the formation of only one ascospore in Metschnikowia
237	species may in some cases indicate that the spore is not viable and therefore that the
238	conjugating strains are not members of the same biological species. In the absence of a
239	clear pattern of mating success in <i>M. caudata</i> , we cannot rely on the biological species
240	concept as a criterion for species delineation in the present case. The strains were
241	physiologically homogeneous (Table 2), but the few polymorphic growth tests (cardinal
242	growth temperatures, utilization of trehalose, maltose, melezitose, glucitol or
243	glucosamine) varied in a manner that is somewhat consistent with the structure
244	suggested by the sequences, indicating the possibility of varietal differentiation. We

245	favour prudence and assign all strains to a single species. This will avoid creating
246	superfluous names that would later become confusing synonyms as more data become
247	available.
248	Both Bayesian and Maximum Likelihood protein-coding genes phylogenies placed <i>M</i> .
249	caudata sp. nov. close to flower- and insect-associated Metschnikowia species external
250	to the large-spored Metschnikowia clade (Fig. S1 and S2). The phylogenetic tree based
251	on the D1/D2 rDNA sequences showed that the clade comprising M . caudata sp. nov.
252	has a clear sister relationship (Fig. 1b) to Candida hainanensis and M. lopburiensis,
253	isolated from plants in China and Thailand, respectively (Wang et al., 2008;
254	Kaewwichian et al., 2012). Ascus formation has not been observed in either of these
255	two species or in more distant congeners (M. saccharicola and C. robnettiae), all of
256	which were described on the basis of their asexual state. The eventual discovery of
257	sexual states for <i>M. lopburiensis</i> and <i>C. hainanensis</i> may shed light on the significance
258	of the unusual morphology seen in <i>M. caudata</i> sp. nov. and whether it represents a
259	synapomorphy for the clade. The physiological characteristics of <i>M. caudata</i> are typical
260	of those of most Metschnikowia species. Unusual was the lack of L-sorbose and 2-
261	ketogluconate assimilation and the lack of fermentation seen in <i>M. caudata</i> sp. nov.
262	These are normally positive in the clade.

263 Ecology and habitat specificity

Many members of the *Metschnikowia* clade have strong biogeographic patterns, while others are of a more cosmopolitan nature (Lachance 2011, Guzmán *et al.*, 2013). The South African species *M. drakensbergensis* sp. nov. and *M. proteae* appear to provide yet another example of allopatric speciation as they seem to be moderately related to Equatorial East African species *M. aberdeeniae* and *M. shivogae*, albeit with a lesser degree of statistical support (Fig. 1a, Fig. S1, and Fig. S2). *Metschnikowia* sp. strain .

. .

291

270	EBDM2Y3 recovered in the same population as <i>M. drakensbergensis</i> does not seem to
271	follow this pattern. Of considerable relevance here may be the group of beetles
272	involved. Large-spored Metschnikowia species isolated in the New World and Hawaii
273	mainly occur in nitidulid beetles and in many cases, yeast endemism parallels beetle
274	endemism. In contrast, African species exhibit associations not only to nitiidulids
275	(Lachance et al., 2008), but also mainly to other beetle families, such as the Meloidae,
276	the Buprestidae (Tanzania and Kenya, Lachance et al., 2006a; 2008) and the
277	Scarabaeidae (subfamily Cetoniinae and tribe Hopliini) in South Africa. Many groups
278	of South African Scarabaeidae have undergone a spectacular adaptive radiation
279	resulting in the evolution of hundreds of species, many of which are effective
280	pollinators (Picker & Midgley 1996; Goldblatt et al. 1998; Steiner 1998). The potential
281	importance of beetle diversification for speciation of Metschnikowia species in Africa
282	could be resolved by further sampling plants and insects from more sites.
283	Biogeographic subdivision or host specificity at a much finer scale was observed in
284	Metschnikowia caudata sp. nov., where, for example, strains possessing sequence type
285	B were exclusively isolated from a single locality (Mount Gilboa) and a single plant
286	species (Protea roupelliae). However, as a relatively small number of Protea flowers
287	(84 samples) were analysed, the ability of these species to live in nectar of other Protea
288	plants cannot be ruled out.
289	A characteristic common to all recently described Metschnikowia species from South
290	Africa, including the new species described here and the recently described <i>M. proteae</i> ,

. .

....

.

.

. .

