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We investigate the proximity effect in diffusive superconducting hybrid structures with a spin-orbit (SO)
coupling. Our study is focused on the singlet-triplet conversion and the generation of long-range superconducting
correlations in ferromagnetic elements. We derive the quasiclassical equations for the Green’s functions including
the SO coupling terms in form of a background SU(2) field. With the help of these equations, we first present an
interesting complete analogy between the spin diffusion process in normal metals and the generation of the triplet
components of the condensate in a diffusive superconducting structure in the presence of SO coupling. From this
analogy it turns out naturally that the SO coupling is an additional source of the long-range triplet component
(LRTC) besides the magnetic inhomogeneities studied in the past. This analogy opens a range of possibilities for
the generation and manipulation of the triplet condensate in hybrid structures. In particular we demonstrate that
a normal metal with SO coupling can be used as source of LRTC if attached to a superconductor-ferromagnet
bilayer. We also demonstrate an explicit connection between an inhomogeneous exchange field and SO coupling
mechanisms for the generation of the LRTC and establish the conditions for the appearance of the LRTC in
different geometries. Our work gives a global description of the singlet-triplet conversion in hybrid structures
in terms of generic spin fields and our results are particularly important for the understanding of the physics
underlying spintronic devices with superconductors.
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I. INTRODUCTION

It is by now common knowledge that the interaction
between conventional superconductivity and ferromagnetism
in superconductor-ferromagnet (S/F) hybrids leads to a new
type of superconducting correlations in a triplet state [1,2].
Since the prediction of this intriguing phenomenon in 2001,
there has been an increasing experimental activity in the
field [3–23]. That research focuses mainly on the creation
and control of superconducting triplet correlations in hybrid
structures with the ultimate goal of using polarized spin
supercurrents in spintronic devices [24]. To achieve this, it
is essential to identify the optimal material combination and
hence it is of fundamental interest to understand the physics
that underpin triplet generation.

In S/F structures, superconducting correlations can pene-
trate into the ferromagnetic metal due to the proximity effect. If
the ferromagnet is a monodomain magnet, the superconducting
condensate consists of two components: the usual singlet one
and the triplet component with total zero spin projection with
respect to the magnetization axis of the F layer. In a diffusive
system both components decay over a short distance given by√

D/h, where D is the diffusion coefficient of the F layer and
h is the exchange field. If, however, the triplet components
with finite total spin are generated, these can penetrate the F
region over a much longer distance of the order of

√
D/2πT .

It is commonly believed that singlet-long-range triplet (in
short singlet-triplet) conversion happens only in the presence
of magnetic inhomogeneities, as for example magnetic domain
walls [1,25–28], ferromagnetic multilayers with different mag-

netization orientations [29–31], or interfaces with magnetic
disorder [32,33]. Such inhomogeneities presumably explain
the observation of long-ranged Josephson currents through
Ho-Co-Ho bridges, due to the spiral-like magnetization of the
Ho layers [5], or though ferromagnetic X-Co-X multilayers,
where the inhomogeneous magnetization of X = PdNi, CuNi,
Ni might act as spin mixers [4,20]. More surprising is
the observation of a long-range Josephson effect in lateral
structures based on the half metallic CrO2 [3,16,22]. A
first explanation for such observations assumes a spin-active
interface between the CrO2 layer and the superconductor,
a consequence of a magnetic inhomogeneity at the atomic
level [32].

In ballistic heterostructures it has been shown that spin-orbit
(SO) coupling can also be a source for a triplet superconducting
condensate [34–38]. Being anisotropic in momentum this con-
densate component is very sensitive to disorder and vanishes
in diffusive systems. However, in a recent work we have
demonstrated that in S/F diffusive systems a finite spin-orbit
(SO) coupling can be also a source for the s-wave long-range
triplet correlations (LRTCs) [39]. A finite SO coupling can
result from either an intrinsic property of materials without
inversion symmetry [40] or from geometrical constraints such
as low dimensional structures or interfaces between different
materials [34–37,41–45]. Specifically, Ref. [39] presented a
unified view of the singlet-triplet conversion which connects
the magnetic inhomogeneous mechanism with the one based
on SO coupling.

In the present work we readdress the problem of singlet-
triplet conversion in diffusive S/F structures in the presence
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of arbitrary (linear in momentum) spin-orbit coupling and go
a step further. The main goal of the present paper is twofold:
First, we present a complete analogy between the diffusion
of a spin density in a normal metal and the singlet-triplet
conversion in superconducting hybrids. This analogy opens a
different view of the singlet-triplet conversion that helps in the
understanding of the proximity effect in more complex hybrid
structures. Second, we present the derivation of quasiclassical
equations in the presence of a SO coupling and supercon-
ducting correlations. These equations can be very useful not
only to describe the singlet-triplet conversion but also for the
study of the dynamics of S/F hybrids. With the help of these
equations we analyze different hybrid structures and discuss
the condition for the singlet-triplet conversion. In particular we
show that all triplet components can be generated in a S/F/N
structure, provided the conductor N exhibits a SO coupling.
We also show that while for a transverse multilayer structure
of S/F/S type, the “old” picture of magnetic inhomogeneities
can explain the long-range Josephson coupling [4,5]; in lateral
S/F structures the SO mechanism may be considered as the
main mechanism for singlet-triplet conversion [3,16].

The structure of the paper is the following: In the next
section we review the spin diffusion in the normal case. We
discuss the spin diffusion and relaxation in a normal metal
in the presence of a generic SO coupling, placing emphasis
on the main mechanism that can change the direction of the
spin. In Sec. III A we discuss the singlet-triplet conversion
in a proximity metal with SO coupling and draw an analogy
between the singlet-triplet conversion and the “precession” of
the spin density in the normal state. In Sec. III B we readdress
the original problem of singlet-triplet conversion in a Bloch
domain wall [1] and show that it is gauge equivalent to the
one of a ferromagnet with a homogeneous exchange field and
SO coupling. In the previously mentioned sections we base
our analysis on a heuristic SU(2) covariant diffusion equation.
A rigorous derivation of the quasiclassical kinetic equation
for the Green function is presented in Sec. IV. We present
both nonequilibrium (Keldysh), and equilibrium (Matsubara)
formalisms. In Sec. V we discuss hybrid structures of different
geometries. We show that the triplet component with a finite
total spin can be generated in a S/F/N structure with a
homogeneous magnetized F, provided there is SO coupling in
the N metal. We also analyze a transversal and longitudinal
S/F structure and demonstrate that even in the case of a
homogeneous magnetization, an interfacial SO coupling can
generate long-range correlations. Finally we present some
discussions and a summary of results in our concluding section.

II. SPIN DIFFUSION AND RELAXATION IN NORMAL
SYSTEMS WITH SPIN-ORBIT COUPLING

To understand how SO coupling can affect the proximity
effect in S/F systems, it is instructive to recall the physics of
spin diffusion in a normal system. For this sake we consider a
normal conductor described by the Hamiltonian

H0 = p2

2m
− 1

2
�a(p)σa + Vimp, (1)

where Vimp is the spin-independent potential of randomly
distributed impurities, and the second term, HSO = 1

2�a(p)σa

with �a(−p) = −�a(p), describes a generic SO coupling
allowed in any system with lack of inversion symmetry.
The matrices σa , with a = x,y,z, are the Pauli matrices.
Physically, the above SO coupling corresponds to an effective
momentum-dependent Zeeman field which induces precession
of the electron spin about the direction of the vector �(p) =
{�x(p),�y(p),�z(p)}.

