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1 Introduction

The Density Matrix Renormalization Group Method (DMRG) introduced by White [1] has arguably
become the most powerful numerical tool to retrieve the essential features of interacting quantum
Hamiltonians in 1D such as spin systems [1], [2] and fermion systems [3]. This method is a real-space
renormalization group (RG) method which is specially well suited when dealing with zero temperature
properties of many-body systems, a situation where the Quantum MonteCarlo methods happen to be
particularly badly behaved as far as fermionic systems are concerned [4].

The origin of the density matrix RG method relies on the special treatment carried out by White
and Noack [5] on the 1D tight-binding model, the lattice version of a single particle in a box. It was
Wilson the first to point out the relevance of this simple model in understanding the sometimes bad
numerical performance of the standard Block Renormalization Group (BRG) method. In reference [5]
the authors proposed a method called Combination of Boundary Conditions (CBC) which performs
extremely well as compared to the exact known solution of the model. Recently, we have clarified
the role played by the boundary conditions in the real-space renormalization group method [6] by
constructing a new analytical BRG-method which is able to give the exact ground state of the model
and the correct 1/N2-law for the energy of the first excited state in the large N(size)-limit.
The problem with the CBC method is the difficulty when trying to generalize it to interacting models.
In [5] yet another method was presented called the Superblock Method which is the precursor of the
density matrix RG method. The DMRG method is able to treat many-body problems as for example
the 1D Heisenberg model of spin S = 1 [1], [2] which happens to be a non-integrable model.
In this paper we present two novel versions of the DMRG method based upon the Perturbative-
Variational and Fokker-Planck approaches to quantum lattice Hamiltonians recently introduced in
references [7] and [8] respectively. We arrived at these new methods by searching for an analytical
formulation of the density matrix RG method. As it happens, the usual implementations of the DMRG
method are intrinsically numerical for they rely on Wilson’s procedure of enlarging the system size in
his RG-treatment of the Kondo problem [9]. We find interesting to address the problem of constructing
analytical extensions of the DMRG method for several reasons. Firstly, it is known that standard block
RG methods proved to be useful when dealing with qualitative features of some important models such
as the ITF model [10], Lattice Gauge Model [11], Heisenberg model [12], Hubbard model [13], etc.
and we want to see how the DMRG method performs when compared to those analytical BRG treat-
ments. To this purpose, we have applied our Variational and Fokker-Planck DMRG methods to the
Ising model in a tranverse field (ITF model). There are more interesting models, but the ITF model is
simple enough for a first application of these methods. As a matter of fact, it was Drell and the SLAC
group [10] who started to apply the standard Block Renormalization Group menthod to study QCD
and they used the ITF model as a test model. Later on in the 80’s this BRG method has been also
applied to the study of strongly correlated systems and its implications in High-Tc Superconductivity.
Secondly, the DMRG method as it stands is also intrinsically one-dimensional and it is an open prob-
lem to find feasible numerical schemes to work with higher dimensional systems. As it happens, our
Variational and Fokker-Planck DMRG methods are generalizable to dimension higher than one and we
might consider them as a first attempt to solving this important extension of the DMRG method.
This paper is organized as follows. In Sect.2 we present a brief introduction to the Block Renormal-
ization Group methods based upon the concept of the intertwiner operator T . This allow us to make
a unified formulation of both the standard BRG methods and the new Density Matrix RG method
according to our analytic formulation. In Sect.3 the Block RG-method is applied to the ITF model
following the formulation of Sect.2 and several critical exponents are computed. In Sect.4 we present
our new DMRG methods and apply them to compute the intertwiner operator and critical exponents
for the ITF model. The results are compared with the old BRG results and we find that the density
matrix methods perform better. Sect.5 is devoted to conclusions and prospectives.
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2 Block Renormalization Group Methods (BRG): Brief Review

In this section the block renormalization group method is revisited and we present a new and unified
reformulation of it based on the idea of the intertwiner operator T to be discussed below. This for-
mulation will allow us to introduce the new Variational and Fokker-Planck DMRG methods on equal
footing as the standard BRG method. For a more extensive account on this method we refer to [14]
and chapter 11 of reference [15] and references therein.

