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Involutions on the algebra of physical observables
from reality conditions

Guillermo A. Mena Marugán
Instituto de Matema´ticas y Fı́sica Fundamental, C.S.I.C., Serrano 121,
28006 Madrid, Spain

~Received 19 June 1995; accepted for publication 29 September 1995!

Some aspects of the algebraic quantization program proposed by Ashtekar are
revisited in this article. It is proven that, for systems with first-class constraints, the
involution introduced on the algebra of quantum operators via reality conditions
can never be projected unambiguously to the algebra of physical observables, i.e.,
of quantum observables modulo constraints. It is nevertheless shown that, under
sufficiently general assumptions, one can still induce an involution on the algebra
of physical observables from reality conditions, though the involution obtained
depends on the choice of particular representatives for the equivalence classes of
quantum observables. ©1996 American Institute of Physics.@S0022-
2488~96!03801-8#

I. INTRODUCTION

Recently, Ashtekaret al.1–3 have elaborated a program for the nonperturbative quantization of
dynamical systems with first-class constraints. This program is specially designed to deal with the
problem of quantizing general relativity, and has already been carried out successfully in a number
of lower dimensional gravitational models, including minisuperspaces4–6and 211 gravity.1,3,7The
program proposed by Ashtekar is an extension, based on the algebraic approach to quantum
mechanics,8 of Dirac’s canonical quantization method.9 One of the main novelties with respect to
Dirac’s procedure is the introduction of a prescription to find the inner product in the space of
quantum states. This allows one to adhere to the standard probabilistic interpretation of quantum
mechanics when the quantization can be achieved.

Ashtekar’s program consists of a series of steps that, after completion, should provide us with
a consistent quantum theory. It can be applied, in principle, to any classical system whose phase
spaceG is a real symplectic manifold.1

One must first choose a subspaceS of the vector space of smooth complex functions onG.
This subspace must contain the unit function and be closed both under complex conjugation and
Poisson brackets.2 In addition,S has to be complete, in the sense that any sufficiently regular
complex function on phase space should be expressable as a sum of products of elements inS ~or
as a limit of this type of sums!.2

Each elementX in S is to be regarded as an elementary classical variable which is unambigu-
ously associated with an abstract operatorX̂. One then constructs the free associative algebraF

generated by these elementary quantum operators. On this algebra, one imposes the commutation
relations that follow from the classical Poisson brackets, namely, ifX,YPS, one must demand that
~at least up to terms proportional to\2!

@X̂,Ŷ#2 i\$X,Ŷ%50̂. ~1.1!

If there exist algebraic relations of the form

f i~X1 ,...,Xn!50 ~ i51,...,m! ~1.2!

0022-2488/96/37(1)/196/10/$6.00
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between the elements inS ~e.g., when the dimension ofS is greater than that ofG!, such relations
have also to be imposed on the corresponding quantum operators, with a suitable choice of factor
ordering, if needed.2 The imposition of these commutation and algebraic relations simply amounts
to taking the quotient of the free algebraF by the idealI F generated by the left-hand sides of
Eq. ~1.1! and the quantum counterpart of Eq.~1.2!. The algebra of operators obtained in this way
will be calledA.

At this point one should promote the complex conjugation relations inS to an involution on
A. We recall that an involution! on the algebraA is a map!: A→A that satisfies

~X̂!!!5X̂, ~1.3!

~X̂1lŶ!!5X̂!1l̄Ŷ!, ~X̂Ŷ!!5Ŷ!X̂!, ~1.4!

for all X̂,ŶPA and complex numbersl. Here,l̄ is the complex conjugate tol. To introduce the
desired involution onA, one can proceed in the following manner. For everyX,YPS such thatY
is the complex conjugate toX, defineX̂!5Ŷ, and use properties~1.4! to extend this definition to
all the operators in the free algebraF . It is straightforward to check that one then gets an
involution onA provided that the idealI F of operators which vanish modulo commutation and
algebraic relations is invariant under the!-operation, i.e., thatI F is a !-ideal of F . We will
assume hereafter that this is in fact the case, and denote the resulting!-algebra byA~!!. The
!-relations inA~!! are usually called reality conditions,1 for they capture the complex conjugation
relations between elementary classical variables.