In this work we consider spin dynamics in the diffusive
limit, i.e., when the elastic mean free path l = τvF (here
τ is the momentum relaxation time and vF is the Fermi
velocity) is much shorter than the other length scales. In this
limit the spin density vector S = (Sx,Sy,Sz) obeys the spin
diffusion equation presented in Eq. (6) below. To make our
argumentation self-contained we give a general and compact
symmetry-based derivation of this equation.

To reveal the structure of the spin diffusion equation in
such systems it is instructive to consider a special but still
rather general type of linear in momentum SO coupling with

�a(p) = Aa
k

pk

m
. (2)

The mathematical beauty of the linear coupling is related
to a local SU(2) gauge invariance of the corresponding
Hamiltonian [46–49] that can be written (up to an irrelevant
constant) as follows:

H0 = 1

2m
(pj − Âj )2 + Vimp, (3)

where Âj = 1
2Aa

j σ
a . The first term in Eq. (3) formally

describes nonrelativistic particles minimally coupled to a
2 × 2 matrix-valued SU(2) vector potential Âj . Hence the SO
coupling enters the problem as an effective background SU(2)
field. This implies the form invariance of the Hamiltonian (3)
under any local SU(2) rotation with a matrix Û = e

i
2 χa (r)σa

supplemented with the gauge transformation of the potential
Âj �→ ÛÂj Û

−1 − i(∂j Û )Û−1. Many general aspects of spin
physics in SO coupled systems acquire a simple interpretation
in terms of this gauge invariance [49–56].

In the diffusive limit, for systems without SO coupling the
spin-density matrix ρ̂ obeys the standard diffusion equation:
∂t ρ̂ = D∇2ρ̂, where D is the diffusion constant. If the SO
coupling is present, the gauge invariance arguments tell
us that all we need is to replace the derivatives by their
covariant counterparts, i.e., ∂k· �→ ∇̃k· = ∂k · −i[Âk,·]. This
replacement ensures that the spin-density matrix transforms
covariantly, ρ̂ �→ Û ρ̂Û−1, under a local SU(2) rotation.
Therefore the spin-diffusion equation takes the form

∂t ρ̂ = D∇̃2ρ̂, (4)

where the right-hand side of this equation encodes the effects
of the SO coupling in the diffusive regime. For a spatially
uniform SO field the covariant Laplacian ∇̃2 in Eq. (4) reads

∇̃2ρ̂ = ∇2ρ̂ − 2i[Âk,∂kρ̂] − [Âj ,[Âj ,ρ̂]]. (5)

The physical significance of the last two, SO induced, terms
in Eq. (5) becomes more clear if we rewrite the spin-
diffusion equation (4) in terms of the spin-density vector with
components Sa = 1

2 tr{ρ̂σ a}
∂tS

a = D∇2Sa + 2Cab
k ∂kS

b − 	abSb, (6)
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where the tensors Cab
k and 	ab are defined as follows:

Cab
k = DεacbAc

k, (7)

	ab = D
(
Ac

kA
c
kδ

ab − Aa
kA

b
k

)
, (8)

and εacb is the Levi-Civita tensor. The symmetric, positive
semidefinite tensor, 	ab ≡ (1/τs)ab in Eq. (6) originates from
the double commutator in Eq. (5) and is responsible for
the (anisotropic) Dyakonov-Perel spin relaxation [57,58].
The second term in the right-hand side of Eq. (6) de-
scribes the precession of the spin of diffusively moving
particles in the presence of a spatially inhomogeneous spin
distribution.

It is worth outlining that by considering a seemingly
special, linear in momentum SO coupling and using only
the gauge invariance requirements we actually recovered the
most general form Eq. (6) of the spin diffusion equation
(see, e.g., Refs. [59,60]). In fact, the formal quantum kinetic
derivation of the spin-diffusion equation for the most general
SO coupling with arbitrary �(p) yields Eq. (6). The only
difference is that now the tensors Cab

k and 	ab are defined
by more general, but structurally similar to Eqs. (7) and (8),
expressions:

Cab
k = τpεacb〈vk(p)�c(p)〉F , (9)

	ab = τp〈�c(p)�c(p)δab − �a(p)�b(p)〉F , (10)

where vk(p) = ∂ε(p)
∂pk

is the k component of the particle
velocity, and 〈. . . 〉F stands for the Fermi-surface averaging.
The important conclusion is that most qualitative physical
results (at least in the diffusive regime) obtained for the
linear SO coupling should be valid generically for any
noncentrosymmetric system.

We now discuss the main features of the spin diffusion,
which will be relevant for the problem of singlet-triplet
conversion in superconducting hybrid structures. We consider
for simplicity a system with one-dimensional inhomogeneity
along the x axis and assume that by injecting a spin current at
x = 0 one creates a finite z component Sz

0 of the spin density at
the origin. The injected spin diffuses into the system according
to Eq. (6). We now analyze the resulting stationary spatial
distribution of the spin density (i.e., ∂tS

a = 0) by solving the
stationary 1D version of Eq. (6),

D∂2
xSa + 2Cab

x ∂xS
b − 	abSb = 0, (11)

with the boundary condition S(x = 0) = ẑSz
0. Beside the decay

away from x = 0 due to the Dyakonov-Perel spin relaxation,
the two last terms in Eq. (11) encode two possible mechanisms
of the spin rotation in the presence of SO coupling.

The first mechanism is related to the fact that the spin-
relaxation tensor 	ab in general can be anisotropic. This means
that different components of the spin may have different
relaxation rates. If it happens that the injected spin is not
parallel to one of the principal axes of 	ab, the spin will rotate
in the course of diffusion by turning towards the direction with
the slowest relaxation rate. In order to illustrate the evolution of
the spin due to this mechanism we assume that the SO coupling
is described by Ax

z = β, Ay
z = α and the rest of the components

x 

z       

0       

x 

z       

0       

(a) (b)

FIG. 1. (Color online) Schematic view of the spin rotation in a
layered system with 1D inhomogeneity. At x = 0 a spin parallel to
the z axis is injected. Due to the SO coupling also the Sy component
becomes finite upon diffusion. Panel (a) illustrates the spin rotation
due to anisotropy of the Dyakonov-Perel tensor 	. The vectors are
given by Eqs. (12) and (13) and we have chosen β/α = 1/3. Panel
(b) shows the spin rotation due to the second term in Eq. (11)
for an isotropic SO coupling. The vectors are given in Eqs. (16)
and (17).

of the Aa
k tensor equals zero. In such a case the second term

of Eq. (11) vanishes and the solution with S(x = 0) = ẑSz
0 is

given by

Sz(x)

Sz
0

= β2

α2 + β2
+ α2

α2 + β2
e−κx, (12)

Sy(x)

Sz
0

= αβ

α2 + β2
− αβ

α2 + β2
e−κx, (13)

where κ =
√

α2 + β2. In Fig. 1(a) we sketched the spatial
evolution of the spin. One clearly sees that the injected spin,
originally parallel to the z axis, rotates and acquires a finite y

component due to the SO coupling.
The second mechanism for spin rotation is the “precession”

generated by the second term in the right-hand side of
Eq. (11). This mechanism is operative even for systems with
equal relaxation rates for all spin directions. To illustrate the
effect of this term we consider the simplest fully isotropic
SO coupling described by the diagonal SO field Aa

j = αδa
j .

