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We apply real space renormalization group (RG) methods to study two quantum group invariant
Hamiltonians, that of theXXZ model and the Ising model in a transverse field (ITF) defined in an
open chain with appropriate boundary terms. The quantum group symmetry is preserved under the
RG transformation except for the appearance of a quantum group anomalous term which vanishes in
the classical case. We obtain correctly the line of critléxlZ models. In the ITF model the RG
flow coincides with the tensor product decomposition of cyclic irreducible representatic$is ©42)
with g* = 1.

PACS numbers: 75.10.Jm, 05.50.+q, 64.60.Ak

Real space renormalization group (RG) methods, aand collaborators [4] and it is probably related to it.
applied to quantum many-body Hamiltonians, originatedThis relation is suggested by the fact that quantum
from the successful study of the Kondo problem bygroups describe symmetries in the presence of nontrivial
Wilson [1]. Later on people working in field theory boundary conditions. The typical example to understand
and condensed matter generalized it to other problems Ithis property of quantum groups is given by the 1D
using the Kadanoff's concept of block [2,3]. The Block Heisenberg Ising model with the anisotropic parameter
method (BRG) has the advantage of being conceptuallA. The isotropic modelA = *1 is invariant under
and technically simple, but it lacks numerical accuracythe rotation group SU(2), but as long &&| # 1 this
or may even produce wrong results. For this reasosymmetry is broken down to the rotation group U(1)
the analytical BRG methods were largely abandoned imround thez axis. One can “restore” this full rotation
the 1980s in favor of numerical methods such as theymmetry by adding appropriate boundary operators to
guantum Monte Carlo approaches. In the last few yearthe Hamiltonian of the open chain. The classical group
there have been new developments in the numerical RGU(2) becomes then the quantum group,&) where
methods motivated by a better understanding of the errothe quantum parameter is related to the anisotropy by
introduced by the splitting of the lattice into disconnectedA = (¢ + ¢~')/2 [8,9].
blocks. A first step was put forward in [4] where a These features of groups made them specially well
combination of different boundary conditions applied tosuited to implement a RG method which takes into
every block led to the correct energy levels of a simpleaccount the correlation between neighboring blocks. Let
tight-binding model. This method, however, has not beerus show how this can be done explicitly in two examples
generalized to models describing interactions. A furtheiin 1D: the Heisenberg Ising model and the Ising model in
step in this direction was undertaken by White in [5]a transverse field (ITF).
where a density matrix algorithm (DMRG) is developed. Heisenberg Ising model (XXZ model.The open spin
The main idea is to take into account the connection othain Hamiltonian is defined as
every block with the rest of the system when choosing
the states which survive the truncation procedure. The gt
standard prescription is to choose the lowest energy states Hv(q.J) = Z hjj+1(q, 7). 1)
of the block Hamiltonian. Instead, in the DMRG method =
one replaces the block Hamiltonian by a block density o vy
matrix and chooses the eigenstates of this matrix with the % +1(q:J) = — [‘Tj Tjt1 T 00+

highest eigenvalues. The density matrix is constructed |

out of the ground state of a superblock which contains the + 4 tq olot
desired block. 2 JTT
In this Letter we propose another RG method which q-—q ' .
uses the concept of quantum groups. This mathematical T, (o — j+1)i|’ 2)

notion emerged in the study of integrable systems and

it has been applied to conformal field theory, invariantswhere ¢; are standard Pauli matrices acting at thk

of knots and manifolds, etc. [6,7]. The new applicationsite of the chain. For the time being is an arbitrary

of quantum groups that we envisage has been partiallpomplex parameter. Observe that the successive terms
motivated by the aforementioned work of White, Noack,in o — o4, in (2) when added into the totdl only
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gives boundary operators proportional ¢ — o plus state given by the Néel statg 111 ...) [notice that this

the standard bulk Hamiltonian. uniqueness is due to the boundary t€gm— ¢~ ') (o] —
Let us now introduce the-group generators of Si2)  o)/2]. On the other hand, for a block of three sites there
acting in the spin chain a¥ sites [9]. are four states of lowest ener@y! | 1),]1111),1 111), and
N | 111)), while for a block of four sites there is again
§¢ = % Z o, A3) only one ground state given Byi111). This means that
= ! choosing an odd number of blocks is not appropriate to

N study the Ising limit of (2). To do so one should choose
gt — Z q*I/Z(UH'“*U}—I)g?q1/2<<ff+1+“'+U‘"~) ) an even number of sites, but this Wlll not be pursued here.

— J ’ Hence we shall concentrate grbeing a phase.

