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Abstract
The full retarded electromagnetic force experienced by swift electrons moving
parallel to planar boundaries is revisited, for both metallic and dielectric targets,
with special emphasis on the consequences in electron microscopy experiments.
The focus is placed on the sign of the transverse force experienced by the
electron beam as a function of the impact parameter. For point probes, the force
is found to be always attractive. The contribution of the induced magnetic field
and the causality requirements of the target dielectric response, given by the
Kramers–Kronig (K–K) relations, prove to be crucial issues at small impact
parameters. For spatially extended probes, repulsive forces are predicted for
close trajectories, in agreement with previous works. The force experienced by
the target is also explored, with the finding that in insulators, the momentum
associated to Cherenkov radiation (CR) is relevant at large impact parameters.
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1. Introduction

Although the force between moving electrons and bounded media is a well studied problem,
recent experiments and new calculations have questioned its sign. Besides the apparent
simplicity of the system, when the spatial extension of the beam is considered, or the
complexity in the electromagnetic response of the medium is accounted for, counter-intuitive
effects may arise [1–3].

The retarding force along an electronʼs trajectory in an inhomogeneous medium has
attracted the most attention in recent decades due to its interest for electron energy loss
spectroscopy (EELS) in scanning transmission electron microscopy (STEM) [4, 5]. Nowadays
this technique has become a very accurate tool currently used to characterize nanostructures and
map plasmons in space with high resolution [6, 7].

The transverse component of the force has received less attention, but in general it is
assumed to be attractive and small, so that the electron trajectory is unaffected by the interaction
with the target. Nevertheless, several experiments have questioned the expected behavior. For
instance, three decades ago Cowley [8, 9] reported strong deflections of about 10−3 rad
(attractive) when a 100 keV electron beam passed close to targets of magnesium oxide (MgO)
and gold (Au) of 100 nm side at a distance of around 1 nm. These experiments stimulated
different calculations of the image force within non-retarded classical dielectric theory [10–12],
considering infinite planar surfaces or spherical targets [13]. Although these approaches
satisfactorily explained the energy losses, they predicted deflections three orders of magnitude
smaller that the observed ones. García–Molina et al [14] calculated both components of the
force including retardation effects, but they did not include the magnetic field contribution to
the transverse component of the force on the ground that for moderately relativistic probes
(80 keV), it was negligible. Forstmann et al [15] studied the energy loss of electrons interacting
with non-abrupt surfaces as a problem of optics, i.e., by calculating the reflection at the surface
of the electromagnetic fields of the external beam. In the context of particle accelerators,
Schieber and Schächter [16] studied the reaction forces on relativistic particles moving above a
dielectric or metallic interface by distinguishing the contribution of evanescent and propagating
waves, in the cases when Cherenkov radiation (CR) is emitted. They found that the evanescent
contribution is always attractive, whereas the Cherenkov part reverses its sign for very high
velocities. However, the total transverse force remains always attractive.

More recently, this problem has received a further boost by the possibility of manipulating
metallic nanoparticles (NPs) with electron beams, in a similar way to optical tweezers, by
transferring linear and angular momenta [4, 17] to the target. Recent advances in electron
microscopy allow monitoring of the movement of nanometric gold particles under the action of
a well-focused electron beam, finding that the force experienced by the particle becomes
repulsive at small impact parameters [18, 19]. These experiments have stimulated new
relativistic calculations accounting for a precise description of the target [3, 20] which
reproduce the observed repulsive interaction; however, the physics behind this effect is still
unclear. The electromagnetic interaction is not the only mechanism able to explain this
anomalous momentum transfer. Batson et al [3] have pointed out the possibility of other
mechanisms leading to the repulsive behavior: namely, the secondary electron emission and
electron diffraction.

In most of these theoretical approaches the probe, assumed to be a point charge, is
described as a classical particle. Several works have concluded that, for fast probes, the non-
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retarded quantal effects in EELS may be understood in terms of the classical result averaged out
over the lateral extension of the beam [21, 22]. Furthermore, the beam spatial extension is an
interesting issue in the case of coherent extended probes. In fact, recent experiments performed
with spatially extended coherent electron probes at low energies (1.6 keV) have shown a loss of
coherence as an effect of the scattering with a large flat surface [23]. These results have been
explained in terms of the inelastic interaction of the electron with the target [24]. In the
ultrarelativistic limit, at energies and beam widths well above those of the actual STEM setups,
Rebernik [1] demonstrated that the interaction between a surface and a charge packet moving
paralell to it can become repulsive above a critical relativistic energy. Later, Rebernik and
Podgornik [2] have predicted that the interaction becomes repulsive even for point charges
when the medium is an uniaxial dielectric.

The aim of this study is to shed light on the different factors which determine the sign of
the force in the simplest geometry. We calculate the electromagnetic force experienced by
relativistic electrons of energies commonly used in EELS experiments (in the range
100–400 keV), placing the focus on the transverse component and analyzing the role played
by the electric and magnetic components of the Lorentz force as the impact parameter and the
velocity of the beam are varied. We consider typical metals as aluminum (Al), described with
the Drude function, or Au, characterized both with a parametrized Drude–Lorentz function and
experimental data. Experimental data are also used in the study of a MgO interface, an insulator
presenting a band gap below 6.8 eV, so that it provides an energy window open for emission of
CR. In the cases where experimental dielectric data are used, we discuss the need for causal
response functions, verifying the Kramers–Kronig (K–K) constraints. This is a consequence of
the very large range of frequencies contributing significantly to the transverse force for beam
trajectories close to the surface. Finally, we compare the force exerted by the electron on the
dielectric medium, calculated through the Maxwell stress tensor, with that experienced by the
probe.