In this case Eq. (11) reduces to the following system of
coupled diffusion equations for the spin components Sz(x) and
and Sy(x):

D∂2
xSz + 2Dα∂xS

y − Sz

τs

= 0, (14)

D∂2
xSy − 2Dα∂xS

z − Sy

τs

= 0, (15)

where τs = 1/(2Dα2) is (now isotropic) spin-relaxation time
[in deriving these equations we made use of Eqs. (7) and (8)].
The coupling of different components of the spin in Eqs. (14)
and (15) has a typical precession structure—it induces
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precession of the spin direction around the direction of inho-
mogeneity. A straightforward solution of these equations with
the boundary condition S(x = 0) = ẑS0 yields the helicoidal
spin distribution,

Sz(x) = Sz
0e

−αx cos αx, (16)

Sy(x) = Sz
0e

−αx sin αx, (17)

which clearly demonstrates the effect of the precession term
in the spin-diffusion equation. The injected spin relaxes and
rotates provided there is a spatial component of the SO field
Aa

k , or, more generally, the tensor Cab
k , along the direction of

inhomogeneity. In Fig. 1(b) we show schematically the spin
rotation described by Eqs. (16) and (17).

In short, there are two mechanisms that can change the
direction of the injected spin density. One originates from a
possible anisotropy of the spin-relaxation rate tensor 	ab in
Eq. (6), while the other mechanism is due to precession of
the spin when ρ̂ is spatially inhomogeneous according to the
second term in the left-hand side of Eq. (6). In the next section
we show that these well-established mechanisms for rotation
of the spin also explain the rotation of the triplet component
of the superconducting condensate and the appearance of a
long-range proximity effect in SF hybrid structures with SO
coupling.

III. SINGLET-TRIPLET CONVERSION IN DIFFUSIVE S/F
STRUCTURES: A PHYSICAL PICTURE

A. LRTC in S/F structures with SO coupling

We now discuss the singlet-triplet conversion in S/F
structures in the presence of SO coupling. To pursue our line of
reasoning we present in this section the linearized equation that
describes the proximity effect in S/F structures and postpone
its derivation to the next section.

We consider first the proximity effect in S/F structures with-
out SO coupling. For simplicity we assume that the proximity
effect is weak and therefore our starting point is the linearized
Usadel equation [61] which describes the superconducting
condensate f̂ induced in the diffusive ferromagnet F (see inset
in Fig. 2),

D∇2f̂ − 2|ω|f̂ − isgn(ω){ĥ,f̂ } = 0. (18)

Here ω is the Matsubara frequency and ĥ = haσ a is the
exchange field whose vector components ha may depend on
space coordinates. This well-known equation, which has been
used in most previous works on S/F structures (see for example
Ref. [2] and references therein), describes diffusion of the con-
densate in the ferromagnet. The generation (injection) of the
s-wave condensate at the S/F interface is commonly described
by the Kupriyanov-Lukichev boundary condition [62] which
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FIG. 2. (Color online) The spatial dependence of the amplitude of all components of the condensate function for the geometry shown in the
inset and obtained from Eqs. (28)–(30). The exchange field in F is homogeneous and points in the z direction. A fully isotropic SO coupling is
assumed in F. We have chosen h = 10�, ω = πT , T = 0.1�, αξ0 = 1, and L = 1.5ξ0. Here � is the superconducting gap in S and the length
ξ0 is defined as ξ0 = √

D/�.
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in its linearized version has a simple form

Nk∂kf̂
∣∣
S/F

= −γfBCS, (19)

where fBCS = �/
√

ω2 + �2 is the anomalous Green’s func-
tion in the S region, Nk the k component of the vector normal
to the S/F interface, and γ is a parameter that describes
the quality of the S/F barrier. The boundary condition (19)
works for interfaces with low transmission while for a perfect
transparent barrier one should impose the continuity of f̂ at
the S/F interface.

Let us briefly recall the widely studied proximity effect in
S/F structures without SO coupling. The most general form
of the condensate function f̂ satisfying Eqs. (18) and (19)
is [63,64]

f̂ = fs 1̂ + f a
t σ a. (20)

Here fs is the singlet component which is scalar in the spin
space, while ft is a vector in spin space (with components
f a

t ) describing the triplet component. In the case of a spatially
homogeneous exchange field h the condensate induced in the
F region acquires both the singlet component fs and the triplet
component ft = f

‖
t h/h with the spin along h. Because of

these two components the anticommutator in the right-hand
side of Eq. (18) is nonzero thus providing a coupling between
the singlet fs and the parallel to h triplet f ‖ condensates.
The magnitude of the coupling is given by the amplitude h

of the exchange field that is typically much larger than the
characteristic energy (∼T ) of the second term in Eq. (18).
Thus, the decaying length for both components away from the
S/F interface is controlled by the singlet-triplet coupling, being
of the order of ξh = √

D/h. In other words, in the presence
of a large exchange field the proximity effect becomes short
ranged.

The structure of Eq. (18) suggests a way to circumvent the
fast decay of superconducting correlations in ferromagnets.
If by some means we generate components of the triplet
condensate in any direction perpendicular to h the anticom-
mutator in Eq. (18) vanishes and therefore those perpendicular
components f⊥

t will decay over the scale of the order of
√

D/T

which is much larger than ξh. It is very well established
that such a long-range component, f⊥

t , can be induced in the
presence of a spatially inhomogeneous vector h [1,2]. But
only recently it has been shown that SO coupling provides
an alternative mechanism for generating the long-range triplet
condensate [39].

Physically generation of the perpendicular component f⊥
t

can be viewed as a rotation of the triplet pair spin away from
the direction of the exchange field [24]. In the previous section
we have seen that such a rotation is a generic feature of the spin
diffusion in the presence of SO coupling and, as we now show,
this feature should not depend on the nature of spin carriers,
whether they are single electrons or triplet Cooper pairs.

In the presence of SO coupling the Usadel equation should
be properly modified. As previously done, we consider only
linear in momentum SO coupling describe by the Hamilto-
nian (3). In complete analogy with the spin diffusion in a
normal system (see Sec. II) the SO-coupling-modified Usadel
equation is obtained from Eq. (18) by replacing all derivatives

with their covariant counterparts, ∂k· �→ ∇̃k· = ∂k · −i[Âk,·],
D∇̃2f̂ − 2|ω|f̂ − isgn(ω){ĥ,f̂ } = 0. (21)

To ensure that the condensate function f̂ is transformed
covariantly under a local SU(2) rotation the Kupriyanov-
Lukichev boundary condition (19) should be also modified
accordingly,

Nk∇̃kf̂
∣∣
S/F

= −γfBCS. (22)

The system of Eqs. (21) and (22) describes the spatial
distribution of the superconducting condensate induced from
a s-wave superconductor in a ferromagnet with SO coupling.
The covariant derivatives in these equations encode again all
effects of SO coupling. If we now substitute the representation
of Eq. (20) for the condensate function we obtain

D∇2fs − 2|ω|fs − 2isgn(ω)haf a
t = 0, (23)

D∇2f a
t + 2Cab

k ∂kf
b
t −	abf b

t − 2|ω|f a
t −2isgn(ω)hafs =0,

(24)

from Eq. (21), and

Nk∂kfs |S/F = −γfBCS, (25)

Nk

(
∂kf

a
t + Cab

k f b
t

)∣∣
S/F

= 0, (26)

from the boundary condition of Eq. (22). We have used the
definitions of the Dyakonov-Perel spin relaxation tensor 	ab

and the diffusive spin precession tensor Cab
k presented in

Eqs. (7) and (8). In the most general SO coupling, one can
show that the structure of Eqs. (23)–(26) remains the same
with the tensors 	ab and Cab

k redefined according to Eqs. (9)
and (10).