’ The renormalization prescription consists in choosing

which satisfy the quantum group algebra the states (8) and (9) as the spin jupy and down| | )’
) ) states associated to the whole block as if it were a single
ST, 1= (> — ¢ )/ (q—q7". (5) site. Using the standard methods of BRG we obtain the

] ] .. following RG-transformation laws for the spin operators
The important fact is that not only the whole Hamiltonian S; acting at the sites = 1 and3:

(1) but also the site-site Hamiltonian (2) commutes with

the generators (3) and (4) of $2): (S )rG = £(q)S™, i=1.3, (10)
[hjj+1, 871 = [hj;+1,857]=0 V). (6) (SHrg = &(g)S”,  i=1,3, (11)
Hence the eigenstates dfy(g,J) can be classified P%: _ S 4 p(a)l = 1.3 12
according to the representations of $2) (see [9] for (Sire _ £@) n’_(Q)' ’ ' T (12)
details). where £(g) is a renormalization factor which depends

To construct a real space RG for the Hamiltonian (1)UPONg as
we shall choose blocks'of three s.ites.. This is important in E@)=(q+qg ' +2/2g+qg ' +1 (13)
order to get a renormalized Hamiltonian of the same form q
as the original one. The block Hamiltonian involving the an

first three sites is simply m=-m=nq=0q—-qg")/4qg+q'+1.
Hp = hip + hy. (1) (14)

Now we can apply;-group representation theory to diago- The multiplicative renormalization factai(q) is common
nalizeHg. There are three energy levels corresponding t@ao all the spin operators; as a consequence of the
the g-tensor product decompositioy2 ® 1/2® 1/2 = full symmetry group SY(2). The “quantized” feature
/2@ 1/2 @ 3/2. of SU,(2) is reflected in the “quantum group anomaly”
For ¢ real and positive (i.e.A = 1) or g a phase term in (12)—(14), which indeed shows the deviation
(i.e., |[A] = 1) the lowest energy level of (7) is doubly from the classical casg = 1). Equations (10)—(12) are
degenerate and corresponds to one of the spi@ 1 quite different from the standard BRG analog for the
irreducible representations (irreps), which reads explicitlyHeisenberg Ising model done in Ref. [10], where the RG
equations forS* and S” differ from those ofS* (i.e.,

|%> = 1 Y= &Y # £%). Using Egs. (10)—(12) we can get the
V2@ + g T+ 1) renormalized block-block Hamiltoniahs 3;+;. Putting
all terms together we arrive at the following effective
X (=g Y2111 + (¢ + g7 /P HamiltonianH’ which acts on the chain having/3 sites,
N
X111 = ¢ 21111) 8) H' = Hy(q', ') + 3 eslq, )
1 1 51
— =)= +— —1]e ,J), 15
| 2> \/m 3 BB(q ) ( )
X (@' PTUD = g7 + 477 where
s g =4q. (16)
X 111 + 21111 ©) ,
J'= &g, 17)

whose energy isz = —(J/2) (g + ¢~ + 2).
If we take theg — 0% limit in (1) and (2) we obtain an

J -1
=—-——Q2+gq+
Ising model HamiltoniafA — ) with a unique ground es(d.J) 2 @+a+a), (18)
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(g — ¢ )*Bg +3¢7' +4)
16(g + g71 + 1)2

g-group invariant chains. In other words, usipgroups
we can safely truncate states in the block RG method. We

o may summarize this discussion schematically by
The ep contribution to the energy comes from the block

part Hg while egp is a novel contribution coming from QRG truncation— RCFT. (22)

the quantum group anomaly. The remarkable feature

of Egs. (15) and (16) is that the coupling constant Ising model in a transverse field-This simple model

g, or alternatively A, does not flow under the RG has been widely used to test the validity of BRG methods
transformation,while J™, which is the value of/ after [2,3]. The Hamiltonian of an open chain is given by

epp(q,J) = J (19)

m RG steps, goes to zero in the limit whene— «, H = f';ll hj j+1 where
which in turn implies that the theory is massless. Hence,
Egs. (16) predicts correctlylae of critical modelsn the hjj+1 = —Uojoj, + poi + p’ajﬂ). (23)

range|lA| = 1. These models are described by conformal

field theories (CFT) with central extensienless than 1. The standard choice js = p’ = I'/2, in which case (23)
If we write the quantum parameter as= ¢/7/(“*1 then  has four different eigenvalues. The BRG method with a
c=1-6/u(n + 1) [11]. The boundary terms in (1) block with two sites chooses just the two lowest ones.
and (2) are responsible for this fact. However, if (p, p') = (T',0) [or (0, T)], the Hamiltonian

A nontrivial check of the validity of our RG method (23) has two doubly degenerate eigenvaltes; (ez =
can be given in the case whete= ¢"/3 for which /724 T2). This choice is not parity invariant but it
¢ = 0 (percolation limit). The ground state energy canijmplements the self-duality property of the ITF model,
be computed exactly from the constant terms (15) (assumgelding the exact value of the critical fixed point of
thatN = 3™ and performm RG steps), and is given by  the ITF which appears atI'/J). =1 [13]. In the
following we shall make the choicép, p’) = (T',0).
This degeneracy of the spectrum of (23) hag-group