- and Metschnikowia sp. strain EBDM2Y3, is a strong association with Protea plants
- visited by beetles and other pollinators. The microbiota observed in Protea species 292
- 293 differed markedly from that of ca. 300 nectar samples from ca. 40 plant species visited
- by bees, butterflies, and birds, taken across several localities in South Africa (de Vega et 294

295	al., unpublished research). The dominant yeasts recovered in those plant species were
296	the small-spored Metschnikowia clade species Candida rancensis, Metschnikowia
297	reukaufii, and M. koreensis. These three species appear to be cosmopolitan, being
298	commonly isolated worldwide from floral nectar in plants pollinated by a diverse array
299	of pollinators, primarily bees, butterflies, and birds (Brysch-Herzberg, 2004; Pozo et al.,
300	2011; Belisle et al., 2012; de Vega & Herrera, 2012). As nectar yeasts are thought to be
301	vectored by the main animal visitors, and the newly described species appear associated
302	with a small set of plant species visited by beetles, our findings suggests that the new
303	species are highly selective in terms of host and the habitat requirements.
304	Description of Metschnikowia drakensbergensis sp. nov. de Vega, Guzmán & Lachance
305	Metschnikowia drakensbergensis (dra.kens.berg.en'sis. N.L. fem. adj. drakensbergensis
306	referring to to the South African mountains where the species was isolated).
307	After 3 days at 25°C on YM agar, the cells are ovoid to ellipsoid, $2-3 \times 4-5 \ \mu m$, and
308	occur singly, in mother-bud pairs, or in chains (Fig. 2a, d). After one week the colonies
309	are low-convex and slightly umbonate with entire margins. In slide cultures on YCBY
310	agar after two weeks at 25°C, short chains of undifferentiated cells are formed.
311	Asci (Fig. 2d) arise from the conjugation of cells of complementary mating types,
312	reaching nearly full size 6-8 hours after mixing agar media. The asci are fusiform (4-5
313	\times 100-120 $\mu m)$ and typically contain two aciculate spores (1-2 \times 80-90 $\mu m). Vestiges$
314	of the original conjugated cells are usually present. Ascospore maturity is reached after
315	2-3 days at 25°C. Single spored asci are formed in crosses with <i>M. proteae</i> (Fig. 2e).
316	Ascus formation occurs on a large variety of media but is generally easier to observe
317	under conditions of nitrogen limitation (e.g., YCBAS agar).

- 318 Growth responses are given in Table 2.
- The type is strain EBD-CdVSA09- 2^{T} , recovered from nectar of *Protea dracomontana* in
- 320 Garden Castle in uKhahlamba-Drakensberg Park, KwaZulu-Natal, South Africa. It has
- 321 been deposited in the culture collection of the Centralbureau voor Schimmelcultures,
- Utrecht, The Netherlands, under number CBS 13649^{T} (NRRL Y-63721^T). The
- 323 MycoBank accession number is MB809688. It has the mating type T. The designated
- allotype, of mating type AT, is EBD-CdVSA10-2^A (CBS 13650^A, NRRL Y-63720^A)
- 325 and has a similar origin.
- 326 <u>Description of *Metschnikowia caudata* sp. nov. de Vega, Guzmán & Lachance</u>
- 327 Metschnikowia caudata (cau.da'ta, L. fem. adj. caudata with a tail, referring to the
- 328 unusual appearance of the ascus of the species).
- After 3 days at 25°C on YM agar, the cells are globose to ovoid, $2-3 \times 3-4 \mu m$, and
- 330 occur singly or in mother-bud pairs (Fig. 2b). After one week the colonies are low-
- convex and slightly umbonate with entire margins. In slide cultures on YCBY agar
- after two weeks at 25° C, pseudohyphae or hyphae are absent.
- 333 Mixtures of complementary mating types give rise within 2 days at 16°C to zygotes
- (Fig. 2c) some of which feature a pointy protuberance. After 3-4 days, elongate asci
- with a flexuous, tapered extremity are formed $(0.5-1.5 \times 70-100 \,\mu\text{m})$ typically
- containing a single fusiform ascospore (25 μ m) with a tapering end (Fig. 2f). The
- spores range in width from ca. 1 μ m in the swollen part to less than 0.2 μ m at the fine
- end. Vestiges of the original conjugated cells are usually present. Ascus formation was
- 339 observed on YCBY agar.
- The physiological characteristics are presented in Table 2.