The comparison of Eq. (24) with the spin diffusion equa-
tion (6) shows the complete analogy between spin diffusion
in normal and superconducting systems. In particular, the
physical effect of SO coupling is practically identical to that
discussed in Sec. II.

By inspection of Eq. (24), it becomes clear that the direction
of the condensate spin is not preserved in the F region, due
to the SO coupling. Similarly to the normal case the second
and the third terms in Eq. (24) describe two mechanisms of
the spin rotation—(i) a possible anisotropy of the relaxation
rate, and (ii) the spin precession in the presence of a spatially
inhomogeneous spin density. Therefore in the course of
diffusion the spin of the condensate turns away from the
direction of the exchange field. In other words a component
perpendicular to h appears and decays over a length scale much
larger than ξh. This slowly decaying part of ft is responsible
for the long-range proximity effect in S/F structures.

It is worth noting that the anisotropy of the spin-relaxation
rate generates the LRTC only if the direction of the exchange
field does not coincide with one of the principal axes of the
relaxation rate tensor 	̂. However, it is natural to expect that
in realistic ferromagnets both h and the principal axes of 	ab

are linked to some crystallographic directions. Therefore it is
quite probable that they do coincide and the mechanism (i)
alone is not sufficient to induce the LRTC in most of realistic

134517-5



F. S. BERGERET AND I. V. TOKATLY PHYSICAL REVIEW B 89, 134517 (2014)

situations. The second mechanism (ii), i.e., the spin precession
mechanism is more likely to occur and more universal.

Because of its practical importance it is useful to have a
simple illustrative example for the generation of LRTC via
the spin precession mechanism. Let us consider the structure
sketched in the inset of Fig. 2. It is a S/F structure with the
interface perpendicular to the x axis (N = x̂) and the exchange
field h = ẑh along the z axis. We assume a fully isotropic
SO coupling with Aa

k = αδa
k . By assuming that the structure

has infinite dimensions in the z-y plane, the condensate
function is invariant in this direction and only depends on
x. Moreover, by symmetry, the triplet condensate function ft
has two components in spin space which lie in the z-y plane,

ft = f
‖
t ẑ + f ⊥

t ŷ. (27)

Now the system of Eqs. (23) and (24) reads

D∂2
xfs − 2|ω|fs − 2isgn(ω)hf ‖

t = 0, (28)

D∂2
xf

‖
t +2Dα∂xf

⊥
t −2(Dα2+|ω|)f ‖

t −2isgn(ω)hfs=0, (29)

D∂2
xf ⊥

t − 2Dα∂xf
‖
t − 2(Dα2 + |ω|)f ⊥

t = 0. (30)

Equations (28) and (29) describe diffusion of strongly coupled
singlet and parallel triplet condensates. The last, singlet-triplet
coupling, terms ∼h in these equations dominate, and, as
a result, both fs and f

‖
t decay over the short-length scale

∼ξh. Equation (30) determines the spatial distribution of the
perpendicular to h component f ⊥

t of the triplet condensate.
This component is generated near the interface because of the
spin precession described by the second term and, according to
Eq. (30), decays over a much longer length scale. The spatial
distribution of all components of the condensate is shown in
Fig. 2.

For a general SO field Âk the LRTC is always induced
if Âk does not commute with the exchange field ĥ and
has a spatial component along the spin inhomogeneity. The
condition [ĥ,Âk] �= 0 has an interesting interpretation in terms
of SU(2) field tensor [39]. The exchange field enters the general
many-body Hamiltonian as the time component of the SU(2)
four-potential, ĥ = Â0 = 1

2Aa
0 σ̂

a [47–49,56]. For the spatially
uniform SU(2) potentials the above commutator is nothing but
the SU(2) electric field F̂k0 = −i[Âk,Â0]. Therefore the SU(2)
electric field serves as a physical source of the LRTC in S/F
structures, as it has been noticed recently in Ref. [39]. We will
return to this point in the next subsection.

At this stage it is important to emphasize the difference
between the SO coupling studied here, originated from the
band structure or geometrical constraints (such as heteroin-
terfaces), and the SO effect caused by randomly distributed
impurities [65]. The latter case has been studied intensively
in the context of S/F structures [66–68]. The only effect of
the random SO coupling due to impurities is a finite but fully
isotropic spin-relaxation rate. The direction of spin is always
preserved and therefore no LRTC can be induced in this case.

We next show the connection between the inhomogeneous
exchange field and the SO coupling as sources of long-range
triplet component.

B. LRTC in a Bloch-like domain wall: A gauge-equivalent
interpretation

The first theoretical work on the singlet-triplet conversion
considered the case of a ferromagnet with a Bloch domain
wall at the interface with a superconductor [1]. It was assumed
that the exchange field h in the F layer of the inset of Fig. 2
follows the magnetization direction that lies in the y-z plane
and rotates with respect to the x axis. Thus ĥ in Eq. (18) has
the form

ĥ = h[sin(Qx)σy + cos(Qx)σ z],

where Q is the wave vector of the rotation. In order to solve
the linearized Usadel equation it is convenient to introduce the
following local SU(2) rotation, as done in Ref. [1]:

ˆ̃f (x) = U (x)f̂ U−1(x), (31)

where U (x) = e−(i/2)Qxσ̂ x

. Substitution of this expression into
Eq. (18) removes the coordinate dependence from h

D∂2
x

ˆ̃f + DQ2

2
(σ̂ x ˆ̃f σ̂ x − ˆ̃f ) + iDQ[σ̂ x,∂x

ˆ̃f ]

− 2|ω| ˆ̃f − isgnω{hσ̂ z, ˆ̃f } = 0. (32)

One can easily verify that this equation can be compactly
written as

D∇̃2
x

ˆ̃f − 2|ω| ˆ̃f − isgnω{hσ̂ z, ˆ̃f } = 0, (33)

where

∇̃x · = ∂x · +i
Q

2
[σ̂ x,·]. (34)

Equation (33) is identical to Eq. (21) for a homogeneous
exchange field h = hẑ and a SO coupling described by a “pure
gauge” SU(2) potential Âx = −(Q/2)σ̂ x and Ây = Âz = 0.
This a remarkable result that demonstrates that the problem
of the singlet-triplet conversion in a S/F structure with a
Bloch domain wall is gauge equivalent to the one of a
ferromagnet with a homogeneous exchange field and a SO
coupling. If we now compare Eq. (32) with Eqs. (23) and (24)
in the context of the discussions in Secs. II and III A, the
second term in the left-hand side of Eq. (32) describes the
Dyakonov-Perel relaxation with anisotropy typical for a pure
gauge SO coupling [54], while the third term induces the
precession of the triplet component of the condensate and
leads to the LRTC and the long-range proximity effect.