This equation coincides with the exact result obtained Zlgzln.l T:i\;\?és\é?ntth%uzm?erge%r; l:igrzss?r?\?érllvqg?;:ghnot a
in [11] using Bethe ansatz. Since the RG method is? : ' P

variational, the previous result implies that we have? deformation of the spin/ irrep as in the previous

actually constructed the exact ground state using thgxample, but rather a new class of irreps which only

g RG technique, which therefore becomes exact fo XISt wheng IS a root Of unity. They are calledychc_
this particular case. This is consistent with the fact cP> and neither are highest weight nor lowest weight

that in the CFT withc = 0 there is a unique state, \r;gr(e:zzﬁzrgat;?nsan%slghtiemo(;ﬁefrzrtr(l)lrlfrogeguIa)lr \I/\r/rrﬁ(r:)r? d
namely, the ground state. What the quantum renory o on’d e'ssentiall m*gS* andoS: inSJtLﬂth ,notation
malization group (QRG) method does is to pick up P yWwn o 4

that piece of the ground state which projects into ao.]c the previous example, then a cyclic irep acting at a

single site of the chain is given by

Eo(N,q = ¢'™/3) = —%N + % (20)

given block.
It can be shown that a consistent representation theory . oy .
of quantum groups at root of unity (i.eg#™! = —1) Ej = aoj, Fj=boj, Kj = Aoy, (24)

requires the use of truncated tensor productg-gioup . .
irreps. In the case af = ¢!"/3 this truncation implies ~ Wherea = 7 VA2 — 1, b = —3+1 — A72. The pa-
rameterA is the label of the cyclic irrep. Using (24) and
(1/2® 1/2 ® 1/2)4=cinn = 1/2, (21)  the addition rule of SLX2) we can get the representation

o _ _ ~ of E, F, andK acting on the whole chain:
which is precisely the truncation performed when restrict-

ing ourselves to the states (8) and (9). Another interesting N 1 .
example is provided by = ¢'7/* which corresponds to E=a Z Mo of 07, (25)
the critical Ising modelc = 1/2). The right-hand side =1

for this ¢ in Eq. (21) contains two spin/2 irreps. Ac-

cording to the QRG method the truncation of the spi2-3 Ny

irrep should be a legitimate operation involvimp ap- F=bY N Vglo5,, - 0f, (26)
proximation at all. In Ref. [12] the representation theory =1

of ¢ groups was put in one-to-one correspondence with N

that of rational conformal field theories (RCFT). There it K=A"]]o3. (27)
was observed that the truncation inherent in the construc- j=1

tion of the RCFT's has a parallel in the truncation of the
representation theory af groups withg a root of unity.

The result we have obtained in this Letter suggests that
g-group truncations can be carried over a RG analysis of [A; 1, E] = [hj j+1, F] = [hjj+1,K] =0, VY j (28)
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assuming that we choose Another possibility, which is suggested by our results,
_ would be to define quantum groups as those which contain
A=T/J. (29) . :
symmetries which are anomalous under RG transforma-

The last of the equalities in (28) expresses the welltions. This definition is independent of the space dimen-
known Z, symmetry of the ITF model which allows sionality. The quantum anomalous term in Eq. (12), and
one to split the spectrum of the Hamiltonian into evenan analogous term also present in our QRG treatment of
and odd subsectorsThe other two symmetries are new the ITF model, gives a discrete realization of this idea. A
and explain the degeneracy of the spectrumigf . continuum analog _of this anomaly is given by the Feigin-
By all means the whole Hamiltoniafl = Zj hjj+1 IS Fuchs current, which has an anomalous operator prodgct
also invariant under (25)—(27). Notice that differs  expansion with the energy-momentum tensor [17]. At this
from the standard ITF simply in a term at one of thepoint it may be worth recalling the continuous version
ends of the chain. This is the same mechanism a8f quantum groups in CFT in Ref. [18], which uses the
for the XXZ Hamiltonian: one needs properly chosen Feigin-Fuchs or free field realization of the latter. Putting
operators at the boundary in order to achieve quanturdll these arguments together, we arrive at the conclusion
group invariance. Similarly as for tHéXZ model the RG  that quantum groups are indeed defined by symmetries
analysis of the ITF becomes a problem in representatioanomalous under RG transformations. This point of view
of quantum groups: Blocking is equivalent to tensoring@bout quantum groups may set up the pathway to new de-
representations. What is the tensor product of cyclicvelopments in the field.

irreps? Here it is important to realize that all cyclic irreps This work was partly supported by CICYT un-
of SU,(2) have dimension 2, what distinguishes them isder Contracts No. AEN93-0776 (M.A.M.-D.) and

the value ofA. The tensor product decomposition of two No. PB92-109 and European Community ~Grant
cyclic irrepsA; and A, is given by No. ERBCHRXCT920069 (G. S.).
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