341	The type is strain EBD-CdVSA08-1 ^T , recovered from nectar of <i>Protea dracomontana</i> in
342	Garden Castle in uKhahlamba-Drakensberg Park, KwaZulu-Natal, South Africa. It has
343	been deposited in the culture collection of the Centraalbureau voor Schimmelcultures,
344	Utrecht, The Netherlands, under number CBS 13651 ^T (NRRL Y-63722 ^T). The
345	MycoBank accession number is MB809689. It has the mating type T. The designated
346	allotype, of mating type AT, is EBD-CdVSA57-2 ^A , (CBS 13729 ^A , NRRL Y-63723 ^A)
347	and was recovered from nectar of Protea subvestita in Sani Pass below the South

348 African border post, KwaZulu-Natal, South Africa.

349 Acknowledgements

- 350 We thank L. Cabral and E. López for technical assistance and Dr. R.G. Albaladejo for
- 351 comments on the manuscript. Authors gratefully acknowledge financial support from
- the Natural Science and Engineering Research Council of Canada (M.A.L.), the Spanish
- 353 Ministry of Economy and Competitiveness through the Severo Ochoa Programme for
- Centres of Excellence in R&D&I (SEV-2012-0262; Postdoctoral fellowship to C.d.V.),
- Junta de Andalucía (P09–RNM– 4517 grant to C.M.H.), and Spanish National Research

356 Council (CSIC)-European Social funds (JAE–DOC Programme to B.G.).

357 **References**

- 358 Belisle, M., Peay, K. G. & Fukami T. (2012). Flowers as islands, spatial distribution
- 359 of nectar–inhabiting microfungi among plants of *Mimulus aurantiacus*, a
- hummingbird–pollinated shrub. *Microb Ecol* **63**, 711–718.
- **Brysch–Herzberg, M. (2004).** Ecology of yeasts in plant–bumblebee mutualism in
- 362 Central Europe. *FEMS Microbiol Ecol* **50**, 87–100.
- de Vega, C. & Herrera, C. M. (2013). Relationships among nectar-dwelling yeasts,
- flowers and ants: patterns and incidence on nectar traits. *Oikos* **121**, 1878–1888.

365	de Vega, C. & Herrera, C. M. (2013). Microorganisms transported by ants induce
366	changes in floral nectar composition of an ant-pollinated plant. Am J Bot 100,
367	792–800.
368	de Vega, C., Guzmán, B., Lachance, M. A., Steenhuisen, S. L., Johnson, S. D. &
369	Herrera, C. M. (2012). Metschnikowia proteae sp. nov., a nectarivorous insect-
370	associated yeast species from Africa. Int J Syst Evol Microbiol 62, 2538-2545.
371	Dupont, Y. L., Hansen, D. M., Rasmussen, J. T. & Olesen, J. M. (2004).
372	Evolutionary changes in nectar sugar composition associated with switches
373	between bird and insect pollination, the Canarian bird-flower element revisited.
374	Funct Ecol 18, 670–676.
375	Felsenstein, J. (1985). Confidence limits on phylogenies, an approach using the
376	bootstrap. Evolution 39 , 783–791.
377	Giménez–Jurado, G., Kurtzman, C. P., Starmer, W. T. & Spencer–Martins, I.
378	(2003). Metschnikowia vanudenii sp. nov. and Metschnikowia lachancei sp. nov.,
379	from flowers and associated insects in North America. Int J Syst Evol Microbiol
380	53 , 1665–1670.
381	Goldblatt, P., Bernhardt, P. & Manning, J. C. (1998). Pollination of petaloid
382	geophytes by monkey beetles (Scarabaeidae, Rutelinae, Hopliini) in Southern
383	Africa. Ann Mo Bot Gard 85, 215–230.
384	Guzmán, B., Lachance, M. A. & Herrera C. M. (2013). Phylogenetic analysis of the
385	angiognam florigalous insect weat association, have weat and angiognam
505	angrosperm-noncorous insect-yeast association. have yeast and angrosperm
386	lineages co-diversified? <i>Mol Phylogenet Evol</i> 68 , 161–175.
386 387	 lineages co-diversified? <i>Mol Phylogenet Evol</i> 68, 161–175. Herrera, C. M., García, I. M. & Pérez, R. (2008). Invisible floral larcenies, microbial
386 387 388	 lineages co-diversified? <i>Mol Phylogenet Evol</i> 68, 161–175. Herrera, C. M., García, I. M. & Pérez, R. (2008). Invisible floral larcenies, microbial communities degrade floral nectar of bumble bee–pollinated plants. <i>Ecology</i> 89,