In the derivation of analytical expressions, atomic (a.u.) and electromagnetic Gaussian
units are used.

2. Force on a point electron probe moving parallel to a planar interface

We consider first the force experienced by a point electron moving in vacuum with velocity v,
parallel to a planar boundary (x = 0) of a medium characterized by a local dielectric function ϵ ω( ),
as depicted in figure 1. The corresponding current density is δ δ δ= − −x b y z vtJ v ( ) ( ) ( ), and
the resulting force on the electron is the Lorentz force = + ×−cF E v B1 , where E and B are the
induced electric and magnetic fields evaluated at the charge position. The induced

Figure 1. Point charge moving in vacuum with velocity v parallel to a planar boundary
with a medium of permittivity ϵ ω( ), at impact parameter b.
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electromagnetic field is obtained as the solution [14] of the wave equation for the potentials in
subspaces <x 0 and >x 0, using the boundary conditions at the interface x = 0. The solutions
derived for the three spatial components of the fields in both subspaces are given in appendix A.
From them, it is straightforward to obtain the expressions for the transverse (Fx) and longitudinal
(Fz) components of the force, which are written in terms of a single response function Σ of both
frequency ω and the parallel component of the momentum ky:

⎡⎣ ⎤⎦∫ ∫π
ων Σ ω= − ∞ ∞

ν−( )F
v

dk d k e
2

Re , (1)
0 0

x y y
b

0
2 0

⎡⎣ ⎤⎦∫ ∫π
ω ω Σ ω= − ∞ ∞

ν−( )F
v

dk d
v

k e
2

Im , , (2)
0 0

z y y
b2 0

where

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥Σ ω

ν ν ν
ν ϵ
ν ν ϵ

γ ν ν=
+

−
+

+ −−( )k ,
1

( )

2 ( 1)
( ) , (3)0

2

y
0 0 0

2
0

ν β ϵ ω ω= + −k v[1 ( )] /y
2 2 2 2 , ν ω γ= +k v/y

2
0

2 2 2 , β = v c/ , and γ β= − −(1 )2 1/2 is the
Lorentz factor.

These expressions are equivalent to the ones reported in [16]. Notice that, although the
longitudinal component (the stopping power) agrees with the expression given by García
Molina et al [14], the transverse one is not the same, because the authors neglect the magnetic
contribution to the Lorentz force. In the limit β → 0 the well-known non-relativistic
expressions [10, 12] are recovered from equations (1) and (2):
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= − −
+

∞
F

v
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b

v

2 2
Im

( ) 1
( ) 1

. (5)
0

z 2 0

Note that Σ ωk( , )y only depends on the parameters of the target and on the velocity of the
probe, while the impact parameter dependence lies just on the exponential factor ν−e b2 0 present
in both equations (1) and (2). This function is the characteristic response function of the
interface, equivalent to the non-retarded function ϵ ϵ− +( 1)/( 1) in equations (4) and (5), but
due to retardation it includes a velocity dependence accounting for the dispersion of surface
excitations.

In order to interpret the interaction in terms of scattering events which involve exchange of
energy ω and moment transfer k, it is helpful to recast the longitudinal component Fz as:

∫ ω ω
ω

= −
∞

F d
dP

dzd
, (6)

0
z

so that the magnitude ωdP dzd/ is interpreted as the probability (per unit length) of losing
energy ω:

⎡⎣ ⎤⎦∫ω π
Σ ω=

∞
ν− ( )dP

dzd v
dk e k

2
Im , . (7)

0
y

b
y2

2 0
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The parameter ν0 may be interpreted as the modulus of kx, the transverse wave vector

component associated to the evanescent fields ν ω ω= = − −− −k i c k vy
2

x 0
2 2 2 2 . Then, the

momentum transfer per unit length Δ Δzp/ is written as:

⎡⎣ ⎤⎦∫ ∫Δ
Δ π

ω Σ ω= = − ∞ ∞
ν−( )

p

z

F

v v
dk d k k e

2
Im , , (8)
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x x
y x y

b
2

2 0

⎡⎣ ⎤⎦∫ ∫Δ
Δ π

ω Σ ω= = − ∞ ∞
ν−( )

p

z

F

v v
dk d k k e

2
Im , , (9)

0 0

z z
y z y

b
2

2 0

where ω= −k vz
1 is the longitudinal component of the momentum. In this way, the set of

equations (7)–(9) provides a description of the scattering of the probe in terms of the creation of
excitations of momentum ω= −k k vk ( , , )x y

1 and energy ω. The function Σ describes the
probability (always per unit length) of exciting such a process.