The block RG-method is a real-space RG-method introduced and developed by the SLAC group
[10]. Let us recall that Wilson developed his numerical real-space renormalization group procedure
to solve the Kondo problem [9]. It was clear from the beginning that one could not hope to achieve
the accuracy Wilson obtained for the Kondo problem when dealing with more complicated many-body
quantum Hamiltonians as the ones mentioned in the introduction. The key difference is that in the
Kondo model there exists a recursion relation for Hamiltonians at each step of the RG-elimination of
degrees of freedom. Squematically,

HN+1 = HN + hopping boundary term (2.1)

HN+1 = R(HN ) (2.2)

The existence of such recursion relation facilitates enormously the work, but as it happens it is specific
of impurity problems.

From the numerical point of view, the Block Renormalization Group procedure proved to be not fully
reliable in the past particularly in comparison with other numerical approaches, such as the Quantum
MonteCarlo method which were being developed at the same time. This was one of the reasons why
the BRG methods remained undeveloped during the ’80’s until the begining of the ’90’s when they are
making a comeback as one of the most powerful numerical tools when dealing with zero temperature
properties of many-body systems.

Let us first summarize the main features of the real-space RG. The problem that one faces generically
is that of diagonalizing a quantum lattice Hamiltonian H, i.e.,

H|ψ >= E|ψ > (2.3)

where |ψ > is a state in the Hilbert space H. If the lattice has N sites and there are k possible states
per site then the dimension of H is simply

dimH = kN (2.4)

As a matter of illustration we cite the following examples: k = 4 (Hubbard model), k = 3 (t-J model),
k = 2 (Heisenberg model) etc.
When N is large enough the eigenvalue problem (2.3) is out of the capability of any human or computer
means unless the model turns out to be integrable which only happens in some instances in d = 1.
These facts open the door to a variety of approximate methods among which the RG-approach, specially
when combined with other techniques (e.g. numerical, variational etc.), is one of the most relevant.
The main idea of the RG-method is the mode elimination or thinning of the degrees of freedom followed
by an iteration which reduces the number of variables step by step until a more manageable situation is
reached. These intuitive ideas give rise to a well defined mathematical description of the RG-approach
to the low lying spectrum of quantum lattice hamiltonians.

To carry out the RG-program it will be useful to introduce the following objects:

• H : Hilbert space of the original problem.
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• H′: Hilbert space of the effective degrees of freedom.

• H: Hamiltonian acting in H.

• H ′: Hamiltonian acting in H′ (effective Hamiltonian).

• T : embedding operator : H′ −→ H

• T † :truncation operator : H −→ H′

The problem now is to relate H, H ′ and T . The criterium to accomplish this task is that H and H ′

have in common their low lying spectrum. An exact implementation of this is given by the following
equation:

HT = TH ′ (2.5)

which imply that if Ψ′
E′ is an eigenstate of H ′ then TΨ′

E′ is an eigenstate of H with the same eigenvalue
(unless it belongs to the kernel of T : TΨ′

E′ = 0), indeed,

HTΨ′
E′ = TH ′Ψ′

E′ = E′TΨ′
E′ (2.6)

To avoid the possibility that TΨ′ = 0 with Ψ′ 6= 0, we shall impose on T the condition,

T †T = 1H′ (2.7)

such that

Ψ = TΨ′ ⇒ Ψ′ = T †Ψ (2.8)

Condition (2.7) thus stablishes a one to one relation between H′ and Im(T ) in H.
Observe that Eq. (2.5) is nothing but the commutativity of the following diagram:

H′ T−→ H
H ′ ↓ ↓ H

H′ T−→ H

Eqs. (2.5) and (2.7) characterize what may be called exact renormalization group method (ERG)
in the sense that the whole spectrum of H ′ is mapped onto a part (usually the bottom part) of the
spectrum of H. In practical cases though the exact solution of Eqs. (2.5) and (2.7) is not possible so
that one has to resort to approximations (see later on). Considering Eqs. (2.5) and (2.7) we can set up
the effective Hamiltonian H ′ as:

H ′ = T †HT (2.9)

This equation does not imply that the eigenvectors of H ′ are mapped onto eigenvectors of H. Notice
that Eq.(2.9) together with (2.7) does not imply Eq. (2.5). This happens because the converse of
Eq.(2.7), namely TT † 6= 1H is not true, since otherwise this equation together with (2.7) would imply
that the Hilbert spaces H and H’ are isomorphic while on the other hand the truncation inherent to
the RG method assumes that dim H’ ¡ dim H.