390	Hong, S. G., Chun, J., Oh, H. W. & Bae, K. S. (2001). Metschnikowia koreensis sp.
391	nov., a novel yeast species isolated from flowers in Korea. Int J Syst Evol
392	<i>Microbiol</i> 51 , 1927–1931.
393	Kaewwichian, R., Yongmanitchai, W., Kawasaki, H. & Limtong, S. (2012).
394	Metschnikowia saccharicola sp. nov. and Metschnikowia lopburiensis sp. nov.,
395	two novel yeast species isolated from phylloplane in Thailand. Antonie Van
396	Leeuwenhoek 102 , 743–751.
397	Kimura, M. (1980). A simple method for estimating evolutionary rate of base
398	substitution through comparative studies of nucleotide sequences. J Mol Evol 16,
399	111–120.
400	Kurtzman, C. P. & Robnett, C. J. (1998). Identification and phylogeny of
401	ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA
402	partial sequences. Antonie van Leeuwenhoek 73, 331-371.
403	Kurtzman, C. P., Fell, J. W., Boekhout, T. & Robert, V. (2011). Methods for the
404	isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts, a
405	Taxonomic Study, vol 1, pp 87–110. Edited by Kurtzman C. P., Fell J. W. &
406	Boekhout ,T. Amsterdam: Elsevier.
407	Lachance, M. A. (2011). Metschnikowia Kamienski. In, The Yeasts, a Taxonomic
408	Study, vol 1, pp 575-620. Edited by Kurtzman C. P., Fell J. W. & Boekhout, T.
409	Amsterdam: Elsevier.
410	Lachance, M. A. & Fedor, A. N. (2014). Catching speciation in the act:
411	Metschnikowia bowlesiae sp. nov., a yeast species found in nitidulid beetles of
412	Hawaii and Belize. Antonie van Leeuwenhoek 105, 541-550.

413	Lachance, M. A., Bowles, J. M., Starmer, W. T. & Barker, J. S. F. (1999).
414	Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast
415	species from Australian Hibiscus flowers. Can J Microbiol 45, 172–177.
416	Lachance, M. A., Starmer, W. T., Rosa, C. A., Bowles, J. M., Barker, J. S. F. &
417	Janzen, D. H. (2001). Biogeography of the yeasts of ephemeral flowers and their
418	insects. FEMS Yeast Res 1, 1-8.
419	Lachance, M. A., Bowles, J. M. & Starmer, W. T. (2003a). Geography and niche
420	occupancy as determinants of yeast biodiversity, the yeast-insect-morning glory
421	ecosystem of Kípuka Puaulu, Hawai'i. FEMS Yeast Res 4, 105–111.
422	Lachance, M. A., Bowles, J. M. & Starmer, W. T. (2003b). Metschnikowia
423	santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species
424	associated with insects of tropical morning glory. FEMS Yeast Res 3, 97-103.
425	Lachance, M. A., Ewing C. P., Bowles J. M. & Starmer, W. T. (2005).
426	Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouna sp. nov. and
427	Metschnikowia mauinuiana sp. nov., three endemic yeasts from Hawaiian
428	nitidulid beetles. Int J Syst Evol Microbiol 55, 1369–1377.
429	Lachance, M. A., Anderson, T. M. & Starmer, W. T. (2006a). A new subclade of
430	haplontic Metschnikowia species associated with insects of morning glory flowers
431	in Africa and description of the yeast Metschnikowia aberdeeniae sp. nov. Int J
432	<i>Syst Evol Microbiol</i> 56 , 1141–1145.
433	Lachance, M. A., Bowles, J. M., Wiens, F., Dobson, J. & Ewing C. P. (2006b).
434	Metschnikowia orientalis sp. nov., an Australasian yeast from nitidulid beetles. Int
435	J Syst Evol Microbiol 56, 2489–2493.