In order to visualize the surface excitation spectrum of a metallic interface, we have
represented in figure 2 the real and imaginary parts of Σ ωk( , )y for a Drude function
corresponding to aluminum, ϵ ω ω ω ω Γ= − + i( ) 1 /( ( )p

2 , with ωp = 15.3 eV and Γ = 1 eV. The
energy of the probe is 300 keV (β = 0.78) in this case, a value which is nowadays available in
STEM experiments. The behavior of both the real and imaginary parts of the response function
is determined by the surface plasmon dispersion ω k( )y , which is red shifted with respect to the
non-retarded value of the surface plasmon ω ω= / 2s p , recovered for large values of ky (see
[5]). The surface plasmon energy corresponds to the poles of the response function Σ ωk( , )y ,
i.e. the solution of equation ν ϵν+ = 00 , which in its turn leads to the same solution of the
dispersion relation ω ϵ ϵ= +c k /( 1)2 2 2 for excitations with well-defined longitudinal wave
vector ω=k v/z . In figure 3 we show the surface plasmon dispersion ω k( )y for different
energies of the probe. As expected, the deviation from the flat non-retarded value ωs is more
relevant as the energy of the probe increases and also at large wavelengths of the induced
excitations.

Figure 2. Color maps of (a) real and (b) imaginary parts of Σ ωk( , )y function vs energy
and parallel component of momentum ky, for a Drude dielectric function corresponding
to Al (ωp = 15.3 eV and Γ = 1 eV). The energy of the probe is 300 keV (β = 0.78).
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The imaginary part of Σ is always positive and strongly peaked around the surface
plasmon dispersion curve. Notice that the exponential factor ν−e b2 0 involved in the force
(equations (1) and (2)), determines the region (ν <b 10 ) of the ky-ω plane, significantly
contributing to the integrals for a given impact parameter. As a consequence of the dispersion
relation, the retardation effects become relevant in the energy loss spectrum ( ωdP dzd/ ) at large
impact parameters, where the main contribution arises from small ky. In the plot of the real part
of Σ ωk( , )y (figure 2(a)), the surface plasmon dispersion curve defines the borderline between
positive and negative contributions to the transverse component of the force, showing that the
surface plasmon excitations do not contribute to the transverse force.

The retardation effects in transition metals and insulators are more difficult to analyze due
to the complexity of their excitation spectrum. An accurate description of the dielectric function
of these materials requires the use of experimental data. The case of insulators which are
transparent at low frequencies presents an additional interest, because these media can sustain
propagating electromagnetic fields given by the term ν−e x (see appendix A). This is the so-called
CR, emerging in the region of the excitation space where ϵ is real and ν purely imaginary, i.e.,

ω ϵβ< −k v( / ) ( 1)y
2 2 2 . This implies small values of ky and large values of both the velocity and

the real part of the dielectric function in the gap (so that ϵβ > 12 ).
For an insulator of this type, as MgO, the real and imaginary parts of Σ ωk( , )y are

represented in figure 4 for 300 keV electrons. As in the previous example of a Drude metal, we
observe that the imaginary part, figure 4(b), is always positive, and the real one, figure 4(a),
presents two regions of opposite sign. The color maps of both plots have been truncated in order
to enhance the contrast between the different regions, but the contribution in the region where
the Cherenkov condition is fulfilled is considerably higher. The energy region (ω ⩽ 6.6 eV)
where CR is produced is evident in figure 4(b), where the boundary in the ω−ky space for this
phenomenon has been traced in a dashed white line.

Although the present work is not focused on the energy loss spectra, for the following
analysis it is instructive to discuss first how the features of the function Σ ωk( , )y , as shown in
figures 2 and 4, are reflected in the EEL spectra of figure 5, where the retarded and non-retarded

Figure 3. Surface plasmon dispersion curves for a planar semi-infinite medium
described by a Drude dielectric function and four different values of the electron probe
energy E.
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results are displayed for two values of the impact parameter. As mentioned above, for a given
impact parameter, the region of the ω−ky space significantly contributing to the interaction is
loosely given by ν ≲b 10 , a condition which limits the excitation spectrum into a window
ω γ≲ −vb 1 and ∣ ∣ ≲ −k by

1. For the 300 keV electron probe under consideration, these limiting
values are ky = 0.53 a.u. and ω = 90 eV for b = 0.1 nm, while for b = 2 nm those values are
reduced down to ky = 0.03 a.u. and ω = 4.5 eV. In metallic targets, the consequences of
retardation induced dispersion are clearly visualized in the EEL spectra of figure 5(a). In this

Figure 4. Color maps of (a) real and (b) imaginary parts of Σ ωk( , )y function vs energy
and parallel component of momentum ky, for a 300 keV electron interacting with a MgO
interface. Experimental values of the dielectric function have been used [25]. The ky
region where ν is purely imaginary is bounded by the dashed white line

ω ϵ ω β= −−k v ( ) 1y
1 2 .

Figure 5. Retarded (black) and non-retarded (red) energy loss probability per unit length
for a 300 keV electron probe moving parallel to (a) an Al interface described by a Drude
function and (b) to a MgO interface. Continuous lines correspond to b = 0.1 nm, and
dashed ones to b = 2 nm. Parameters of the Drude function are as in figure 2.

