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We apply real space renormalization group (RG) methods to study two quantum group inv
Hamiltonians, that of theXXZ model and the Ising model in a transverse field (ITF) defined in
open chain with appropriate boundary terms. The quantum group symmetry is preserved und
RG transformation except for the appearance of a quantum group anomalous term which vanis
the classical case. We obtain correctly the line of criticalXXZ models. In the ITF model the RG
flow coincides with the tensor product decomposition of cyclic irreducible representations ofSUqs2d
with q4 ­ 1.
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Real space renormalization group (RG) methods,
applied to quantum many-body Hamiltonians, originat
from the successful study of the Kondo problem
Wilson [1]. Later on people working in field theor
and condensed matter generalized it to other problems
using the Kadanoff’s concept of block [2,3]. The Bloc
method (BRG) has the advantage of being conceptu
and technically simple, but it lacks numerical accura
or may even produce wrong results. For this reas
the analytical BRG methods were largely abandoned
the 1980s in favor of numerical methods such as
quantum Monte Carlo approaches. In the last few ye
there have been new developments in the numerical
methods motivated by a better understanding of the er
introduced by the splitting of the lattice into disconnect
blocks. A first step was put forward in [4] where
combination of different boundary conditions applied
every block led to the correct energy levels of a simp
tight-binding model. This method, however, has not be
generalized to models describing interactions. A furth
step in this direction was undertaken by White in [
where a density matrix algorithm (DMRG) is develope
The main idea is to take into account the connection
every block with the rest of the system when choosi
the states which survive the truncation procedure. T
standard prescription is to choose the lowest energy st
of the block Hamiltonian. Instead, in the DMRG metho
one replaces the block Hamiltonian by a block dens
matrix and chooses the eigenstates of this matrix with
highest eigenvalues. The density matrix is construc
out of the ground state of a superblock which contains
desired block.

In this Letter we propose another RG method whi
uses the concept of quantum groups. This mathema
notion emerged in the study of integrable systems a
it has been applied to conformal field theory, invarian
of knots and manifolds, etc. [6,7]. The new applicatio
of quantum groups that we envisage has been parti
motivated by the aforementioned work of White, Noac
0031-9007y96y76(7)y1146(4)$06.00
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and collaborators [4] and it is probably related to
This relation is suggested by the fact that quantu
groups describe symmetries in the presence of nontri
boundary conditions. The typical example to understa
this property of quantum groups is given by the 1
Heisenberg Ising model with the anisotropic parame
D. The isotropic modelD ­ 61 is invariant under
the rotation group SU(2), but as long asjDj fi 1 this
symmetry is broken down to the rotation group U(1
around thez axis. One can “restore” this full rotation
symmetry by adding appropriate boundary operators
the Hamiltonian of the open chain. The classical gro
SU(2) becomes then the quantum group SUqs2d, where
the quantum parameter is related to the anisotropy
D ­ sq 1 q21dy2 [8,9].

These features ofq groups made them specially we
suited to implement a RG method which takes in
account the correlation between neighboring blocks. L
us show how this can be done explicitly in two exampl
in 1D: the Heisenberg Ising model and the Ising model
a transverse field (ITF).

Heisenberg Ising model (XXZ model).—The open spin
chain Hamiltonian is defined as

HN sq, Jd ­
N21X
j­1

hj,j11sq, Jd , (1)

hj,j11sq, Jd ­
J
2

∑
sx

j sx
j11 1 s

y
j s

y
j11

1
q 1 q21

2
sz

j sz
j11

2
q 2 q21

2
ssz

j 2 sz
j11d

∏
, (2)

where $sj are standard Pauli matrices acting at thejth
site of the chain. For the time beingq is an arbitrary
complex parameter. Observe that the successive te
in s

z
j 2 s

z
j11 in (2) when added into the totalH only
© 1996 The American Physical Society
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the standard bulk Hamiltonian.
Let us now introduce theq-group generators of SUqs2d

acting in the spin chain ofN sites [9].