 Metschnikowia shivogae sp. nov., a yeast species associated with insects of morning glory flowers in East Africa. Int J Syst Evol Microbiol 58, 2241–2244. Marinoni, G. & Lachance, M. A. (2004). Speciation in the large–spored Metschnikowia clade and establishment of a new species, Metschnikowia borealis comb. nov. FEMS Yeast Res 4, 587–596. Nguyen, N. H., Suh, S. O., Erbil, C. K. & Blackwell, M. (2006). Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res 110, 346–356. Nicolson, S. W. (2007). Nectar consumers. In, Nectaries and Nectar, pp. 289–342. Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. Afr Entomol 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In Handbook of Experimental Pollination Biology, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceac) in South Africa. Plant Syst Evol 209, 47–65. 	436	Lachance, M. A., Bowles, J. M., Anderson, T. M. & Starmer, W. T. (2008).
 morning glory flowers in East Africa. Int J Syst Evol Microbiol 58, 2241–2244. Marinoni, G. & Lachance, M. A. (2004). Speciation in the large–spored Metschnikowia clade and establishment of a new species, Metschnikowia borealis comb. nov. FEMS Yeast Res 4, 587–596. Nguyen, N. H., Suh, S. O., Erbil, C. K. & Blackwell, M. (2006). Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res 110, 346–356. Nicolson, S. W. (2007). Nectar consumers. In, Nectaries and Nectar, pp. 289–342. Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. Afr Entomol 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In Handbook of Experimental Pollination Biology, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. Plant Syst Evol 209, 47–65. 	437	Metschnikowia shivogae sp. nov., a yeast species associated with insects of
 Marinoni, G. & Lachance, M. A. (2004). Speciation in the large-spored <i>Metschnikowia</i> clade and establishment of a new species, <i>Metschnikowia borealis</i> comb. nov. <i>FEMS Yeast Res</i> 4, 587–596. Nguyen, N. H., Suh, S. O., Erbil, C. K. & Blackwell, M. (2006). <i>Metschnikowia</i> <i>noctiluminum</i> sp. nov., <i>Metschnikowia corniflorae</i> sp. nov., and <i>Candida</i> <i>chrysomelidarum</i> sp. nov., <i>isolated</i> from green lacewings and beetles. <i>Mycol Res</i> 110, 346–356. Nicolson, S. W. (2007). Nectar consumers. In, <i>Nectaries and Nectar</i>, pp. 289–342. Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer-Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. <i>Afr Entomol</i> 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor-joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	438	morning glory flowers in East Africa. Int J Syst Evol Microbiol 58, 2241–2244.
 <i>Metschnikowia</i> clade and establishment of a new species, <i>Metschnikowia borealis</i> comb. nov. <i>FEMS Yeast Res</i> 4, 587–596. Nguyen, N. H., Suh, S. O., Erbil, C. K. & Blackwell, M. (2006). <i>Metschnikowia</i> <i>noctiluminum</i> sp. nov., <i>Metschnikowia corniflorae</i> sp. nov., and <i>Candida</i> <i>chrysomelidarum</i> sp. nov., isolated from green lacewings and beetles. <i>Mycol Res</i> 110, 346–356. Nicolson, S. W. (2007). Nectar consumers. In, <i>Nectaries and Nectar</i>, pp. 289–342. Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. <i>Afr Entomol</i> 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	439	Marinoni, G. & Lachance, M. A. (2004). Speciation in the large-spored
 441 comb. nov. FEMS Yeast Res 4, 587–596. Nguyen, N. H., Suh, S. O., Erbil, C. K. & Blackwell, M. (2006). Metschnikowia 443 noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida 444 chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res 445 110, 346–356. 446 Nicolson, S. W. (2007). Nectar consumers. In, Nectaries and Nectar, pp. 289–342. 447 Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. 448 Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, 449 Scarabaeidae, Hopliini), flower and colour preferences. Afr Entomol 4, 7–14. 449 Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253- 451 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast 453 communities in floral nectar of southern Spanish plants. Microb Ecol 6, 82–91. 454 Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for 455 reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. 456 Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In 457 Handbook of Experimental Pollination Biology, pp. 142–159. Edited by Jones, C. 458 E. & Little, R. J. New York: Van Nostrand Reinhold. 459 Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South 460 Africa. Plant Syst Evol 209, 47–65. 	440	Metschnikowia clade and establishment of a new species, Metschnikowia borealis
 Nguyen, N. H., Suh, S. O., Erbil, C. K. & Blackwell, M. (2006). Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res 110, 346–356. Nicolson, S. W. (2007). Nectar consumers. In, Nectaries and Nectar, pp. 289–342. Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer-Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. Afr Entomol 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In Handbook of Experimental Pollination Biology, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. Plant Syst Evol 209, 47–65. 	441	comb. nov. FEMS Yeast Res 4, 587-596.