The next step in the quantization consists in finding a faithful representation for the abstract
algebraA by linear operators acting on a complex vector spaceV. If the classical system pos-
sesses first-class constraints$Ci%, these constraints must now be explicitly represented by opera-
tors $Ĉi%. In general, a choice of factor ordering, and of regularization in infinite dimensional
systems,2,3 are needed at this point in order to get a consistent algebra of quantum constraints,9 that
is, to guarantee that

@Ĉi , Ĉj #5 f̂ i j
kĈk , ~1.5!

where f̂ i j
kPA and we use the convention that pairs of contracted indices are summed over.

The kernelVp,V of the constraints$Ĉi% supplies the vector subspace of quantum states. One
must then determine the subalgebraAp,A of operators which leaveVp invariant. These opera-
tors commute weakly with the quantum constraints,

ÂPAp⇔@Â, Ĉi #5ĥi
j Ĉ j ~ ĥi

jPA!. ~1.6!

Let us define now

I C[$X̂i Ĉi ;X̂
iPA%. ~1.7!

Using Eqs.~1.5! and~1.6! one can show thatI C,Ap and that,; ÎPI C and;ÂPAp , both ÂÎ
and Î Â belong toI C , so thatI C is an ideal ofAp . On the other hand, ifÂPAp , all the
operators of the formB̂5Â1 Î , with ÎPI C , have exactly the same action on quantum states, for
Vp is annihilated by the quantum constraints. In order to obtain the algebraAp8 of operators with
a well-defined action onVp , one should therefore take the quotient ofAp by the idealI C :

2

Ap8[Ap /I C . ~1.8!

The operators inAp8 are the quantum physical observables of the system.10

The quantization program presented so far leaves a certain freedom in the following steps:~a!
the selection of the subspaceS of elementary classical variables,~b! the construction of the linear
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representation for the algebraA of quantum operators, and~c! the choice of factor ordering in the
quantum constraints$Ĉi%. The final result of the quantization process will depend on these inputs.

2

In particular, Ashtekar and Tate2 assumed at this stage that, with a judicious choice of such inputs
and at least for a large variety of physical systems, the involution defined onA~!! would induce
an involution onAp8 .

It is worth remarking in this sense that the!-relations will project unambiguously to the
algebra of physical observables only if two conditions are fulfilled. On the one hand,Ap,A
must be invariant under the!-operation:;ÂPAp , Â

!PAp . On the other hand, it is necessary
that I C,Ap be a !-ideal ofAp : ; ÎPI C , Î

!PI C . When this is the case, the!-operation
provides a uniquely defined map between equivalence classes inAp8 which satisfies the properties
~1.3! and~1.4! of an involution. The involution induced onAp8 will be denoted again by!, and the
resulting!-algebra of physical observables byAp8

(!).
The idea suggested by Ashtekar1–3 is to employ the involution onAp8

(!) to select the inner
product^,& on Vp and, therefore, the Hilbert spaceH of physical states~normalizable quantum
states!. More specifically, he proposed to determine the inner product onVp by demanding that the
!-relations between physical observables are realized as adjoint relations on the Hilbert spaceH,
i.e.,

^C,Â8F&5^B̂8C,F& ;F,CPH, ;Â8,B̂85~Â8!!PAp8
~! !. ~1.9!

Rendall showed11 that this condition is such a severe restriction on the inner product that, if an
admissible inner product exists, it is unique~up to a positive global factor! under very general
assumptions.

This completes the quantization program put forward by Ashtekar. If this program can be
carried out for a given classical system, one would arrive at a mathematically consistent quantum
theory in which real physical observables would be represented by self-adjoint operators acting on
a Hilbert space of physical states.