Sz ­
1
2

NX
j­1

sz
j , (3)

S6 ­
NX

j­1

q21y2ssz
1 1···1s

z
j21ds6

j q1y2ssz
j111···1s

z
N d, (4)

which satisfy the quantum group algebra

fS1, S2g ­ sq2Sz

2 q22Sz

dysq 2 q21d . (5)

The important fact is that not only the whole Hamiltonia
(1) but also the site-site Hamiltonian (2) commutes wi
the generators (3) and (4) of SUqs2d:

fhj,j11, Szg ­ fhj,j11, S6g ­ 0 ; j . (6)

Hence the eigenstates ofHN sq, Jd can be classified
according to the representations of SUqs2d (see [9] for
details).

To construct a real space RG for the Hamiltonian (
we shall choose blocks of three sites. This is important
order to get a renormalized Hamiltonian of the same fo
as the original one. The block Hamiltonian involving th
first three sites is simply

HB ­ h12 1 h23 . (7)

Now we can applyq-group representation theory to diago
nalizeHB. There are three energy levels corresponding
the q-tensor product decomposition1y2 ≠ 1y2 ≠ 1y2 ­
1y2 © 1y2 © 3y2.

For q real and positive (i.e.,D $ 1) or q a phase
(i.e., jDj # 1) the lowest energy level of (7) is doubly
degenerate and corresponds to one of the spin 1y2
irreducible representations (irreps), which reads explici

j
1
2 l ­

1p
2sq 1 q21 1 1d

3 s2q21y2j # " " l 1 sq1y2 1 q21y2d

3 j " # " l 2 q1y2j " " # ld (8)

j 2
1
2 l ­

1p
2sq 1 q21 1 1d

3 sq1y2j # # " l 2 sq1y2 1 q21y2d

3 j # " # l 1 q1y2j " # # ld (9)

whose energy iseB ­ 2sJy2d sq 1 q21 1 2d.
If we take theq ! 01 limit in (1) and (2) we obtain an

Ising model HamiltoniansD ! `d with a unique ground
h

)
in
m

-
to

ly

state given by the Néel statej # " # " . . .l [notice that this
uniqueness is due to the boundary termsq 2 q21d ssz

1 2

s
z
N dy2]. On the other hand, for a block of three sites the

are four states of lowest energysj " # " l, j # " " l, j # " # l, and
j # # " ld, while for a block of four sites there is again
only one ground state given byj # " # " l. This means that
choosing an odd number of blocks is not appropriate
study the Ising limit of (2). To do so one should choos
an even number of sites, but this will not be pursued he
Hence we shall concentrate onq being a phase.

The renormalization prescription consists in choosi
the states (8) and (9) as the spin upj " l0 and downj # l0

states associated to the whole block as if it were a sin
site. Using the standard methods of BRG we obtain t
following RG-transformation laws for the spin operato
$Si acting at the sitesi ­ 1 and3:

sSx
i dRG ­ jsqdS0x , i ­ 1, 3 , (10)

sSy
i dRG ­ jsqdS0y , i ­ 1, 3 , (11)

sSz
i dRG ­ jsqdS0z 1 hisqd10, i ­ 1, 3 , (12)

where jsqd is a renormalization factor which depend
uponq as

jsqd ­ sq 1 q21 1 2dy2sq 1 q21 1 1d (13)

and

h1 ­ 2h3 ; hsqd ­ sq 2 q21dy4sq 1 q21 1 1d .

(14)

The multiplicative renormalization factorjsqd is common
to all the spin operators$Si as a consequence of th
full symmetry group SUqs2d. The “quantized” feature
of SUqs2d is reflected in the “quantum group anomaly
term in (12)–(14), which indeed shows the deviatio
from the classical casesq ­ 1d. Equations (10)–(12) are
quite different from the standard BRG analog for th
Heisenberg Ising model done in Ref. [10], where the R
equations forSx and Sy differ from those ofSz (i.e.,
jx ­ jy fi jz). Using Eqs. (10)–(12) we can get th
renormalized block-block Hamiltonianh3k,3k11. Putting
all terms together we arrive at the following effectiv
HamiltonianH 0 which acts on the chain havingNy3 sites,

H 0 ­ HNy3sq0, J 0d 1
N
3

eBsq, Jd

1

µ
N
3

2 1

∂
eBBsq, Jd , (15)

where

q0 ­ q , (16)

J 0 ­ j2sqdJ , (17)

eBsq, Jd ­ 2
J
2

s2 1 q 1 q21d , (18)
1147
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eBBsq, Jd ­ J
sq 2 q21d2s3q 1 3q21 1 4d