 443 noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida 444 chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res 445 110, 346–356. 446 Nicolson, S. W. (2007). Nectar consumers. In, Nectaries and Nectar, pp. 289–342. 447 Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. 448 Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, 449 Scarabaeidae, Hopliini), flower and colour preferences. Afr Entomol 4, 7–14. 450 Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253- 451 1256. 452 Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast 453 communities in floral nectar of southern Spanish plants. Microb Ecol 6, 82–91. 454 Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for 455 reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. 456 Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In 457 Handbook of Experimental Pollination Biology, pp. 142–159. Edited by Jones, C. 458 E. & Little, R. J. New York: Van Nostrand Reinhold. 459 Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South 460 Africa. Plant Syst Evol 209, 47–65. 	442	Nguyen, N. H., Suh, S. O., Erbil, C. K. & Blackwell, M. (2006). Metschnikowia
 chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res 110, 346–356. Nicolson, S. W. (2007). Nectar consumers. In, Nectaries and Nectar, pp. 289–342. Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. Afr Entomol 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In Handbook of Experimental Pollination Biology, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. Plant Syst Evol 209, 47–65. 	443	noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida
 110, 346–356. Nicolson, S. W. (2007). Nectar consumers. In, <i>Nectaries and Nectar</i>, pp. 289–342. Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. <i>Afr Entomol</i> 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	444	chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res
 Nicolson, S. W. (2007). Nectar consumers. In, <i>Nectaries and Nectar</i>, pp. 289–342. Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. <i>Afr Entomol</i> 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	445	110 , 346–356.
 Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer–Verlag. Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. <i>Afr Entomol</i> 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	446	Nicolson, S. W. (2007). Nectar consumers. In, Nectaries and Nectar, pp. 289–342.
 Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera, Scarabaeidae, Hopliini), flower and colour preferences. <i>Afr Entomol</i> 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	447	Edited by Nicolson, S.W., Nepi, M., Pacini, W. Dordrecht: Springer-Verlag.
 Scarabaeidae, Hopliini), flower and colour preferences. <i>Afr Entomol</i> 4, 7–14. Posada, D. (2008). jModeltest: phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	448	Picker, M. D. & Midgley, J. J. (1996). Pollination by monkey beetles (Coleoptera,
 Posada, D. (2008). jModeltest: phylogenetic model averaging. <i>Mol Biol Evol</i> 25, 1253- 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	449	Scarabaeidae, Hopliini), flower and colour preferences. Afr Entomol 4, 7–14.
 1256. Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	450	Posada, D. (2008). jModeltest: phylogenetic model averaging. Mol Biol Evol 25, 1253-
 Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	451	1256.
 453 communities in floral nectar of southern Spanish plants. <i>Microb Ecol</i> 6, 82–91. 454 Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for 455 reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. 456 Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In 457 <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. 458 E. & Little, R. J. New York: Van Nostrand Reinhold. 459 Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South 460 Africa. <i>Plant Syst Evol</i> 209, 47–65. 	452	Pozo, M. I., Herrera, C. M. & Bazaga, P. (2011). Species richness of yeast
 Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	453	communities in floral nectar of southern Spanish plants. Microb Ecol 6, 82-91.
 reconstructing phylogenetic trees. <i>Mol Biol Evol</i> 4, 406–425. Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	454	Saitou, N. & Nei, M. (1987). The Neighbor–joining method, a new method for
 Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In <i>Handbook of Experimental Pollination Biology</i>, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	455	reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
 Handbook of Experimental Pollination Biology, pp. 142–159. Edited by Jones, C. E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. Plant Syst Evol 209, 47–65. 	456	Simpson, B. B. & Neff, J. L. (1983). Evolution and diversity of floral rewards. In
 E. & Little, R. J. New York: Van Nostrand Reinhold. Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South Africa. <i>Plant Syst Evol</i> 209, 47–65. 	457	Handbook of Experimental Pollination Biology, pp. 142–159. Edited by Jones, C.
 459 Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South 460 Africa. <i>Plant Syst Evol</i> 209, 47–65. 	458	E. & Little, R. J. New York: Van Nostrand Reinhold.
460 Africa. <i>Plant Syst Evol</i> 209 , 47–65.	459	Steiner, K. E. (1998). Beetle pollination of peacock moraeas (Iridaceae) in South
	460	Africa. Plant Syst Evol 209, 47–65.