7

New J. Phys. 16 (2014) 073048 A Rivacoba and N Zabala



figure, while in the non-retarded approach (red lines) the spectra are centered at the surface
plasmon energy (10.8 eV for Al), when retardation is considered (black lines), the spectrum is
spread into a wider energy range. For the smaller impact parameter b = 0.1 nm, the intensity of
the main peak is decreased, and a shoulder emerges around 8 eV, but for the higher impact
parameter of 2 nm, the spectrum is clearly broadened and blue shifted.

In figure 5(b) we show the retardation effects in the EEL spectrum corresponding to MgO.
Comparison with the non-retarded spectra reveals that the main consequence derived from the
relativistic expressions is the presence of non-negligible losses in the energy region of the gap,
which are due to the emission of CR. A striking feature of those plots is the weak impact
parameter dependence of the radiative losses (compare continuous and dashed black lines). The
components of the probe on the surface decay as the modified Bessel functions λK b( )0 and

λK b( )1 , where λ ω γ= v/( ) (see for example [26]). For the present probe energy (300 keV), the
decay length of the fields in the gap, λ−1, is larger than 50 nm. Therefore, at small impact
parameters the intensity of the exciting fields at the interface are rather similar, independently of
the value of b. At large impact parameters, the softer decay of the low frequency fields means
that radiation is the main inelastic channel contributing to the loss spectrum. The relevance of
radiative losses at high impact parameters has been experimentally found in porous alumina
[27, 28].

3. The character of the transversal component of the force

Let us focus now on the transversal component of the force acting on the probe electron, which
is obtained from equation (1), involving the real part of the Σ function. First we study metallic
targets, and then we consider insulators.

3.1. Transverse force in metallic interfaces

In figure 6 we represent, for two different probe energies, the impact parameter dependence of
the transverse component of the force for a swift electron passing by an Al interface. We have
plotted both electric and magnetic contributions to the Lorentz force as well as the non-retarded
result. A remarkable result is that, although the total retarded force remains always attractive
(negative), the electric contribution takes positive values near the surface ( <b 2 nm for
300 keV electrons), being balanced by the attractive magnetic contribution, which turns out to
be the leading term. The relevance of the magnetic force is still a more unexpected result in the
100 keV (β = 0.55) plot. Furthermore, the comparison of the total force plots shows that the
retarded force is always weaker than the non-retarded one, except for a small range of b near the
surface, where the retarded force is divergent. The divergent behavior of this force is a
consequence of the local character of the dielectric function used in the current approach and
might be corrected by imposing a cutoff in the momentum integral. It contrasts with the finite
limit found by Muscat and Newns [11] for an electron gas, ω= −F v/s

2
x

2 as →b 0. On the other
hand, at large impact parameters one can numerically show that, in the limit → ∞b , the
transverse force γ→ −F b b( ) (4 )x

4 1, a result which can be interpreted as the quasi-static limit of
the image force. Based on the non-retarded expression (4), we analyze the role played by the
surface plasmon in the transverse component of the force. First we notice that, for Drude metals,
the surface response function ϵ ω ϵ ω− +[ ( ) 1)/( ( ) 1] takes positive or negative values
(attractive or repulsive contributions to the force) depending on whether ω is smaller or larger
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than ωs. For frequencies below ωs, the electron gas can follow the exciting field so that the
corresponding induced surface charge density is in phase; therefore the contribution to the force
is attractive. At frequencies above ωs, the induced density is out of phase, and consequently the
contribution is repulsive. The most striking difference between both retarded and non-retarded
approaches is the divergent behavior of the retarded one at grazing incidence. Actually, the
finite non-retarded limit is quite counter-intuitive if one thinks in terms of the image force acting
on the probe. In the limit →b 0 one can replace the Bessel function in equation (4) by the
leading term of its series expansion, ∼ −K x x( )1

1, so that this equation reduces to:

⎡
⎣⎢

⎤
⎦⎥∫π

ω ϵ ω
ϵ ω

= − −
+

∞
F b

vb
d( )

1
Re

( ) 1
( ) 1

. (10)
0

x

Then, by applying the K–K relation for the surface response function [29],

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥∫ϵ ω

ϵ ω π ϵ ω
ω

ω ω
ω−

+
= − −

′ +
′

− ′
′

∞
Re

( ) 1
( ) 1

4
P Im

1
( ) 1

d , (11)
0 2 2

where the symbol P stands for the Cauchy principal value. It is straightforward to prove that the
integral of equation (10) vanishes for any causal dielectric function, so that in general the →b 0
limit calculated in this way is not well defined. In the particular case of a Drude dielectric
function, the integral of equation (4) can be calculated analytically [5]. Furthermore, the Bessel
function in equation (4) works as an effective cutoff in the range of high ω values (repulsive
contributions) in the integral, so that the non-retarded force is always attractive.