16sq 1 q21 1 1d2 . (19)

The eB contribution to the energy comes from the bloc
part HB while eBB is a novel contribution coming from
the quantum group anomaly. The remarkable feat
of Eqs. (15) and (16) is that the coupling consta
q, or alternatively D, does not flow under the RG
transformation,while J smd, which is the value ofJ after
m RG steps, goes to zero in the limit wherem ! `,
which in turn implies that the theory is massless. Hen
Eqs. (16) predicts correctly aline of critical modelsin the
rangejDj # 1. These models are described by conform
field theories (CFT) with central extensionc less than 1.
If we write the quantum parameter asq ­ eipysm11d then
c ­ 1 2 6ymsm 1 1d [11]. The boundary terms in (1
and (2) are responsible for this fact.

A nontrivial check of the validity of our RG method
can be given in the case whereq ­ eipy3 for which
c ­ 0 (percolation limit). The ground state energy ca
be computed exactly from the constant terms (15) (assu
thatN ­ 3m and performm RG steps), and is given by

E0sN , q ­ eipy3d ­ 2
3
4 N 1

3
4 (20)

This equation coincides with the exact result obtain
in [11] using Bethe ansatz. Since the RG method
variational, the previous result implies that we ha
actually constructed the exact ground state using
q RG technique, which therefore becomes exact
this particular case. This is consistent with the fa
that in the CFT with c ­ 0 there is a unique state
namely, the ground state. What the quantum ren
malization group (QRG) method does is to pick u
that piece of the ground state which projects into
given block.

It can be shown that a consistent representation the
of quantum groups at root of unity (i.e.,qm11 ­ 21)
requires the use of truncated tensor products ofq-group
irreps. In the case ofq ­ eipy3 this truncation implies

s1y2 ≠ 1y2 ≠ 1y2dq­eipy3 ­ 1y2 , (21)

which is precisely the truncation performed when restri
ing ourselves to the states (8) and (9). Another interes
example is provided byq ­ eipy4 which corresponds to
the critical Ising modelsc ­ 1y2d. The right-hand side
for this q in Eq. (21) contains two spin-1y2 irreps. Ac-
cording to the QRG method the truncation of the spin-3y2
irrep should be a legitimate operation involvingno ap-
proximation at all. In Ref. [12] the representation theor
of q groups was put in one-to-one correspondence w
that of rational conformal field theories (RCFT). There
was observed that the truncation inherent in the constr
tion of the RCFT’s has a parallel in the truncation of th
representation theory ofq groups withq a root of unity.
The result we have obtained in this Letter suggests t
q-group truncations can be carried over a RG analysis
1148
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q-group invariant chains. In other words, usingq groups
we can safely truncate states in the block RG method.
may summarize this discussion schematically by

QRG truncation$ RCFT. (22)

Ising model in a transverse field.—This simple model
has been widely used to test the validity of BRG metho
[2,3]. The Hamiltonian of an open chain is given b
H ­

PN21
j­1 hj,j11 where

hj,j11 ­ 2sJsx
j sx

j11 1 psz
j 1 p0sz

j11d . (23)

The standard choice isp ­ p0 ­ Gy2, in which case (23)
has four different eigenvalues. The BRG method with
block with two sites chooses just the two lowest one
However, if sp, p0d ­ sG, 0d [or s0, Gd], the Hamiltonian
(23) has two doubly degenerate eigenvalues6eB seB ­p

J2 1 G2 d. This choice is not parity invariant but i
implements the self-duality property of the ITF mode
yielding the exact value of the critical fixed point o
the ITF which appears atsGyJdc ­ 1 [13]. In the
following we shall make the choicesp, p0d ­ sG, 0d.
This degeneracy of the spectrum of (23) has aq-group
origin. The relevant quantum group is again SUqs2d with
q4 ­ 1. However, the representations involved are no
q deformation of the spin-1y2 irrep as in the previous
example, but rather a new class of irreps which on
exist whenq is a root of unity. They are calledcyclic
irreps and neither are highest weight nor lowest weig
representations as the more familiar regular irreps.
we call E, F, and K the generators of SUqs2d, which
correspond essentially toS1, S2, andq2Sz

in the notation
of the previous example, then a cyclic irrep acting at
single site of the chain is given by