The purpose of this work is to demonstrate however that there exists an impediment to
achieving one of the steps of the above quantization method. We will prove in Sec. II that the
!-relations inA~!! never project unambiguously to the algebra of physical observables. This
problem can be nonetheless overcome by slightly modifying Ashtekar’s program, as we will show
in Sec. III. The price to be paid is to allow a new freedom in the quantization process. A particular
procedure to introduce an involution onAp8 from reality conditions should then be adopted. The
subtleties that arise in defining such an involution are illustrated in Sec. IV by considering some
simple physical systems. We finally discuss the physical implications of our results and conclude
in Sec. V.

II. AMBIGUITIES IN THE REALITY CONDITIONS ON PHYSICAL OBSERVABLES

We want to prove that reality conditions~i.e., the!-relations between quantum operators!
never project unambiguously to the algebra of physical observables when there exist first-class
constraints on the system. We will assume that the faithful, linear representation constructed for
the algebraA of quantum operators is irreducible. Otherwise, one should decompose it in irre-
ducible components, and apply the proof to follow to each component separately.

We have seen that, in order to obtain a uniquely defined involution on physical observables
from reality conditions, it is necessary that bothAp andI C be invariant under the!-operation. In
particular, we should have

; ÎPI C , Î 0[ Î !PI C . ~2.1!
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Select now inI C one of the quantum constraints, e.g.,Ĉ1, and consider also all the operators of
the form Î 15ẐĈ1PI C , with ẐPA. Employing condition~2.1!, and recalling definition~1.7!, we
obtain

Ĉ1
!5Ŷ1

j Ĉ j , ~2.2!

~ Î 1!
!5Ĉ1

!Ẑ!5Ŷ1
j Ĉ j Ẑ

![ Î 1
05X̂1

kĈk , ~2.3!

for someŶ1
j ,X̂1

kPA.
On the other hand, the imageẐ! of all the operatorsẐPA is again the whole algebraA,

because the!-operation is an involution. Relation~2.3! therefore implies that,;ẐPA, there exist
X̂1
kPA such that

Ŷ1
j Ĉ j Ẑ5X̂1

kĈk . ~2.4!

This identity between operators must hold on any element ofV, the vector space on whichA has
been represented. Choosing thenFPVp,V with F different from zero, it follows from Eq.~2.4!
that,;ẐPA,

Ŷ1
j Ĉ j~ ẐF!5X̂1

kĈkF50, ~2.5!

for the physical stateF is annihilated by all quantum constraints. Besides, since the representation
constructed is irreducible andFÞ0, the range ofẐF~;ẐPA! must be the whole vector spaceV.
So, the above equation states thatV is the kernel of the operatorŶ1

j Ĉ j . Being the representation
for A faithful, we then must have

Ŷ1
j Ĉ j50̂. ~2.6!

But this is clearly inconsistent with the fact that the!-operation is an involution, because, using
Eqs.~2.2! and ~2.6!, we get thatĈ15(Ĉ1

!)!50̂. In this way, we conclude that, when there exist
first-class constraints,I C can never be invariant under the!-operation and, therefore, reality
conditions do not project unambiguously to the algebra of physical observables.

Moreover, it is generally the case that the!-image ofI C is not even contained inAp , so that
Ap is not a!-subalgebra ofA. This can be proved, for instance, under the assumptions that~a!
Eq. ~2.2! holds for a certain quantum constraintĈ1 and~b! there exists at least one operatorŴPA
whose commutator withĈ1 does not belong toAp . One can then check that, whileŴ!Ŷ1

j Ĉ j

belongs toI C , its !-conjugate, given byĈ1Ŵ, is not included inAp . Hence, even though one
could find a representativeÂ for a given physical observableÂ8 such that Â!PAp , the
!-conjugates of all other operators in the equivalence classÂ8 ~i.e., the operatorsÂ1 Î , with
ÎPI C! will in general not belong to the algebraAp .