This example clearly shows the close connection between
inhomogeneous exchange field and SO coupling by the
generation of the LRTC. The inhomogeneous exchange field
[inhomogeneous time component of the SU(2) potential Â0]
at zero SO coupling Âk = 0, and the homogeneous Â0 at
nonzero Âx describe the same physics in different gauges.
The SU(2) electric field F̂k0 = ∂kÂ0 − i[Âk,Â0], which is
the source of the LRTC, is present in both cases, as it is
a gauge covariant object. However, in one gauge F̂k0 �= 0
because of inhomogeneity of Â0, while in the other gauge
due to nonvanishing commutator [Âk,Â0] �= 0.

Before analyzing different S/F structures in the light of
the SO coupling we present in the next section a more
rigorous derivation of the main equation (21). Those readers
not interested in technical details can skip the next section
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and go directly to Sec. V where we discuss the creation of
long-range triplet correlations in different experimental setups.

IV. QUASICLASSICAL EQUATIONS FOR SYSTEMS WITH
SUPERCONDUCTING CORRELATIONS, EXCHANGE

FIELD AND SPIN-ORBIT COUPLING

The results of the previous section are based on Eq. (21)
which has been obtained by simple gauge invariance ar-
guments. In this section we present a formal derivation of
the equations of motion for quasiclassical Green’s functions
(GFs). We do not restrict our derivation to the equilibrium case
and introduce the 8×8 Keldysh GFs matrix

G(r1,r2; t,t ′) =
(

ǦR ǦK

0 ǦA

)
, (35)

where the retarded ǦR , advanced ǦA, and Keldysh ǦK GFs are
4×4 matrices in the Nambu-Spin space. In principle we follow
the standard derivation of the quasiclassical equation [2,69],
but add the SO coupling described by the Hamiltonian (3).
That is, we assume that SO coupling is linear in momentum,
and the exchange field, ĥ = haσ a ≡ Â0, does not depend on
the momentum. In such a case the matrix (35) obeys the Dyson
equation [

iτ3∂t + Ǧ−1
0 + �̌ − ˚

]
G = 1, (36)

where τ3 is the third Pauli matrix in Nambu space,

Ǧ−1
0 = τ3ĥ − 1

2m
(i∂k + Âk)2 + μ,

�̌ =
(

0 �

−�∗ 0

)
,

μ is the chemical potential, � is the BCS order parameter,
and ˚ is the self-energy describing the elastic scattering at
nonmagnetic impurities. In the Born approximation the self-
energy reads ˚ = (−i/2τ )〈g〉. Here τ is the elastic scattering
time, g is the GF matrix integrated over quasiparticle energy,
and 〈. . . 〉 stands for the average over the Fermi momentum
direction.

To simplify the derivation of the quasiclassical equations
we assume for a moment that the exchange field ĥ and the SO
field Âk do not depend on spatial coordinates. We will see that
the full space dependence can be recovered at the end in the
final equations from symmetry arguments.

By following the standard route [69] we first subtract from
Eq. (36) its conjugate, and go to the Wigner representation in
space by performing the Fourier transformation with respect to
the coordinate difference ξ = r1 − r2. Then we proceed to the
gradient expansion up to first order in derivatives with respect
to the “center-of-mass” coordinate r = r1+r2

2 . This procedure
leads to the following equation for the Wigner transformed
matrix G(p,r; t,t ′),

τ3∂tG + ∂t ′Gτ3 − i[τ3ĥ,G] + 1

2m
{pk − Âk,∂kG}

− i
pk

m
[Âk,G] − i[�̌,G] = − 1

2τ
[〈g〉,G]. (37)

It is instructive to estimate the order of magnitude of different
terms in this equation. Let T and L be characteristic time and
length scales, that is, ∂t ∼ 1/T and ∂r ∼ 1/L. Since G as a
function of p is peaked at pF , all momenta in Eq. (37) are of the
order of pF . Within the validity of the semiclassical approach
we assume that energies corresponding to T −1, vF /L, the
momentum relaxation rate τ−1, the exchange energy h, SO
spin splitting vF A, and the superconducting gap � are allowed
to be of the same order of magnitude, but should all be much
smaller than the Fermi energy εF . The ratio η = εdyn/εF of
the above small dynamical energy scales to εF is the small
parameter that justifies the quasiclassical approximation in
quantum kinetics.

Now we can look at Eq. (37) from this point of view.
Apparently all, except one, terms in Eq. (37) can be of the
same order of magnitude being linear in the small parameter
η. Only one term ∼Âk∂kG in the left-hand side has and extra
factor of the order of A/pF ∼ η. In the leading order of the
semiclassical expansion it is absolutely natural to neglect this
term. However it is also important to understand what are the
physical consequences of this term and which effects we drop
out by neglecting it.

The physics of the subleading term can be revealed by
transforming the kinetic equation (37) to the gauge covariant
form in which SU(2) field strengths and the corresponding
forces appear explicitly. For this sake we use the technique of
gauge covariant Wigner functions, which has been developed
originally in the context of quark-gluon kinetic theory [70]
and applied more recently to describe the spin dynamics in
semiconductors [56]. The main idea of this approach is to
switch from the usual GF of Eq. (35) to its “gauge covariant”
counterpart that is defined as follows:

G̃(r1,r2; t,t ′) = Ŵ (r,r1)G(r1,r2,t,t
′)Ŵ (r2,r), (38)

where Ŵ (r,r1) and Ŵ (r2,r) are the Wilson link oper-
ators which “covariantly connect” the arguments of the
Green’s function to the “center-of-mass” coordinate r =
r1+r2

2 . Formally the Wilson link operator entering this equa-
tion is defined by the path-ordered exponential Ŵ (r2,r1) =
P exp [i

∫
C12

Âj dxj ], where the integration path C12 goes from
r1 to r2 along the straight line [70]. The advantage of the
GF G̃ in Eq. (38) over the usual GF G is that the Wigner
transform of G̃, and thus the corresponding quasiclassical GF
g̃(r), will transform locally covariantly under a nonuniform
SU(2) rotation Û (r), i.e., g̃(r) �→ Û (r)g̃(r)Û−1(r).

In our case of spatially homogeneous SU(2) potentials Âk

the Wilson link operators reduce to a simple matrix exponential

Ŵ (r,r1) = Ŵ (r2,r) = e(i/2)Âk(rk
1 −rk

2 ).

Obviously, in this case the Wigner transformation of Eq. (38)
can be performed explicitly. The result is the following relation
between the Wigner transforms of the usualG and the covariant
one G̃:

G(r,p; t,t ′) = e−(1/2)Âk

−→
∂pk G̃(r,p; t,t ′)e−(1/2)Âk

←−
∂pk , (39)

where the upper arrow in the operators
−→
∂pk

and
←−
∂pk

indicates
the direction in which the momentum derivative is acting.

Now we can derive the equation for G̃ by substituting
Eq. (39) into Eq. (37) and then acting from the left with
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exp{− 1
2 Âk

−→
∂pk

}, and from the right with exp{− 1
2 Âk

−→
∂pk

}. Fi-
nally, by making an expansion up to first order in the gradients
and second order in SO fields Âk , we obtain the following
equation for the gauge covariant function G̃:

τ3∂tG̃ + ∂t ′G̃τ3 − i[τ3ĥ,G̃] + pk

m
∇̃kG̃ + 1

2τ
[〈g̃〉,G̃]

− i[�̌,G̃] = 1

2

{
τ3F̂0k + pk

m
F̂kj ,∂pj

G̃

}
, (40)

where ∇̃k· = ∂k · −i[Âk,·] is the covariant gradient. In the
right-hand side of this equation we introduced the SU(2) field
strength tensors F̂0k = −i[ĥ,Âk] and F̂kj = −i[Âk,Âj ].