What Eq.(2.9) really implies is that the mean energy of H ′ for the states Ψ′ of H′ coincides with
the mean energy of H for those states of H obtained through the embedding T , namely,

< Ψ′|H ′|Ψ′ >=< TΨ′|H|TΨ′ > (2.10)
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In other words TΨ′ is used as a variational state for the eigenstates of the Hamiltonian H. In
particular T should be chosen in such a way that the states truncated in H , which go down to H′, are
the ones expected to contribute the most to the ground state of H. Thus Eq. (2.9) is the basis of the
so called variational renormalization group method (VRG) 1. As a matter of fact, the VRG method
was the first one to be proposed. The ERG came afterwards as a perturbative extension of the former
(see later on).
More generally, any operator O acting in H can be “pushed down” or renormalized to a new operator
O′ which acts in H′ defined by the formula,

O′ = T †OT (2.11)

Notice that Eq.(2.9) is a particular case of this equation if choose O to be the Hamiltonian H.
In so far we have not made use of the all important concept of the block, but a practical implemen-

tation of the VRG or ERG methods does require it. The central role played by this concept makes all
the real-space RG-methods to be block methods.

Once we have established the main features of the RG-program, there is quite freedom to implement
specifically these fundamentals. We may classify this freedom in two aspects:

• The choice of how to reduce the size of the lattice.

• The choice of how many states to be retained in the truncation procedure.

We shall address the first aspect now. There are mainly two procedures to reduce the size of the lattice:

• by dividing the lattice into blocks with ns sites each. This is the blocking method introduced by
Kadanoff to treat spin lattice systems.

• by retrieving site by site of the lattice at each step of the RG-program. This is the procedure
used by Wilson in his RG-treatment of the Kondo problem. This method is clearly more suitable
when the lattice is one-dimensional.

We shall be dealing with the Kadanoff block methods mainly because they are well suited to
perform analytical computations and because they are conceptually easy to be extended to higher
dimensions. On the contrary, the DMRG method introduced by White [1] works with the Wilsonian
numerical RG-procedure what makes it intrinsically one-dimensional and difficult to be generalized to
more dimensions. Thus why we shall formulate our Variational and Fokker-Planck DMRG procedures
as block renormalization methods in section 4.
Block RG-methods have recently received also renewed attention in one-dimensional problems in connec-
tion to what is called a quantum group symmetry [16]. Based upon this symmetry we have constructed
a new BRG-method that we call q-RG which among other features it is able to predict the exact line
of critical XXZ models in the Anisotropic Heisenberg model, unlike the standard BRG-method.

To exemplify the standard BRG-method we shall study a 1d-lattice Hamiltonian, the Ising model in a
transverse field (ITF model). The main ideas are also valid in higher dimensions although computations
are more involved. Hence we shall be dealing with a one-dimensional lattice, usually a periodic chain.
In every site of the chain there are k degrees of freedom, hence:

H = Ck⊗ N. . . ⊗Ck := ⊗NCk (2.12)

We shall consider Hamiltonians H containing operators which involve only a single-site part Hs or
two-nearest-neighbour-site part Hss and will be simbolically depicted as in Fig.1, in such a way that,

1The word variational here is used with a different meaning as in the introduction of this paper where it refers to the
variational choice of the target state in the DMRG method to be discussed in section 4.
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H = Hs +Hss (2.13)

As a matter of illustration, let us give one example of this decomposition in the ITF model which will
turn out to be very useful in putting many key ideas to the test.