For the sake of an example, let us consider a classical system whose phase space admits a set
of global coordinates of the forms[$t,H,x,p%, with t,H,x,pPR, andH and p the momenta
canonically conjugate tot and x, respectively. Suppose, in addition, that there exists only one
first-class constraint on the system, given byH50. This extremely simple example describes, for
instance, a Kantowski–Sachs model with positive cosmological constant.5

As elementary classical variables, we can choose the complex vector space spanned bys and
the unity. The!-operation on the corresponding algebraA of quantum operators is defined by

t̂!5 t̂, Ĥ!5Ĥ, ~2.7!

x̂!5 x̂, p̂!5 p̂, 1̂!51̂, ~2.8!
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and the properties~1.4! of an involution. The only quantum constraint isĤ50. On the other hand,
it is not difficult to prove that the equivalence classes of the operators 1ˆ, x̂, andp̂ form a complete
set of physical observables. We point out, nevertheless, that the algebraAp is not generated by
$1̂,x̂,p̂,Ĥ%, but contains also operators liket̂ Ĥ and (t̂)2Ĥ which are elements inI C . From Eq.
~2.8! it follows that each equivalence class of observables possesses at least a representative whose
!-conjugate belongs toAp . In general, however, the!-image of different representatives do not
coincide modulo the constraintĤ50, because the!-operation does not leave the idealI C invari-
ant. Namely, from Eqs.~2.7!, ~2.8! and the commutator [t̂,Ĥ]5 i\1̂, we get

~ t̂ Ĥ !!5 t̂ Ĥ2 i\1̂, ~~ t̂ !2Ĥ !!5~ t̂ !2Ĥ22i\ t̂, ~2.9!

so that the!-conjugate tot̂ Ĥ belongs toAp , but not toI C , whereas the!-conjugate to (t̂)
2Ĥ is

not even inAp .

III. INVOLUTIONS ON PHYSICAL OBSERVABLES

We have seen that the!-relations inA~!! do not project unambiguously toAp8 , because the
!-operation never maps all the representatives of a class of physical observables into another
equivalence class. In order to define the!-conjugate to a physical observable, one is therefore
forced to choose first a particular representative for it. We now want to discuss under which
circumstances it is possible to introduce an involution onAp8 by this procedure.

To construct an involution! onAp8 , it actually suffices to define the!-operation on an~over-!
complete set of physical observables, and demand that this operation verifies conditions~1.4!.
Suppose then that$Ûa8% is a complete set inAp8 , that is, thatAp8 can be obtained from the free
associative algebraB8 generated by$Ûa8% by imposing the commutation relations between the
observablesÛa8 , as well as any algebraic relation that could exist between them. Assume also that
one can find representatives$Ûa% of the observables$Ûa8% such that their!-conjugates$Ûa

!%
belong toAp . One might then hope that the!-operation onAp8 could be defined by

~Ûa8!!5~Ûa
!!8, ~3.1!

where (Ûa
!)8 denotes the equivalence class ofÛa

!. However, we will prove that the assumptions
introduced above do not guarantee that Eq.~3.1! leads to a well-defined involution on the algebra
of physical observables.

The proof makes use of the fact that, being$Ûa8% complete inAp8 , any operator in the algebra
Ap should be expressable, modulo an element in the idealI C ~1.7!, as~possibly a limit of! a sum
of products of the representatives$Ûa%. In particular, since everyÛa

!PAp , one gets

Ûa
!5(

n
la
b1•••bnÛb1

•••Ûbn
1X̂a

i Ĉi , ~3.2!

with X̂a
i PA and thela

b1•••bn’s some complex numbers. Hence, from Eq.~3.1!,

~Ûa8!!5(
n

la
b1•••bnÛb1

8 •••Ûbn
8 . ~3.3!

This !-operation will be an involution onAp8 only if (( Ûa8)
!)! 5 Ûa8 for all Ûa8 . This, together

with Eqs.~1.4!, ~3.1!, and~3.3!, implies

Ûa85(
n

l̄a
b1•••bn~Ûbn

! !8•••~Ûb1
! !8. ~3.4!
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On the other hand, we have from Eq.~3.2!