Formally Eq. (40) was derived for spatially homogeneous
exchange ĥ and SO Ak fields. It is, however, absolutely clear
that all we need to account for possible (static) inhomo-
geneities of the spin-dependent fields is to use for the SU(2)
electric F̂0k and F̂kj the full expressions

F̂0k = −∂kĥ − i[ĥ,Âk], (41)

F̂kj = ∂kÂj − ∂j Âk − i[Âk,Âj ]. (42)

An advantage of Eq. (40) over the original and more
common Eq. (37) is the explicit SU(2) gauge covariance of
the former. The SO coupling enters Eq. (40) only via the
covariant gradient ∇̃k and the SU(2) field tensor F̂μν . Now
the physical significance of the subleading contribution to the
kinetic equation can be easily identified. The subleading terms,
of the order of η2, are collected on the right-hand side of
Eq. (40). These terms describe the SU(2) Lorentz force [56]
which, in particular, is responsible for the coupling of spin and
charge degrees of freedom and the spin Hall effect. The leading
contribution of SO coupling is exhausted by the covariant
gradient term in the left-hand side of Eq. (40). Physically
it describes spin precession in the presence of the effective
momentum dependent SO Zeeman field.

In the present paper we consider only the leading (spin
precession) effects of SO coupling, while the terms of
higher order in η [the SU(2) Lorentz force effects] will be
neglected. Obviously the latter have to be taken into account
to study phenomena involving spin-charge coupling due to SO
coupling [56,59]. It is worth noting that Eqs. (37) and (40)
become identical if we neglect terms of the order η2.

After neglecting the right-hand side in Eq. (40) one can
easily integrate this equation over the quasiparticle energy
and, by using the fact that the G̃ is peaked at the Fermi level,
one obtains the SU(2) covariant Eilenberger equation

τ3∂tg + ∂t ′gτ3 − i[τ3ĥ,g] + vF nk∇̃kg − i[�̌,g]

= − 1

2τ
[〈g〉,g], (43)

where g(n,r,t,t ′) is the quasiclassical GFs that depends on
the Fermi momentum direction n = pF /pF , the center-of-
mass coordinate r and two times. In the diffusive case this
equation can be further simplified by assuming that the
GFs have a weak dependence on the momentum direction,
i.e., by approximating g ≈ g0 + ng1. Following the standard
derivation for diffusive equations (see for example [69]) one
finally arrives at the Usadel equation for the isotropic part g0

(we skip the index 0):

D∇̃k(g∇̃kg) + τ3∂tg + ∂t ′gτ3 − i[τ3ĥ,g]−i[�̌,g]=0, (44)

where D = v2
F τ/3 is the diffusion coefficient. We note that

in the absence of superconducting correlations this equation
leads to the spin diffusion equation (4) or, equivalently, Eq. (6).

Throughout this paper we only analyze equilibrium situa-
tions. In this case it is convenient to work with the Matsubara
GF ǧ(r,ω) which is a 4 × 4 matrix in the Nambu-spin
space. The corresponding Usadel equation can be obtained
straightforwardly from Eq. (44) (see for example [2]):

D∇̃k(ǧ∇̃kǧ) + ω[τ3,ǧ] − i[τ3ĥ,ǧ] − i[�̌,ǧ] = 0, (45)

where ω is the Matsubara frequency. Moreover, we only
focus on the linearized Usadel equation which is valid either
at temperatures close to the critical temperature or in the
nonsuperconducting regions if the proximity effect is weak
enough. In such a case one can expand the GF’s functions
according to ǧ ≈ τ3sgn(ω) + iτ2f̂ where f̂ is the anomalous
Green function describing the superconducting condensate.
We finally obtain

D∇̃2f̂ − 2|ω|f̂ − isgn(ω){ĥ,f̂ } = 0, (46)

which coincides with Eq. (21) used throughout the paper.

V. EXAMPLES OF SINGLET-TRIPLET CONVERSION IN
HYBRID STRUCTURES WITH SO COUPLING

A. S/F/N structure with SO coupling

As we have seen in Secs. II and III A, the SO coupling
causes both the spin rotation in normal metals and the
“rotation” of the triplet component of the condensate in S/F
structures. From this analogy one can infer that if a triplet
component is induced in a diffusive normal metal with SO
coupling, such a component may rotate leading to components
perpendicular to the original one. One can corroborate this
statement by the following example, that represents a different
way of generation of the LRTC.

We consider a S/F/NSO lateral structure such as the one
shown in Fig. 3(a): A S/F bilayer is situated on top of a thin
and narrow normal region, like a normal wire [38]. The S/F
bilayer extends to the left (x < 0) and the normal wire has
some intrinsic SO coupling. The F layer is sufficiently thin in
order to allow for superconducting correlations to penetrate
into the N wire. Notice that this geometry, without the F layer,
resembles pretty much the setup proposed for detection of
Majorana fermions in hybrid structures [71,72].

To simplify formalities we assume that the S/F interface is
transparent and both layers are thin enough to describe them
as an effective ferromagnetic superconductor [73,74] with ef-
fective values for the order parameter �eff = �νSdS/(νSdS +
νF dF ) and the exchange field heff = hνF dF /(νSdS + νF dF ),
where dS(F ) is the thickness of the S(F) layer and νS(F ) is its
density of the states. Thus, the SF layer exhibits a BCS-like
density of states which is now spin-dependent shifted by heff .
If the exchange field lies in the (x,y) plane [see Fig. 3(a)] the
condensate function in the S/F electrode consists, as usual, of
a singlet f s

FS = f+ and a triplet component that reads

f̂ t
SF = f−(cos θσ x + sin θσ y), (47)

134517-8



SPIN-ORBIT COUPLING AS A SOURCE OF LONG-RANGE . . . PHYSICAL REVIEW B 89, 134517 (2014)

−d

0

W

S

S

SS S S

F1

F2

F NSO

FSO

x
z

x

z

x0

0

z
dF

dS

d

(a)

(b)

(c)

(d)

FIG. 3. (Color online) Different geometries discussed in the main
text. (a) A S/F/NSO structure. It is assumed that a finite Rashba
SO coupling is present in the normal wire NSO. (b) A lateral S/F
structure consisting of a thin ferromagnetic layer F1, a superconductor
electrode, and a second ferromagnetic layer F2 between the S and the
F1. The S/F2 structure extends over the x < 0 region. (c) Sketch of a
transversal multilayer structure commonly used in experiments, and
(d) its analog analyzed in the text.

where f± = [fBCS(ω + iheff) ± fBCS(ω − iheff)]/2, and θ is
the angle between the exchange field and the x axis. In this
way, the function of the S/F electrode is to generate in the
normal metal the triplet component parallel to the exchange
field of F. In analogy to the spin diffusion in a normal metal
(cf. Sec. II), the induced triplet component is eventually rotated
in the NSO wire and all other triplet components generated as
we discuss next.