3 Block RG-Approach to the Ising Model in a Transverse Field (ITF)

The Ising Model in a Transverse Field is originally a one-dimensional quantum lattice system with
quantum critical properties equal to the well-known thermal critical properties of the classical 2D-Ising
Model. The lattice Hamiltonian of the ITF model is:

HN(Γ, J) = −Γ
N
∑

j=1

σx
j − J

N
∑

j=1

σz
jσ

z
j+1 (3.14)

where σx
j and σz

j are the standard Pauli matrices acting at the j-th site of the chain.
The Hilbert space of states and the intrablock and interblock Hamiltonians for this model are,

respectively:

H = ⊗N
1 C2 (3.15)

Hs = −Γ
N
∑

j=1

σx
j (3.16)

Hss = −J
N
∑

j=1

σz
jσ

z
j+1 (3.17)

The first step of the BRG method consists in asembling the set of lattice points into diconnected
blocks of nB sites each, as in Fig.2.

In this fashion there are a total of N ′ = N/nB blocks in the whole chain. This partition of the
lattice into blocks induces a decomposition of the Hamiltonian (2.13) into an intrablock Hamiltonian
HB and a interblock Hamiltonian HBB as illustrated in Fig.3.
Observe that the block Hamiltonian HB is a sum of commuting Hamiltonians each acting on every
block. The diagonalization of HB can thus be achieved for small nB either analytically or numerically.
The content of Fig. 3 can be written as

H = HB + λHBB (3.18)

where λ is a coupling constant which is already present in H or else it can be introduced as a parameter
characterizing the interblock coupling and in this latter case one can set it to one at the end of the
discussion.
Eq. (3.18) suggests that we should search for solutions of the intertwiner equation (2.5) in the form of
a perturbative expansion in the interblock coupling constant parameter λ, namely,

T = T0 + λT1 + λ2T2 + . . . (3.19)

H ′ = H ′
0 + λH ′

1 + λ2H ′
2 + . . . (3.20)

To zeroth order in λ Eq. (2.5) becomes

HBT0 = T0H
′
0 (3.21)
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Since HB is a sum of disconnected block Hamiltonians h
(B)
j′ , j′ = 1, . . . , N ′ implicitly defined through

the relation

HB =
N ′

∑

j′=1

h
(B)
j′ (3.22)

one can search for a solution of T0 in a factorized form

T0 =
N ′

∏

j′=1

T0,j′ (3.23)

and an effective Hamiltonian H ′
0 which acts only at the site j′ of the new chain,

H ′
0 =

N ′

∑

j′=1

h
(s′)
j′ = H ′

s′ (3.24)

Observe that H ′
s′ is nothing but a site-Hamiltonian for the new chain. Eq. (3.21) becomes for each

block:

h
(B)
j′ T0,j′ = T0,j′h

(s′)
j′ (3.25)

The diagonalization of h
(B)
j′ for j′ = 1, . . . , N ′ will allow us to write

h
(B)
j′ =

k′

∑

i=1

|i〉j′ ǫi j′〈i| +
kns−k′

∑

α=1

|α〉j′ ǫα j′〈α| (3.26)

where |i >j′ for j = 1, . . . , k′ are the k′-lowest energy states of h
(B)
j′ . Moreover, we suppose that h

(B)
j′ is

the same Hamiltonian for each block so that ǫi does not depend on the block.

The truncated Hamiltonian h
(s)
j′ and the intertwiner operator T0,j′ are then given by:

h
(s′)
j′ =

k′

∑

i=1

|i〉′j′ ǫi j′〈i|′ (3.27)

T0,j′ =
k′

∑

i=1

|i〉′j′ j′〈i|′ (3.28)

Later on we shall show examples of these relations.
To obtain the first order correction to the Hamiltonian H ′

1 we must consider Eq. (2.5) to first order
in λ:

HBBT0 +HBT1 = T0H
′
1 + T1H

′
0 (3.29)

Multiplying the left hand side by T †
0 and using T †

0T0 = 1 along with HBT0 = T0H
′
0 we readly obtain:

T †
0HBBT0 +H ′

0T
†
0T1 = H ′

1 + T †
0T1H

′
0 (3.30)

We would like to kill the term proportional to T †
0T1. For this purpose Eq. (2.7) which implies

T †
0T1 + T1T

†
0 = 1 is not very useful. A resolution of this problem can be accomplished if instead of the

operator T one uses another operator T̃ satisfying the defining equations:

HT̃ = T̃H ′ (3.31)
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T †
0 T̃ = 1H′ (3.32)

Then T̃0 = T0 and T †
0 T̃1 = 0 in which case Eq. (3.30) simply becomes:

H ′
1 = T †

0HBBT0 = H ′
s′s′ (3.33)

We can summarize these results saying that up to first order in λ, the effective Hamiltonian H ′ can
be obtained using simply the zeroth order intertwiner operator T0 (see Fig.4):

H ′
(up to order λ)

= H ′
s′ +H ′

s′s′ = T †
0 (HB + λHBB)T0 (3.34)

This is precisely the prescription of Drell et al. [10].
The second order correction to H ′ can be obtained again from Eqs. (3.31)-(3.32) and is given by

H ′
2 = T †

0HBBT̃1 (3.35)

There is a close parallelism between the perturbative solution of Eqs. (2.5) or (3.31)- (3.32) and the
pertubation theory of the Schrodinger equation for a Hamiltonian of the form H0 + λH1. As a matter
of fact, the normalization condition (3.32) for operators is equivalent to the standard normalization for
wavefunctions < Ψ0|Ψ(λ) >=< Ψ0|Ψ0 >= 1 that is adopted to avoid normalization complications. In
what follows we shall mainly concentrate on the first order solution Eq. (3.34).

The final outcome of this analysis is that the effective Hamiltonian H ′ has a similar structure to the
one we started with, H. The operators involved in H ′

s′ and H ′
s′s′ may by all means differ from those

of Hs and Hss, but in some cases the only difference shows up as a change in the coupling constants.
This is known as the renormalization of the bare coupling constants. When this is the case, one may
easily iterate the RG-transformation and study the RG-flows.

Let us summarize the RG-prescription we have introduced so far in Table 1.
We have denoted this prescription by BRG1(ns,k

′) where ns and k′ have been defined earlier and 1
denotes that we are working to first order in perturbation theory.

For the ITF model we shall consider blocks of two sites (ns = 2) and truncation to two states
(k′ = 2). The block Hamiltonian has two sites and has the form,

h(B) = −Γ(σx
1 + σx

2 ) − Jσz
1σ

z
2 (Γ, J > 0) (3.36)

The eigenstates of this block Hamiltonian (3.36) are given in increasing order of energies by,

|G >=
1√

1 + a2
(|00 > +a|11 >) E = −

√

J2 + 4Γ2 (3.37)

|E >=
1√
2
(|01 > +|10 >) E = −J (3.38)

|E′ >=
1√
2
(|00 > −|11 >) E = J (3.39)

|E′′ >=
1√

1 + a2
(−a|01 > +|10 >) E =

√

J2 + 4Γ2 (3.40)

|0 > and |1 > are the eigenstates of σx,

σx|0 >= |0 >, σx|1 >= −|1 > (3.41)

and a = a(g) is the following function of the ratio J/2Γ := g,
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a(g) =
−1 +

√

1 + g2

g
(3.42)

which in turn satisfies

a(0) = 0, a(∞) = 1 (3.43)

The intertwiner operator whithin each block has the form

T0(a) = |G〉 〈0|′ + |E〉 〈1|′ (3.44)

where |0 >′ and |1 >′ form a basis of states at each point of the new chain. The effective Hamiltonian
H ′ up to order J can be computed from Eq. (3.34).
Thus to get H′ we have to study the renormalization of the various operators entering in its definition.
Using (3.44) and (3.37)-(3.40) one obtains after some elementary algebra:

T †σx
j T =

1 − a2

2(1 + a2)
(1 + σx

j′) (3.45)