This argument points to the causality as the physical reason for the non-divergent limit of
the transverse component of the non-retarded force and provides an intuitive explanation for its
finite limit: in the local approach, causality implies that the induced charge density, the so-called
surface wake [30], is located at the interface, just behind the probe, so that in the →b 0 limit
the resulting force is parallel to the velocity; i.e. it contributes basically to the stopping power.
The induced charge density diverges as →b 0, but the resulting force is balanced by the

Figure 6. Transverse component of the force experienced by (a) a 100 keV and (b) a
300 keV electron moving parallel to an Al interface described by a Drude function
(black line). The electric (blue line) and magnetic (green line) contributions to the
Lorentz force have been also plotted. The red lines correspond to the non-retarded
expression.
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vanishing projection of the total force in the direction normal to the surface so that the product
of both terms in equation (10) remains finite. In order to check the robustness of Muscatʼs limit
[11], we have calculated the non-local corrections arising from the k dependence of the
dielectric function in the specular reflection model [31, 32], and we have concluded that they
are negligible in the range of probe energies of interest in electron microscopy. Actually, using
the hydrodynamic dielectric function [33], we have found that the non-local correction to
Muscatʼs value at the interface is about 3% for a 100 keV electron. Furthermore, the non-local
corrections are still smaller as the velocity of the probe increases, so that one can safely consider
that the Muscatʼs limit is physically sound. In the retarded theory, the balance between
attractive and repulsive contributions to the total force is arguably broken so that it becomes
divergent as →b 0.

The physically relevant magnitude is the total Lorentz force. Nevertheless, it is helpful to
analyze independently the splitting of this force into electric and magnetic terms. For this
purpose we perform a spectral analysis of equation (1) by introducing the spectral function
 ω( ), which represents the ω contribution to the force: ∫ ω ω= ∞

F d ( )
0x . In figure 7 we show

this function (black line), together with its electric and magnetic contributions. Note that almost
at any frequency the electric component is about two orders of magnitude larger than the
magnetic one, so that the total force and the electric part are practically indistinguishable.
Nevertheless, near the surface, the total magnetic force turns out to be the leading one, because
the cancellation between attractive and repulsive contributions is much smaller than for the
electric one. This fact can be visualized in table 1, which evidences the strong cancellation of
contributions below and above ωs, present in the integral of the electric part. Although in this
table the differences between the retarded electric contribution and the non-retarded value are
small, the balance between attractive and negative contributions reverses the sign of the total
electric force.

The origin of the magnetic force is the current density induced in the medium. For probes
close to the surface, the main contribution to the transverse force arises from the normal
component of the current, which in its turn is proportional to the normal component of the

Figure 7. Spectral function  ω( ) of the transverse force experienced by a 300 keV
electron moving parallel to an Al interface at impact parameters =b 0.1 nm. The black
line corresponds to the total function, and the blue dots and green line represent its
electric and magnetic contributions respectively. A factor 50 has been used in the
magnetic contribution for the sake of clarity.
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electric field inside the medium. In the non-retarded limit, neglecting the damping, the field
inside the target, just at the surface, is given by ω ω ω ω ω= = − =−E x E x( 0 , ) /( ) ( 0, )s x

p2 ( )
x

2 2 ,
where ω=E x( 0, )x

p( ) stands for the electric field created by the probe at the surface.
Furthermore, the leading contribution to these currents comes from the wake behind the probe.
Notice that ωs determines the crossover value for the direction of the induced current and thus
for the magnetic force on the probe. Considering a positive probe, the currents are oriented
toward the surface for ω ω< s, and it is trivial to see that the corresponding magnetic force is
attractive. For ω ω> s, the force is reversed. Similar arguments explain the opposite sign of the
electric and magnetic contributions to the force at the same energy.

In order to check the validity of the former results for other metals which are not properly
described with a Drude dielectric function, we study the case of Au, a material which has been
recently used in experiments showing the manipulation of metallic NPs by an electron beam [3].
Experimental data for different materials [34] covering a wide range of frequencies have been
widely used in many theoretical approaches [4, 5]. Most of those dielectric data are obtained
from optical or EELS measurements and, although in general they reproduce accurately EELS
and light absorption spectra, in some cases they fail to reproduce the causal nature of the
material response given by the K–K relations. Actually, we have checked that the tabulated
values of Au provided in reference [34] do not fulfill the K–K relations, and we have considered
the parameterization proposed by Werner et al [35]. These authors approximate the Au
dielectric function by a set of nine Lorentzians:

∑ϵ ω
ω ω ω Γ

= +
− +( )

A

i
( ) 1 , (12)

k
2

k

k

k

where =k 1 ,..., 9 and Ak, ωk, and Γk are real parameters. The fact that this function has all the
poles in the lower half ω-plane warrants its proper causal behavior. On the other hand, the bulk
loss function calculated from this dielectric response is in reasonably good agreement with the
one obtained from Palikʼs data [34].

In figure 8 we explore the dependence of the transverse force on the probe impact
parameter. The plots of the electric and magnetic contributions, as well as the total retarded
force, are qualitatively similar to the ones shown previously for the Drude function. The
retarded plot also diverges as →b 0, while it is numerically proven that in this limit the non-
retarded force remains finite:

Table 1. Electric and magnetic contributions to the total Lorentz force below and above
ωs for a 300 keV electron traveling at a distance b = 0.1 nm from an Al interface
(figure 7). The results corresponding to the retarded case have been added to allow
comparison.