Ûa5(
n

l̄a
b1•••bnÛbn

! •••Ûb1
! 1Ĉi

!X̂a
i!, ~3.5!

since the!-operation is an involution onA~!!. Consistency of Eq.~3.4! with ~3.5! requires then

Ĉi
!X̂a

i!5Ŷa
i Ĉi , ~3.6!

for some operatorsŶa
i PA. This condition will not be satisfied by generic operatorsX̂a

i ĈiPI C ,
because the idealI C is not invariant under the!-operation when there exist first-class constraints
on the system. Therefore, the!-relations~3.3! will not supply in general an involution onAp8 . To
obtain that involution, it is necessary that both conditions~3.2! and ~3.6! are satisfied by the
representatives of our complete set of physical observables.

We will study now the case in which these requirements hold for our particular choice of
representatives. Our previous discussion shows that the!-operation defined by Eqs.~3.3! and~1.4!
is then an involution onB8, the free associative algebra generated by$Ûa8%. Recalling that the
algebraAp8 of physical observables can be obtained fromB8 by imposing on its generators the
commutation relations and any existing algebraic relations, we conclude that the!-operation
introduced onB8 straightforwardly supplies an involution onAp8 provided that such an operation
is compatible with the relations imposed on the generators$Ûa8%. In other words, the ideal ofB8
generated by those relations should be invariant under the!-operation. When this requisite is
fulfilled, one gets an involution onAp8 which captures the reality conditions on quantum opera-
tors.

Notice that the involution at which one arrives depends, nevertheless, on two choices: the
complete set of physical observables and the representatives for them. In general, distinct choices
may lead to different involutions on the algebra of physical observables. We will comment on this
point further in Sec. V.

A situation which is often encountered in physical applications4,5 is that one can find a
complete set inAp8 admitting representatives$Ûa% such that the complex vector space spanned by
them is closed under reality conditions, i.e.,

Ûa
!5la

bÛb . ~3.7!

In this case, assumption~3.2! holds withX̂a
i Ĉi50̂, so that Eq.~3.6! is trivially satisfied. It is then

at least possible to obtain an involution on the free algebraB8 by replacing the operatorsÛa in
Eq. ~3.7! with their corresponding equivalence classes of physical observables.

IV. EXAMPLES

Let us illustrate our discussion by dealing with some examples. Consider, for instance, the
physical system that was analyzed at the end of Sec. II. A complete set of physical observables for
this system isO 8[$1̂8, x̂8,p̂8%, where 1̂8, x̂8, andp̂8 are the equivalence classes of the operators 1ˆ,
x̂, andp̂, respectively. We can select these operators as the representatives ofO 8. The associated
reality conditions, which are given by Eq.~2.8!, have the form~3.7!. So, hypotheses~3.2! and
~3.6! apply. We can therefore try to induce an involution onAp8 by the procedure explained in Sec.
III. Since there exist no algebraic relations inO 8, the only consistency requirement that must be
satisfied in order to get the desired involution is that reality conditions~2.8! are compatible with
the commutators of the physical observables inO 8. There is just one commutator different from
zero: [x̂8,p̂8]5 i\1̂8. On the other hand, we obtain from Eqs.~2.8! and ~3.1!

~ x̂8!!5 x̂8, ~4.1!
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~ p̂8!!5 p̂8, ~ 1̂8!!51̂8. ~4.2!

Taking then the!-conjugate to [x̂8, p̂8], we get

~@ x̂8, p̂8# !!5@~ p̂8!!, ~ x̂8!!#5@ p̂8, x̂8#52 i\1̂8, ~4.3!

which is precisely~i\1̂8!!. All other commutators between~1̂8!!, ~x̂8!!, and ~p̂8!! vanish identi-
cally. Hence, the!-operation constructed is compatible with the structure ofAp8 , and provides an
involution on this algebra.

Let us consider now other choices of representatives ofO 8. Adopt, e.g., the choice
$1̂, x̂1 t̂(Ĥ)2,p̂%. It follows from Eqs.~2.7! and ~2.8! that

~ x̂1 t̂~Ĥ !2!!5 x̂1 t̂~Ĥ !222i\Ĥ, p̂!5 p̂, 1̂!51̂. ~4.4!