461	Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6,
462	Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 2725-
463	2729.
464	Wallace, I. M., O'Sullivan, O., Higgins, D. G. & Notredame, C. (2006). M-Coffee:
465	combining multiple sequence alignment methods with TCoffee. Nucleic Acids Res
466	34 , 1692–1699.
467	Wang, S. A., Jia, J. H. & Bai, F. Y. (2008). Candida alocasiicola sp. nov., Candida
468	hainanensis sp. nov., Candida heveicola sp. nov. and Candida musiphila sp. nov.,
469	novel anamorphic, ascomycetous yeast species isolated from plants. Antonie Van

470 *Leeuwenhoek* **94**, 257–265.

471

472 Captions

- 473 Figure 1. Phylogeny of *Metschnikowia drakensbergensis* sp. nov. and related species
- 474 (a) and *Metschnikowia caudata* sp. nov. and related species (b) based on NJ analyses of
- 475 D1/D2 rDNA sequences. Numbers above branches show NJ bootstrap support.
- 476 *Candida hawaiiana* CBS 9146 and *Candida asparagi* CBS 9770 were used as
- 477 outgroups for *Metschnikowia drakensbergensis* sp. nov. and *Metschnikowia caudata* sp.
- 478 nov. analyses. Branch lengths are scaled to the expected number of nucleotide
- substitutions per site; bar, 0.02 and 0.05 nucleotide substitutions per site. Only
- 480 bootstrap values \geq 50% are shown. GenBank accession numbers of all sequences are
- 481 indicated after strain name. ^TType strain; ^AAllotype. Culture collection prefixes: EBD,
- 482 Estación Biológica de Doñana; CBS, Centraalbureau voor Schimmelcultures.

- 483 **Figure 2**. Phase contrast photomicrographs of *Metschnikowia drakensbergensis* sp. nov.
- 484 and *Metschnikowia caudata* sp. nov. (a) Budding cells (strain EBD-CdVSA09- 2^{T}) and
- 485 (d) mature ascus of *M. drakensbergensis* sp. nov (asci obtained from mixing strains
- 486 EBD-CdVSA09- 2^{T} and EBD-CdVSA10- 2^{A}). (e) Single-spored and sterile asci
- 487 resulting from a cross between *M. drakensbergensis* sp. nov. (strain EBD-CdVSA09- 2^{T})
- 488 and *M. proteae* (strain EBDC2Y2). (b) Budding cells (strain EBD-CdVSA08-1^T), (c)
- 489 zygote and developing ascus (from mixing strains EBD-CdVSA08- 1^{T} and EBD-
- 490 CdVSA57-2^A), and (f) mature ascus (from mixing strains EBD-CdVSA21-2 and EBD-
- 491 CdVSA57- 2^{A}) of *M. caudata*. Scale bar=10 µm.

- 492 Table 1. Origin of strains of Metschnikowia drakensbergensis sp. nov., and
- 493 *Metschnikowia caudata* sp. nov. Mating type: T = same as the type; AT = same as the
- 494 allotype. Isolation source. Localities: GC (Garden Castle in uKhahlamba-Drakensberg
- 495 Park, 29°44'S 29°12'E, 1820 m asl); MG (Mount Gilboa in the Karkloof Range, 29°17'
- 496 S 30°17′E, 1520 m asl); SP (Sani Pass below the South African border post, 29°35′S
- 497 29°17′E, 2800 m asl). *Already suggested as a new species in de Vega *et al.* (2012)
- 498 IJSEM 62, 2538–2545. ^TType strain; ^AAllotype.
- 499

Strains	GenBank no.	Mating type	Isolation source	Localities	
Metschnikowia drakensbergensis sp. nov.					
EBD-CdVSA09-2 ^T	JN935056	Т	Protea dracomontana	GC	
EBD-CdVSA10-2 ^A	JN935054	AT	Protea dracomontana	GC	
EBD-CdVSA12-1	JN935055	AT	Protea dracomontana	GC	
EBD-M8Y1*	JN935047	Т	Heterochelus sp	MG	
<i>Metschnikowia caudata</i> sp. nov.					
EBD-CdVSA08-1 ^T	KJ736788	Т	Protea dracomontana	GC	
EBD-CdVSA57-2 ^A	KJ736790	AT	Protea subvestita	SP	
EBD-B8Y1	KJ736785	AT	Apis mellifera	MG	
EBD-CdVSA21-2	KJ736786	Т	Protea roupelliae	MG	
EBD-CdVSA23-1	KJ736787	Т	Protea roupelliae	MG	
EBD-SA53	KJ736791	Т	Protea roupelliae	MG	
EBD-SA54	KJ736789	AT	Protea roupelliae	MG	