If the NSO wire is deposited on a substrate it is natural to
assume that the SO coupling is described by A

y
x = α, while

all other components of Â are zero. Moreover, we assume
that the width d of the normal wire is much smaller than the
characteristic variation of condensate induced via proximity
effect. Thus, we can integrate the Usadel Eq. (21) over the z

direction by using the boundary condition Eq. (22) which now
reads

∂zfs = −γf s
+, (48)

∂zf
a
t σ a = −γf−(cos θδax + sin θδay). (49)

With all these assumptions and after integration over the
z direction we end up with the following set of 1D linear
differential equations:

∂2
xfs − κ2

ωfs = γ

d
f+�(−x), (50)

∂2
xf

y
t − κ2

ωf
y
t = γ

d
f− sin θ�(−x), (51)

∂2
xf x

t − (
κ2

ω + α2
)
f x

t + 2α∂xf
z
t = γ

d
f− cos θ�(−x), (52)

∂2
xf z

t − (
κ2

ω + α2)f z
t − 2α∂xf

x
t = 0, (53)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x/ξ0

|f
|/|

f
−∞

|

f x
t

fs

f z
t

FIG. 4. (Color online) The spatial behavior of the singlet and
triplet components f z

t and f x
t in the normal region of the structure

shown in Fig. 3(a) obtained from Eqs. (50)–(53). We have chosen
ω = πT , αξ0 = 1, T = 0.1�0, and θ = 0. The values of fs and f x

t

are normalized to their asymptotic values at x = −∞, while f z
t is

normalized to the asymptotic value of f x
t .

where �(x) is the Heaviside step function and κ2
ω = 2|ω|. It

is straightforward to obtain the solution of this system. We
present here only the solution for the triplet components of the
condensate in the region x > 0 [Fig. 3(a)]:

f̂t = Cωf−e−κωx[cos(αx) cos θσ x

+ sin θσ y + sin(αx) cos θσ z], (54)

where Cω = −γ /[2d(κ2
ω + α2)]. As expected, the “injected”

triplet component of the condensate, which is parallel to the
exchange field of the S/F bilayer, can rotate if a finite SO
coupling exists in the normal region. For this to occur the
SO coupling must satisfy [Âk,Â0] �= 0. In our particular case
(Âx = 1

2ασy) the perpendicular components are generated
provided that the exchange field is not pointing in the y

direction. In the latter case, as one can directly see from
Eq. (54), only the parallel component is generated in NSO.
The presence of the SO coupling leads to a spatial oscillation
of the f x

t and f z
t components as shown in Fig. 4. We should

emphasize, however, that this oscillation has another origin
as the one discussed in the context of SF structures without
spin orbit [75,76]. In the latter case the oscillations in the F
layer are due to the presence of a (homogenous) exchange
field which also affects the singlet component. Here however,
there is no exchange field in the N region and the oscillations
are simply due to the SO term in analogy to the spin rotation
in normal systems. Notice that in our geometry the singlet
component does not oscillate and no 0-π transition is expected
in a symmetric S/F/NSO/F/S Josephson junction, in contrast
to the oscillations in the critical current observed in SFS
structures [76].

In principle the S/F/NSO structure described here can be
used as a generator of the LRTC. If we assume, for example,
that at the other end of the NSO wire there is second strong
ferromagnet with a magnetization parallel to the “injector” F
the component f x

t of the condensate will penetrate this second
ferromagnet over long distances of the order of

√
D/T . We
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notice that the mechanism discussed in this section also ex-
plains the triplet component induced in a superconductor–two-
dimensional (2D) normal metal-superconductor junction with
Rashba SO coupling in an external Zeeman field discussed in
Ref. [77]. It is also worthwhile to mention that a similar (but
in the ballistic limit) situation has been analyzed in a recent
paper [38].

B. Lateral Josephson junction with SO coupling

The first evidence of long-range superconducting correla-
tions in magnetic materials was found by measuring a finite
supercurrent flowing through a half metallic CrO2 in a lateral
Josephson junction [3] [see the sketch in Fig. 3(b)]. The
supercurrent across the junction could be observed up to
distances of the order of one micron between the S leads
and can only be explained by assuming that the supercurrent
is carried by Cooper pairs with equal spin projection, or in
our terminology by assuming a finite triplet component of
the condensate perpendicular to the magnetization direction
of the half metal. The required spin-triplet conversion might
take place in a region around the S/F interface if one assumes
a magnetic disorder with a finite averaged moment misaligned
with respect to the bulk magnetization of the CrO2 layer [32].
It is difficult to prove experimentally such inhomogeneity.
More recent experiments on CrO2 based Josephson junctions
have shown that the observation of long-range effects depends
on the substrate on which the half metal is grown. For
example, generation of the long-range triplet component has
been observed in CrO2 grown onto Al2O3 by using simple
superconducting contacts. In contrast, if the CrO2 is grown
onto a TiO2 substrate, the long-range Josephson effect can
only be observed if one incorporates a thin Ni layer between
the CrO2 and the superconducting electrodes [16,22]. It is
commonly believed that in both cases the long-range triplet
component is generated due to a magnetic inhomogeneity,
either originating at the superconductor/CrO2 interface (spin-
active interface) or in the Ni interlayer [23].

We give here an additional possible explanation for the
long-range proximity effect in such lateral structures, based
on the presence of SO coupling at the contact region. The
existence of a SO coupling in the CrO2 experiments was
suggested in Ref. [23], but not discussed quantitatively due to
the lack of a formalism for this. We have now all ingredients
to include the SO coupling in the study of the proximity effect,
and focus our analysis on the system sketched in Fig. 3(b).
It is a lateral structure consisting of a superconductor S and
a ferromagnet F1. At the interface between them there is an
additional thin layer, F2, with a magnetization parallel to the F1

layer. Thus, in principle, one does not expect any long-range
effect in accordance with previous theories [2]. We assume
that in F2 there is a finite SO coupling, which can be either
due to some crystallographic inversion asymmetry [40] or due
to the presence of interfaces between materials and the lack of
structure inversion symmetry [34–37,41–45].

The S/F2 bilayer extends over the whole negative x axis and
the SO coupling is only present in the F2 layer and therefore
the SO vector potential is written as

Aa
j (z,x) = Aa

j�(−x)�(−z)�(z + d). (55)

If one assumes translation invariance in the y direction then the
condensate function in Eq. (21) depends on x and z coordinates
[see Fig. 3(b)] and satisfies Eqs. (23) and (24). This problem
can be solved numerically. However, in order to underline
the physics of the singlet-triplet conversion we solve here the
problem analytically by assuming first that the total thickness
W + d is much smaller than the characteristic length over
which the condensate f changes. This assumption allows us
to integrate the Usadel equation over z. Second, we neglect
quadratic terms in A, by assuming that |A|2 � h/D. This
means that we neglect the term proportional to 	 in Eq. (24).
After integration over the z direction and by using the boundary
condition Eq. (22) at the S/F2 and continuity at F1/F2 interfaces
we obtain from Eqs. (23) and (24)

D∂2
xxf s − 2|ω|fs − 2isgn(ω)hxf x

t = − Dγ

W + d
fBCS, (56)

D∂2
xxf

a
t − 2|ω|f a

t − 2isgn(ω)hxfs + 2d

d + W
Cab

x ∂xf
b
t = 0,

(57)

for x < 0, and

D∂2
xxfs − 2|ω|fs − isgn(ω)hx

1f
x
t = 0, (58)