These reality conditions are of the type~3.2!, with X̂a
i Ĉi522i\Ĥ for Ûa5 x̂1 t̂(Ĥ)2, vanishing

otherwise. In particular, assumption~3.6! is verified. Therefore, one can introduce a!-operation on
Ap8 by applying Eq.~3.1! to the present case. In this way, one recovers the!-relations~4.1! and
~4.2!, and thus the same involution on the algebra of physical observables that was obtained above.

Choose now the operators 1ˆ, x̂1 t̂ Ĥ, andp̂ as representatives ofO 8. The reality conditions are
then given by

~ x̂1 t̂ Ĥ !!5 x̂1 t̂ Ĥ2 i\1̂, p̂!5 p̂, 1̂!51̂. ~4.5!

These reality conditions are of the form~3.7!, and induce onAp8 the!-operation defined through
Eq. ~4.2! and

~ x̂8!!5 x̂82 i\1̂8. ~4.6!

Since Eqs.~4.2! and~4.6! imply again relation~4.3!, and~1̂8!! commutes with~x̂8!! and~p̂8!!, the
introduced!-operation is compatible with the commutators of the physical observables, and is
therefore an involution onAp8. However, this involution differs from that obtained in Eqs.~4.1!
and ~4.2!. This proves that the involution induced onAp8 from reality conditions depends on the
particular selection of representatives made for the complete set of physical observables under
consideration.

Note, nonetheless, that the two involutions induced onAp8 in the example discussed above are
equivalent in the sense that the two resulting!-algebrasAp8

(!) are isomorphic, as one can easily
check by identifying the physical observablex̂8 in Eq. ~4.1! with x̂82 i ~\/2!1̂8 in ~4.6!. For infinite
dimensional systems, however, one should expect that the involutions constructed by choosing
different complete sets inAp8 and appropriate representatives for them would lead in general to
inequivalent!-algebras of physical observables.

Suppose, on the other hand, that we can represent the!-relations onAp8 as adjoint relations
on a Hilbert space of physical states, as suggested by Ashtekar. From the involution provided by
Eqs.~4.1! and~4.2!, we would then arrive at a quantum theory in which the observablex̂8 would
be self-adjoint. The involution defined through Eqs.~4.2! and ~4.6! would lead instead to a
quantum theory in whichx̂8 would not be represented by a self-adjoint operator, so that it should
not correspond to a real physical observable of the system. In order to resolve this ambiguity one
can insist, for instance, on that the real classical variablex should be represented by the quantum
observablex̂8. One would thus expect that the spectrum ofx̂8 should be real to guarantee that this
observable has always real expectation values. Hence,x̂8 should be self-adjoint. By itself, this
condition supports the use of involution~4.1!, ~4.2! in the quantization, rather than other possible
!-relations onAp8 which, like relation~4.6!, are inconsistent with the identification ofx̂8 as the
quantum physical observable corresponding tox.
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To close this section, we will present an example in which the involution induced onB8 via
reality conditions is not compatible with the structure of the algebra of physical observables. Let
us consider a physical system with a first-class constraint of the formH50, whereHPR is the
momentum canonically conjugate to a certain variabletPR. We will assume that the reduced
phase space of the system is the cotangent bundle over the unit circleS1. As elementary variables,
we can choose the complex vector space spanned by$1, t, H,cu[cosu, su[sinu, pu%. Here,
uPS1, andpuPR is the momentum conjugate tou. The reality conditions on the corresponding
algebraA~!! of quantum operators are given by Eq.~2.7! and

ĉu
!5 ĉu , ŝu

!5 ŝu , p̂u
!5 p̂u , 1̂!51̂. ~4.7!

Besides, since cos2 u1sin2 u51, we will impose the algebraic relation

~ ĉu!21~ ŝu!251̂. ~4.8!