- 501 Table 2. Growth characteristics of *Metschnikowia drakensbergensis* sp. nov.,
- 502 Metschnikowia caudata sp. nov., and related species. +, Positive; -, negative; s, slow; w,
- 503 weak. Invariant responses: assimilation of sucrose, melezitose, are positive;
- source assimilation of inulin, raffinose, melibiose, lactose, starch, L-rhamnose, L-arabinose,
- 505 methanol, 1–propanol, 2–propanol, 1–butanol, erythritol, galactitol, inositol, and lactate
- negative. Utilization of nitrate and nitrite negative; ethylamine, lysine, and cadaverine,
- 507 positive. Growth in the presence of 10 ppm cycloheximide is negative. The data for C.
- 508 *hainanensis* and *M. lopburiensis* are from the original descriptions (Wang *et al.*, 2008;
- 509 Kaewwichian *et al.*, 2012).

	M. proteae	EBD-M8Y1	EBD-CdVSA09-2	EBD-CdVSA10-2	EBD-CdVSA12-1	C. hainanensis	M. lopburiensis	EBD-B8Y1	EBD-CdVSA08-1	EBD-CdVSA57-2	EBD-CdVSA21-2	EBD-CdVSA23-1	EBD-SASA53	EBD-SASA54
Galactose	+	w	S	S	S	-	_	-	-	_	-	-	_	—
Trehalose	w	-	W	W	w	+	+	-	+	+	-	-	_	—
Maltose	+	+	+	+	+	+	+	_	-	_	w	_	w	W
Methyl glucoside	-	-	-	-	-	+	+	-	-	_	-	-	-	—
Cellobiose	_	-	+	W	S	+	+	w	+	w	w	w	_	—
Salicin	-	—	+	W	w	+	+	w	W	w	w	W	w	W
Sorbose	+	+	+	+	+	+	+	—	-	-	-	-	—	—
Xylose	w	-	_	—	—	+	+	-	_	_	—	—	_	—
D-arabinose	-	—	—	—	-	—	w	—	-	-	-	-	—	—
Ribose	-	S	W	-	w	-	-	w	w	w	w	w	s	S
Ethanol	+	+	S	S	s	+	+	s	s	s	s	s	w	W
Glycerol		-		_	-	+	S	s	w	s	w	w	S	S
Ribitol	-	-	I	-		+	+	-	-	-	—		—	—
Xylitol	w	s	-	_	-	-	+	-	-	-	-	-	-	-
Mannitol	s	+	w	w	w	+	+	+	+	+	+	+	+	+
Glucitol	+	w	W	W	w	+	+	+	+	+	w	w	w	w
Succinic	w	w	s	S	s	s	+	w	s	w	s	s	w	w
Citric	-	S	_	_	-	+	+	-	-	_	_	-	_	
Gluconic	w	-	-	-	_	_	+	-	_	_	_	_	_	—
Gluconolactone	w	W	W	W		-	+	w	s	w	w	w	w	W
2-ketogluconate	+	+	+	+	+		+	-	-	-	—		—	—
Glucosamine	v	S	W	W		+	+	-	-	-	w	w	s	S
N-acetyl glucosamine	+	+	+	+	+		+	+	+	+	+	+	+	+
Hexadecane		W		_	-	-		s		s	_	-	-	—
Growth at 4 °C		_	_		_			+	+	+	+	+	+	+
Growth at 30 °C	+	+	W	W	w	+	+	+	+	+	w	+	+	+
Growth at 31 °C	+	+		S	s			+	+	+	_	+	+	+
Growth at 32 °C	S	_	-					+	+	+	_	+	+	+
Growth at 33 °C	-	_	-	-	_			+	+	+	_	-	W	W

Growth at 34 °C	-	-	_	_	_			+	+	+	-	-	-	-
Growth at 35 °C	—	-	-		-			+		-	_	—	-	-
Growth at 37 °C	—	-	-		-	+	+			-	_	—	-	-
NaCl 10%	w	+	W	W	w		w	+	S	+	s	S	+	+
NaCl 15%	—	-	-		-		_	s		W	_	—	-	-
Glucose 50%	-	-	-	-	-		+	S	-	-	-	_	_	-
Cycloheximide 10 ppm	-	1	I	I	-	_				-	-	_	_	-
Glucose fermentation	W	+	+	+	+	+	+	-	w	_	-	-	_	_