Contribution ∫ ω ω
ω

d ( )
0

s ∫ ω ω
ω

∞
d ( )

s
∫ ω ω

∞
d ( )

0

Retarded electric − × −0.117872 10 2 × −0.119650 10 2 × −0.1777 10 4

Retarded magnetic × −0.882746 10 5 − × −0.401503 10 4 − × −0.3132 10 4

Non-retarded − × −0.118676 10 2 × −0.117297 10 2 − × −0.1378 10 4
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∑= −
→

F
v

Alim
1

2
, (13)

b
x

k

k
0 2

so that near the surface the transverse force is related to the density of valence electrons of the
target. Notice that the Muscatʼs limit may be considered as a particular case of equation (13).

To visualize the relevance of the causality of the response function, in figure 8 we have
added the results of the calculation performed using Palikʼs data [34]. At large impact
parameters, where most of the contribution to the force arises from the low ω region, both
retarded and non-retarded plots are almost identical. This is a consequence of the relatively
good agreement of both functions in the valence excitation region. Nevertheless, both the
retarded and non-retarded plots turn out to be positive (repulsive force) at small values of b. In
the non-retarded case, the origin of this positive value can be traced to the fact that the integral
in equation (10) takes a non-vanishing negative value. This unphysical result also questions the
reliability of the retarded plot obtained with Palikʼs data. The need for causally well-behaved
dielectric functions has also been reported in the calculations of the Casimir forces between
nanostructures [36, 37].

Palikʼs data have been used in the theoretical study of the crossover of the force exerted by
STM electrons in small Au particles [20]. To check the effect of using a non-causal dielectric
function for NPs, we have performed a preliminary calculation using the non-retarded
expression for spheres [13], which demonstrates that both Palikʼs and Wernerʼs dielectric
functions lead to pretty similar plots of the transversal force in NPs of radius smaller than 5 nm.
The differences for both responses increase for larger particles.

The same warning about the causality related behavior should be considered in
calculations of the force performed with simplified response functions. For instance, in [16]
authors study Cherenkov effects by using a constant (real) dielectric function, which obviously
does not fullfil the K–K relations. Those results would be reliable only in the limit of very large
impact parameters, where only the frequencies in the gap provide a significant contribution.

Figure 8. Transverse component of the force experienced by a 300 keV electron moving
parallel to a Au interface described by the dielectric function of [35]. The electric (blue
line) and magnetic (green line) contributions to the Lorentz force have also been plotted.
Circles (◦) and triangles (Δ) correspond to the retarded and non-retarded plots
calculated with the dielectric data by Palik [34].
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Finally it is worth noting that, as pointed out above, Palikʼs data have been widely used to
describe EELS and light scattering experiments of Au nanostructures [3, 20, 38, 39], but
causality has little effect in those cases where the studied magnitude is a spectral function of ω,
similarly to equation (7). Both Palikʼs and Wernerʼs dielectric functions describe reasonably
well the measured spectra. Moreover, when the longitudinal force is computed and integration
over ω is required, contrary to the transverse force, it does not change its sign, because the
contributions to the integral are positive in the whole ω-spectrum. Therefore, the resulting
longitudinal force, although inaccurate, does not present the unphysical crossover in the sign
shown in figure 8.

3.2. Transverse force in insulators

The case of insulators is of special interest, because they open the possibility of dynamic effects
associated to the presence of radiation. In particular, we have chosen MgO because of the
wideness of its gap and the large values of the real dielectric function there (the maximum is 7.3
at the gap edge). The experimental dielectric function considered [25] was derived from
reflectance measurements and covers the energy spectrum up to 28 eV, a region where most of
the valence electron excitations occur. The calculation procedure presented below ensures that
the function safely verifies the K–K relations. We have extended the response above the highest
tabulated data by means of a single Lorentzian function so that the resulting response is
continuous and verifies the causality condition (vanishing of the integral in equation (10)).
Because most of the structure of the dielectric function occurs in the tabulated region of ω, the
precise extrapolation method has little influence on the fulfillment of the K–K relations.

In figure 9 we plot the transverse component of the force as a function of the impact
parameter for a 300 keV electron traveling close to a MgO interface. The plots of the Lorenz
force and its electric and magnetic components do not differ significantly from the case of
metals studied in the previous section. Actually, the value of the force at grazing incidence is
similar to that found for Al (figure 5), a result that supports the statement that the force near the

Figure 9. Transverse component of the force experienced by a 300 keV electron moving
parallel to a MgO interface. The electric (blue line) and magnetic (green line)
contributions to the Lorentz force have been plotted as well. The red line corresponds to
the non-retarded expression.
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surface depends basically on the valence electron density of the target, as stated by
equation (13). The fact that the force in insulators is similar to that of metals suggests that the
crossover in the sign of the force found in metallic NPs, could also occur in dielectric
nanotargets. The comparison with metallic targets at the same beam energy shows that for
insulators, the magnetic component of the Lorentz force decreases faster with increasing impact
parameters. This is a consequence of the reduction of the contributing ω range with increasing
b, so that the response arises from the gap region, where the medium is an insulator.