A complete set of physical observables isO 8 [ $1̂8,ĉu8 ,ŝu8 ,p̂u8%, the prime denoting equivalence
classes. The only nonvanishing commutators inO 8 are

@ ĉu8 , p̂u8#52 i\ ŝu8 , @ ŝu8 , p̂u8#5 i\ ĉu8 . ~4.9!

In addition, relation~4.8! implies that the physical observables inO 8 must satisfy

~ ĉu8!21~ ŝu8!251̂8. ~4.10!

If one chooses 1ˆ, ĉu , ŝu , andp̂u as the representatives ofO 8, the procedure explained in Sec.
III allows one to obtain a!-operation onB8 ~the free associative algebra generated byO 8! which
is compatible with the commutators~4.9! and the algebraic relation~4.10!, and hence provides an
involution onAp8 . Let us select instead the representativesO [$1̂,(ĉu1 t̂ Ĥ),ŝu ,p̂u%. From Eqs.
~2.7! and ~4.7! ~and the commutator oft̂ and Ĥ!, we get

1̂!51̂, ~ ĉu1 t̂ Ĥ !!5~ ĉu1 t̂ Ĥ !2 i\1̂, ŝu
!5 ŝu , p̂u

!5 p̂u . ~4.11!

These reality conditions are of the type~3.7!. Thus, we can apply the results of Sec. III to arrive
at an involution onB8 which is defined through the!-relations~4.11!, but imposed on equiva-
lence classes inO 8. However, such a!-operation is incompatible with the algebraic relation
~4.10!, because

~~ ĉu8!21~ ŝu8!221̂!!5~ ĉu82 i\1̂8!21~ ŝu8!221̂8Þ0. ~4.12!

So, the involution introduced onB8 does not supply a well-defined involution on the algebra
Ap8 of physical observables. This example shows that the freedom in choosing representatives of
the complete set of physical observables is in general restricted by the consistency of the algebraic
structures with the!-operation constructed onAp8 .

V. CONCLUSIONS AND FURTHER COMMENTS

We have shown that, in systems with first-class constraints, the involution defined on the
algebraA~!! of quantum operators does not ever project unambiguously to the algebraAp8 of
physical observables. The reason for this is that the!-conjugates of all the representatives of any
class of observables never belong to the same equivalence class inAp , and, in general, not even
toAp .

We have also proved that, under sufficiently general circumstances, it is nevertheless possible
to obtain a well-defined involution onAp8 via reality conditions by making a particular choice of
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representatives for the equivalence classes of physical observables. The procedure to arrive at this
involution is the following. One must first find a complete set of physical observables$Ûa8% in
Ap8 , and select representatives$Ûa% of them such that their!-conjugates$Ûa

!% satisfy require-
ments~3.2! and~3.6!, namely, such that everyÛa

! belongs to the free associative algebra generated
by $Ûa% up to an operator which, as well as its!-conjugate, vanish modulo quantum constraints.
One can then introduce an involution! in the free associative algebraB8 by defining (Ûa8)

! as the
equivalence class of the observableÛa

! @see Eqs.~3.2!,~3.3!#. This involution onB8 straightfor-
wardly supplies an involution onAp8 , provided that the constructed!-operation is compatible
with the commutation and algebraic relations which exist between the physical observables in the
complete set$Ûa8%.

The involution obtained in this way onAp8 depends on the selection of a complete set of
physical observables and of specific representatives for them. While these choices are severely
restricted by the consistency conditions explained above, there is in general some freedom left, so
that, by adopting different choices, one might in principle arrive at nonequivalent involutions on
the algebra of physical observables.

This extra freedom in the quantization method suggested by Ashtekar, rather than being a
supplementary complication, might actually become an additional help when attempting to com-
plete the quantization. This is due to the fact that, given an involution! on the algebraAp8 and a
certain representation forAp8 on a vector spaceVp of quantum states, there isa priori no
guarantee that there exists an inner product onVp with respect to which the!-relations on physical
observables are realized as Hermitian adjoint relations in the resulting Hilbert space. Thus if such
an inner product does not exist for a particular involution onAp8 , one can always try to induce a
different involution on this algebra via reality conditions, and see whether it is possible to then
find an inner product with the desired properties.