D∂2
xxf

a
t − 2|ω|f a

t − isgn(ω)hx
1fs = 0, (59)

for x > 0. Here h1,2 are the exchange fields (that point in
the x direction) in the F1,2 regions and h = h1W/(W + d) +
h2d/(W + d) is the averaged exchange field. We assume that
the SO coupling is of Rashba type with Cxz

x = −Dα. These
equations have to be solved assuming that the condensate
function is continuous at x = 0 and

∂xf̂ + i
d

d + W
α[σy,f̂ ]|x=0− = ∂xf̂ |x=0+ . (60)

From a simple inspection of Eqs. (56)–(60) one can conclude
that a finite triplet component f x

t perpendicular to the exchange
field is generated by the SO coupling term. The decay of
this component into the x > 0 is long range as follows from
Eq. (59). Deep in the region covered by the S/F2 bilayer (x →
−∞) the solution does not depend on x and according to
Eq. (56) is given by

fs(−∞) ≈ γ ξ 2
h

W + d

|ω|
2h

fBCS, (61)

f x
t (−∞) ≈ −i

γ sgn(ω)ξ 2
h

2(W + d)
fBCS, (62)

f z
t (−∞) = 0; (63)

where ξh = √
D/h (we have assumed that h1 � h2,T ). Notice

that the asymptotic value of the “perpendicular” component of
the triplet f z

t , is zero. In principle one can obtain straightfor-
wardly the spatial dependence for all condense components
by solving the boundary problem Eqs. (56)–(60). Here we
present the solution for the long-range component f z

t in the
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region x > 0. It is given by

f z
t (x > 0) = 3

2
isgn(ω)

αdξωξ 2
h

(W + d)2
fBCSe

−κωx, (64)

where κ−1
ω =

√
D/2|ω| is the characteristic decay length.

If we now assume that at x = L � ξh there is a second
S/F2 electrode one can easily shown the (spectral) Josephson
current through the junction decays as [39] e−κωL with the
junction length L. This confirms the long-range character of
the proximity effect. It is important to emphasize that the
magnetization of all F layers has been assumed to be parallel.
The long-range component, Eq. (64), is proportional to the SO
coupling α in the F2 thin layer. This example clearly shows that
besides magnetic inhomogeneity, the SO coupling can also be
a source for the LRTC.

C. Multilayer transversal structures

Apart of the experiments on CrO2 lateral structures, most
of the experiments searching for triplet long-range proximity
effect have been performed on transversal structures [4,5,18–
20] such as the one sketched in Fig. 3(c). The region between
the S electrodes consists of a multilayered magnetic structure
that provides the magnetic inhomogeneity for the singlet-
triplet conversion. Again, due to the heterointerfaces between
different materials one can expect a finite SO coupling in the
structure [34,45]. In order to simplify the problem, instead of
analyzing the multilayer system of Fig. 3(c), we study here the
SFSOS junction of Fig. 3(d), by assuming that the FSO, besides
the in-plane exchange field exhibits also a SO coupling of the
form

Âz = βσ z − ασy, (65)

Ây = −βσy + ασ z, (66)

where α and β are known in the literature as the Rashba and
Dresselhaus constants respectively. The system is translation
invariant in the (x,y) plane and therefore it is unlikely to have a
finite component of the vector potential Âk in the z direction.
Moreover the condensate function f̂ only varies over the x

direction and therefore the second term in Eq. (24) does not
contribute. This means that, eventually, the only source for the
LRTC is the relaxation rate tensor 	ab, defined in Eqs. (6)–(8).
Thus, the condition for generating the long triplet component,
i.e., the component perpendicular to the exchange field, is that
the vector [Âk,[Âk,h

aσ a]] is not parallel to the exchange field
haσ a . For the SO coupling described by Eqs. (65) and (66)
one obtains

[Âk,[Âk,h
aσ a]] = 4(α2 + β2)(haσ a + hxσ x)

+ 8αβ(hyσ z + hzσ y). (67)

If the magnetization points in the perpendicular direction
(i.e., hy = hz = 0) then the LRTC is not generated. If all
components of the exchange field are finite (as in the case
of Ho layers [5]) the term proportional to 	ab in Eq. (24)
generates LRTCs for any value of α and β.

In the most common case of an in-plane magnetization hx =
0, the condition for the LRTC is that αβ �= 0 and hy �= hz. It is
important to emphasize that this condition for triplet generation

is more restrictive than in the lateral geometry studied in
the previous section, in which a pure Rashba SO coupling
at the S/F interface and arbitrary magnetization orientation are
enough for the LRTC to exist.

VI. CONCLUSIONS

The SO coupling discussed here has its origin in the lack of
inversion symmetry and therefore it has to be distinguished
from the SO coupling originated by disorder which does
not generate the long-range triplet component and it was
widely studied in the past decades. On the one hand the lack
of inversion symmetry can be due to some crystallographic
inversion asymmetry in the materials. However, such noncen-
trosymmetric metals have not been experimentally explored
in the context of the superconducting proximity effect. A
detailed analysis of these materials based on the symmetry
arguments can be found in the review Ref. [40]. On the
other hand, the lack of inversion symmetry can also occur
at the interface between two different materials inducing an
interfacial SO coupling [34–37,42–45]. This might be the
scenario in some of the structures used in the experiments
on SFS junctions. It is not straightforward to estimate the
strength of the SO coupling for a given hybrid interface. This
has been obtained from first-principles calculations for certain
material combinations [43]. Also experiments exploring spin
torque in Pt/Co/AlOx multilayer provide a fairly large value
for the SO coupling induced by the inversion asymmetry of the
structure [44]. A considerable SO coupling is also predicted
for other metallic interfaces [78].

In conclusion, we have presented an exhaustive study of
the proximity effect in diffusive superconductor-ferromagnet
hybrid structures with spin-orbit coupling. We have derived the
quasiclassical equations that include generic spin fields. For
the particular case of spin-orbit coupling linear in momentum,
we have drawn a useful analogy between the spin precession in
a normal diffusive system with SO coupling and the generation
of the long-range triplet component in S/F structures. As for a
spin density in a normal system, the presence of a SO coupling
may rotate the triplet component of the superconducting
condensate and generate all triplet projections. We explicitly
demonstrate that both, the spin diffusion equation in the
normal state and the linearized Usadel equation describing the
proximity effect in SF structures with SO coupling, are almost
identical. This analogy provides a useful tool for the design
of experimental setups and the search of optimal material
combinations for the control and manipulation of the triplet
component in hybrid superconducting structures. Moreover, it
suggests a possible way to control and manipulate the spin in
low dissipative devices based on S/F hybrids with spin-orbit
coupling. As an example of this, we have shown that a normal
wire with an intrinsic SOC attached to a S/F electrode can
be the source for the long-range triplet component. We also
predict the appearance of a long-range triplet in a variety
of S/F diffusive systems in which the SO coupling is finite,
and demonstrate that the singlet-triplet conversion via SO
coupling is more likely to happen in lateral structures rather
then multilayer transversal systems. Our results can be easily
extended for arbitrary spin fields and thus unify in a natural way
all mechanisms for the singlet-triplet conversion, providing
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a useful tool for the description of the physics underlying
superconducting hybrid systems with generic spin fields.
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