4. The transverse force on extended beams

It is straightforward to generalize the current theory to the case of a spatially extended probe.
We consider a beam represented by a stationary charge density ρ r( ), propagating with constant
velocity v parallel to a flat interface. For the sake of simplicity we assume the charge density to
be confined in the vacuum region and symmetric along the y and z axes, so that its Fourier
transform ρ x k k( , , )y z is real. Then the components of the total force experienced by the probe
due to its interaction with the surface are written as follows:

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦

∫ ∫ ∫ ∫π
ωρ ω ρ ω ν

Σ ω

= − ′ ′

×

∞ ∞ ∞ ∞

′ν− +( )

F
v

dx dx dk d x k
v

x k
v

k e

2
, , , ,

Re , , (14)

0 0 0 0
x y y y

y
x x

0

( )0

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦

∫ ∫ ∫ ∫π
ωρ ω ρ ω ω

Σ ω

= − ′ ′

×

∞ ∞ ∞ ∞

′ν− +( )

F
v

dx dx dk d x k
v

x k
v v

k e

2
, , , ,

Im , , (15)

0 0 0 0
z y y y

y
x x( )0

which obviously reduce to equations (1) and (2) for one point charge.
To visualize some consequences of the spatial extension, we consider a probe with a

Gaussian distribution along the y axis at impact parameter b:

ρ
π σ

δ δ= − σ
−x b z er( )

1

2
( ) ( ) . (16)

y

2

2

2

Then, it is straightforward to write the total force as:

⎡⎣ ⎤⎦∫ ∫π
ω ν Σ ω= − ∞ ∞

σ ν− −( )F
v

d dk e k e
2

Re , , (17)
0 0

x y
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2 2
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σ ν− −( )F
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d dk e k e
2
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2
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2 2
0

These expressions mean that the overall effect of the lateral extension of the probe derives from
the reduction of the range of ky contributing to the scattering. This reduction of the momentum
space means that the effect of the beam extension is to be more relevant at small impact
parameters, as suggested by the intuitive model of the image charge. For EELS in metallic
targets, this cut-off not only represents a weakening of the interaction but also a stronger blue
shift of the surface excitation spectrum due to the dispersion effect described in section 2.

Recently Rebernik [1] found that, whereas the force on a point charge is attractive toward
the surface even at ultrarelativistic velocities, a charge packet may be repelled above a critical
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relativistic energy. In figure 10 we have checked this point by plotting the impact parameter
dependence of the transverse component of the force for 400 keV beams of different widths
corresponding to σ = 0, 1, 10, and 100 nm, moving in front of an Al surface. The force is
attractive except for the widest beam of 100 nm. The non-retarded plots remain always
attractive, showing that the reversal of the sign of the force is a relativistic effect. For such broad
beams, the ky space contributing to the force is reduced to an extremely narrow band near the
origin, a region where the retardation induced dispersion is most noticeable (see figure 2).
Given that the surface plasmon marks the border between attractive (below ωs) and repulsive
(above ωs) forces, the balance of both contributions eventually turn out to be repulsive.
Nevertheless, these broad beam configurations do not correspond with the beam conditions
actually used in electron microscopy.

Furthermore, this approach, in which one does not account for the direct interaction among
different elements of the beam packet, only makes sense in the case of a single particle;
therefore its applicability is reduced to the quantum description of a single particle where the
extension of the beam is given by the wave function of the probe Φ r( ). Neglecting the
momentum associated to the probe recoil, in the non-retarded approach it has been proven that
the effects of the transverse extension of the beam in EELS quantum expressions can be
reproduced by the classical theory by assuming that the probe transverse charge density is just
the quantum probability [40]. The current approach may be considered an extension of the
former theory to include the retardation effects in the response of the target.

5. The force on the surface and momentum conservation

In the actual STEM setup, only the longitudinal component of the force is probed, as far as the
transverse one leads to deflection angles of the beam too small to be detected. The Muscatʼs
limit provides a simple estimation of the angle deflection θ per unit length in metals at grazing
incidence:

Figure 10. Transverse force experienced by a Gaussian electron probe of 400 keV
extended sideways in the y direction and moving parallel to an Al interface, as a
function of impact parameter b. Probes of different widths (different σ values) are
considered and compared with the point electron beam σ = 0. The non-retarded
expressions are also plotted for comparison in the extreme cases of σ = 0 and σ = 100
nm.
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Δθ
Δ

ω
=

z v
, (19)s

2

4

which for a typical STEM configuration, and assuming a 100 nm long target, leads to angles
smaller than 10−5 rad, a value two orders of magnitude smaller than the typical acceptance semi-
angle. Nevertheless, the effects of the interaction on small particles can be detected just as small
displacements from their initial positions [3].

Contrary to the non-retarded theory, where momentum conservation implies that forces on
both probe and target are equal, the relativistic theory adds radiation as a possible carrier of
momentum and energy so that the strength of forces acting on the target and on the probe are
not necessarily balanced.