We notice, on the other hand, that the introduction of an involution onAp8 amounts essentially
to determine the!-conjugate to a complete set of physical observables. When one expects that a
set of this kind, or at least some of its elements, correspond classically to real observables of the
system, it is reasonable to assume that they should be represented by self-adjoint operators. The
involution defined onAp8 should therefore ensure that these operators coincide with their
!-conjugates. These requirements clearly restrict the physically admissible involutions onAp8 .
Moreover, in the case that this type of physical arguments would apply to a complete set in
Ap8 , one would fully specify the involution on this algebra. In this way, one can use physical
intuition as a guideline to resolve~either partially or totally! the ambiguity encountered when
inducing an involution on the algebra of physical observables from reality conditions.

Finally, an alternative strategy to remove such an ambiguity could consist in adopting a
specific procedure to induce the involution! onAp8 . A procedure of this type might be, e.g., the
following:12 Let us denote byAs,Ap the subalgebra formed by all the strong quantum observ-
ables of the theory~that is, the operators which commute exactly with all the quantum constraints
$Ĉi%!, and defineI s[I CùAs . It is immediate to check thatI s is an ideal ofAs . Suppose then
that, in the system under consideration, the involution! defined onA~!! and the representation
constructed for the algebraA and for the constraints$Ci% are such that:~a! The complex vector
space spanned by the quantum constraints$Ĉi% is closed under reality conditions, i.e.,Ĉi

!5l i
j Ĉ j ,

where theli
j ’s are complex numbers.~b! The algebraAs8 [ As /I s is isomorphic toAp8 . ~c! The

ideal I s is invariant under the!-operation. Notice that hypothesis~c! is in principle compatible
with the fact thatI C is not a!-ideal ofAp . Requirement~b!, on the other hand, guarantees that
each physical observable inAp8 possesses~at least! one representative which is a strong observ-
able.

Using condition~a!, it is possible to prove that the!-operation leavesAs invariant. Assump-
tion ~c! ensures then that the!-relations project unambiguously toAs8 . One hence obtains a
well-defined involution onAs8 which, given condition~b!, supplies a unique involution onAp8
through the existing isomorphism between these two algebras. So, provided that hypotheses~a!–
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~c! are satisfied, the above strategy allows one to induce an unambiguous involution onAp8 from
reality conditions.

In fact, this strategy is partially motivated by the refined version of Ashtekar’s program which
has been recently proposed.13 In this new version of the program, it is supposed that all first-class
constraints can be represented by self-adjoint operators on an auxiliary Hilbert space on which one
has constructed a!-representation ofA~!!. Hypothesis~a! must hence hold. Besides, rather than
considering the whole algebraAp , one restricts one’s attention to a certain!-subalgebra of strong
observablesB phys

~!! ,As .
13 After completion of the quantization, one obtains a physical Hilbert

spaceHphys which carries a!-representation ofB phys
~!! . Let us point out that this representation

will not be faithful in general, for there may exist a subalgebraI B,B phys
~!! that annihilates the

whole space of physical states. It seems reasonable to assume thatI B5I CùB phys
~!! , i.e., that the

operators inB phys
~!! with zero action on physical states are those which vanish modulo

constraints.14 On the other hand, it is possible to show14 that Ashtekar’s refined program can be
consistently implemented only ifI B is a !-ideal ofB phys

~!! , requirement which is the analog of
hypothesis~c! above.

According to our discussion,Hphys should finally provide a faithful representation ofBphys8
[ B phys

(!) /I B. In order that all relevant physical information can be extracted from the quantum
theory obtained, it is then necessary thatBphys8 be isomorphic toAp8 ~or at least to a sufficiently
large subalgebra of it!. This last condition parallels hypothesis~b!. In this sense, the strategy
presented here to induce an involution onAp8 actually is implicitly incorporated in Ashtekar’s
refined program, with the only generalization that one can consider a!-subalgebra of strong
observablesB phys

~!! as the substitute forAs .
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