Ej ­ asx
j , Fj ­ bs

y
j , Kj ­ lsz

j , (24)

where a ­
1
2

p
l2 2 1 , b ­ 2

1
2

p
1 2 l22 . The pa-

rameterl is the label of the cyclic irrep. Using (24) an
the addition rule of SUqs2d we can get the representatio
of E, F, andK acting on the whole chain:

E ­ a
NX

j­1

lj21sz
1 · · · sz

j21sx
j , (25)

F ­ b
NX

j­1

lj2N s
y
j sz

j11 · · · sz
N , (26)

K ­ lN
NY

j­1

sz
j . (27)

Now it is a simple exercise to check that these operat
commute with (23),

fhj,j11, Eg ­ fhj,j11, Fg ­ fhj,j11, Kg ­ 0, ; j (28)
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assuming that we choose

l ­ GyJ . (29)

The last of the equalities in (28) expresses the we
known Z2 symmetry of the ITF model which allows
one to split the spectrum of the Hamiltonian into eve
and odd subsectors.The other two symmetries are new
and explain the degeneracy of the spectrum ofhj,j11.
By all means the whole HamiltonianH ­

P
j hj,j11 is

also invariant under (25)–(27). Notice thatH differs
from the standard ITF simply in a term at one of th
ends of the chain. This is the same mechanism
for the XXZ Hamiltonian: one needs properly chose
operators at the boundary in order to achieve quant
group invariance. Similarly as for theXXZ model the RG
analysis of the ITF becomes a problem in representat
of quantum groups: Blocking is equivalent to tensorin
representations. What is the tensor product of cyc
irreps? Here it is important to realize that all cyclic irrep
of SUqs2d have dimension 2, what distinguishes them
the value ofl. The tensor product decomposition of tw
cyclic irrepsl1 andl2 is given by

fl1g ≠ fl2g ­ 2fl1l2g , (30)

where the 2 means thatl1l2 appears twice in the tenso
product. If we perform a blocking of two sites we wil
get two cyclic irreps corresponding tol2. Then we
expect fromq-group representation theory that the ne
effective Hamiltonianh0

j,j11 will have the same form as
(23) but with new renormalized coupling constantsJ 0 and
G0 satisfying

l0 ­ G0yJ 0 ­ sGyJd2 ­ l2. (31)

This is indeed the result obtained in [13]. We arriv
therefore at the conclusion thatthe RG flow of the ITF
Hamiltonian (23) is equivalent to the tensor produc
decomposition of cyclic irreps ofSUqs2d. This q-group
interpretation of the RG flow is independent of the siz
of the blocks: For an-site block the RG flow would
be l ! ln. The fixed pointl ­ 1 of (31) describes the
critical regime of the ITF Hamiltonian and it correspond
to asingular point in the manifold of cyclic irreps[14,15].
At l ­ 1 the operators (25)–(27) are still symmetries
the Hamiltonian (a, b taking any nonzero value) and the
recall the Jordan-Wigner map between Pauli matrices a
1D lattice fermions.

All the Hamiltonians analyzed in this Letter are on
dimensional, so the quantum groups are of the type t
we know. Despite the fact that the Yang-Baxter equ
tion (the precursor ofq groups) has a higher dimensiona
analog called the Zamolodchikov or tetrahedron equat
[16], the corresponding high dimensional analog of qua
tum groups is not known. This fact represents a barr
to a QRG analysis of Hamiltonians defined in dimensio
higher than one.
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Another possibility, which is suggested by our resul
would be to define quantum groups as those which con
symmetries which are anomalous under RG transform
tions. This definition is independent of the space dime
sionality. The quantum anomalous term in Eq. (12), a
an analogous term also present in our QRG treatmen
the ITF model, gives a discrete realization of this idea.
continuum analog of this anomaly is given by the Feigi
Fuchs current, which has an anomalous operator prod
expansion with the energy-momentum tensor [17]. At th
point it may be worth recalling the continuous versio
of quantum groups in CFT in Ref. [18], which uses th
Feigin-Fuchs or free field realization of the latter. Puttin
all these arguments together, we arrive at the conclus
that quantum groups are indeed defined by symmet
anomalous under RG transformations. This point of vie
about quantum groups may set up the pathway to new
velopments in the field.
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