The total force experienced by the target may be written in terms of the flux of the
Maxwell stress tensor, Tij, through its surface [26]. To calculate it, we consider the surface
sketched in the inset of figure 11(a): it is a box with faces at = ± ∞y z, , and lateral faces at the
external side of the surface, = +x 0 , and at = −x d , where d is a distance large enough to
ensure that all the evanescent components of the fields vanish. After some algebra, the
components of the force are recast as double integrals in ky and ω:

⎜ ⎟

⎜ ⎟

⎡
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⎛
⎝

⎞
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⎛
⎝

⎞
⎠

⎤
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ω ω ω

ω ω

= = =

− = − =
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+F

v
dk d T x k k

v

T x d k k
v

1

4
Re 0 , , ,

, , , , (20)

0 0
i y ix y z

ix y z

4

where the index i refers to x or z for the transverse or longitudinal components of the force,
respectively. The components of the tensor are:

Figure 11. (a) Transverse and (b) longitudinal components of the force acting on a
300 keV probe (continuous black) and on a MgO target (black dashed). The black
dotted line is the force associated to radiation (multiplied by a factor 25). For
comparison the non-retarded forces on the target are plotted in the red dash-dotted line.
In a) the inset sketches the surface used in the calculation of the force on the target.
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With absolute generality it can be proved that the first integrals (at = +x 0 ) in equation (20)
are fully equivalent (up to the sign) to equations (1) and (2). This fact confirms that the flux
through the left surface (at = −x d) is the force associated to radiation. Therefore, in the case of
lossy media, where the flux through the left interface vanishes, we recover the action-reaction
law: all the momentum lost by the probe is converted into mechanical momentum of the
medium in a region of thickness Re ν −( ) 1 around the surface.

In the case of insulators, where CR becomes possible, both forces on the probe and the
target differ in the term associated to the momentum of radiation, i.e. the second integral in
equation (20). In figure 11 we show the balance between the three terms in both the transverse
and longitudinal components of the force for a 300 keV electron interacting with a MgO target.
The radiation is emitted inside the medium and forward (with respect to the probe trajectory),
and therefore it does not emerge from the target. It means that CR has no effect on the dynamics
of the target. The radiative contributions to both transverse and longitudinal components are
small (they are multiplied by a factor 25 in the plots), a consequence of the low momentum
carried by the radiation in the Cherenkov ω window. The small value of ω in the Cherenkov
range also explains the fact that away from the surface, the radiative contribution to both
components of the force decays more slowly than the force on the probe. Its effects on the
longitudinal component of the force experienced by the probe are noticeable, as shown in
figure 5(b). In the case of the transverse component of the force, CR introduces just a slight
negative correction, which does not modify the sign of the total transverse force. It means that
the attractive transverse force experienced by the target is stronger than that of the probe, while
in the longitudinal direction the accelerating force on the target is weaker than the stopping
force experienced by the probe.

Extension of these results to finite targets is not simple. On the one hand, CR radiation has
been proven to provide noticeable contributions to EELS in a laterally bounded medium [27],
showing that the boundaries of the target limit the CR spectrum to wavelengths compatible with
the condition of propagating modes, consequently reducing the momentum carried by the
radiation in comparison to that of the semi-infinite medium. Our computation shows that CR
effects are too weak as to significantly affect the dynamics of the system, so that its contribution
in a bounded target is expected to be negligible.

On the other hand, in a finite target there is the possibility of radiative decay of surface
excitations, a channel that in the case of planar interfaces is forbidden by the mismatch between
the dispersion relations of light and surface plasmons. The momentum transfer carried by the
radiation is present in the full retarded calculations for spheres worked out by García de Abajo
[41] and Howie and Reyes-Coronado et al [20], but it would be worthwhile to investigate its
role in the total dynamics of the system.
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6. Summary and conclusions

In this work we have studied the retardation effects in the dynamics of an electron probe
interacting with a semi-infinite medium, with energy in the range of interest in STEM
experiments. The focus has been placed on the sign of the transverse force, finding that for point
probes it is always attractive. In metals, the most relevant retardation effects arise from the
dispersion relation of the surface plasmon induced by the relativistic theory, while in insulators
the effects derived from the possibility of radiation in the medium prove to produce the most
noticeable differences. In general, we find that retardation effects tend to decrease the intensity
of the transverse force except just at the interface, where the retarded expression gets divergent.
In the study of the transverse force at small impact parameters, we have proved that the
magnetic contribution is the leading one. In this problem, we have also pointed out the
relevance of the causality of the dielectric function, warning about the need of checking this
point when using tabulated data. Furthermore, we have found no substantial difference between
the strength of the force in insulators and metals, an observation which suggests that insulator
NPs would be manipulated in the same way as metallic ones.

We have extended the formalism to analyze the effect of the lateral extension of the probe,
concluding that the transverse force can turn out to be repulsive for very broad beams, even at
moderately relativistic velocities of the probe.

Finally, we have analyzed the effect of the radiation in the dynamics of the system. In the
case of lossy media, where radiation is not allowed, the forces experienced by the target and the
probe balance one another exactly, but in insulators under conditions allowing Cherenkov
radiation, the magnitude of the transverse force acting on the target is larger than that acting on
the probe.
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Appendix A. Components of the electromagnetic field

In this work we use the following Fourier transform convention:

∫ ∫ω =
−∞

∞

−∞

∞
ω− · −f d dt e f tk r r( , ) ( , ). (A.1)i tk r( )

In the right region ( >x 0), the electric and magnetic fields are easily calculated with the
standard methods used in classical electrodynamics [42]:
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where α π δ ω= − ν− ∣ − ∣k v e4 ( )z
x b2 0 and β, ν, and ν0 are defined in section 2. In these equations

we have split the fields into the direct (the terms containing the factor α) and induced fields.
Inside the medium ( <x 0), the components of the electromagnetic field are:
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