T †σz
jT =

1 + a
√

2(1 + a2)
σz

j′ (3.46)

T †σz
2j−1σ

z
2jT =

(1 + a)2

2(1 + a2)
1 +

(1 − a)2

2(1 + a2)
σx

j′ (3.47)

T †σz
2jσ

z
2j+1T =

(1 + a)2

2(1 + a2)
σz

j′σ
z
j′+1 (3.48)

The range of the indexes run as follows:

j = 2j′ − 1 + p (3.49)

j = 1, . . . , N (3.50)

j′ = 1, . . . , N/2 p = 0, 1 (3.51)

Applying Eqs. (3.45)-(3.48) to the ITF Hamiltonian, one gets

T †HN (Γ, J)T = ∆E +HN/2(Γ
′, J ′) (3.52)

where

∆E = −N
2

[

Γ
1 − a2

(1 + a2)
+
J

2

(1 + a)2

(1 + a2)

]

(3.53)

Γ′ = Γ
1 − a2

(1 + a2)
− J

(1 + a)2

2(1 + a2)
(3.54)

J ′ = J
(1 + a)2

2(1 + a2)
(3.55)

The derivation of Eqs. (3.45)- (3.48) and (3.52)-(3.55) does not make use of Eq. (3.42) and hence
have a more general validity. In other words, we can use the function a(g) as a variational function in
order to construct better ground states in the spirit of the VRG.
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Eq. (3.42) is one of the numerous choices we can make. We shall consider later on other examples.
Schematically we can set up the following relationship,

RG-Prescription with ns = 2, k′ = 2 ⇐⇒
{

a(g) ≥ 0
a(0) = 0, a(∞) = 1

(3.56)

The physical properties of HN (Γ, J) depend only upon the ratio g = J/2Γ. If 0 ≤ g ≤ 1/2 one is
in a disordered region characterized by a unique ground state with unbroken symmetry (< σz >= 0).
If g > 1/2 the Z2 symmetry associated to the operator Q =

∏

j σ
z
j , which commutes with HN for N

even, is broken. This is the ordered phase which has two degenerate ground states corresponding to
< σz >= ±m 6= 0.

At g = gc = 1/2 the system is critical and belongs to the same universality class as the 2D-
classical Ising model. The critical exponents can be defined in terms of the behaviour of the “quantum
observables” as functions of gc − g.

Most of the critical exponents can be computed from the properties of the RG-transformation. In
the case of the ITF model the RG-transformation can be obtained from Eq.(3.53)-(3.55):

g′ :=
J ′

2Γ′ := R(g) =
1

2

g(1 + a(g))2

1 − a(g)2 − g(1 − a(g))2
(3.57)

For any function a(g) satisfying Eq. (3.56), this transformation has 3 fixed points g∗ = 0, gc,∞. The
fixed points g∗ = 0 and ∞ are attractive and correspond to the disordered and ordered phases respec-
tively. The fixed point at gc is repulsive and correspond to the critical point of the ITF Hamiltonian.
The value of the function a(g) at g = gc is a function only of gc and does not depend on the particular
prescription chosen, that is, it is a universal function :

gc = R(gc) ⇒ a(gc) =
2
√

1 − 2gc + 2gc − 1

3 + 2gc
(3.58)

This equation implies in particular that whatever prescription is chosen, assuming that a is real, the
critical value obtained from Eqs.(3.53)-(3.55) will always be less than the exact value 1/2.

gc ≤ gexact
c = 1/2 (3.59)

To get the value of gc for a given prescription one has simply to find the intersection of the function
a(g) and the function,

f(g) =

{

2
√

1−2g+2g−1
3+2g 0 ≤ g ≤ 1/2

0 g ≥ 1/2
(3.60)

as is shown in Fig.7.
The analysis of the RG-equations usually has to be done numerically. However, there is a great

deal of information that can be retrieved without completely solving the RG-equations if we know
wheather the successive coupling constants gn −→ gn+1 = R(gn) increase or decrease during the
iteration procedure. To this end it is convenient to introduce the the familiar beta function β(g) of
quantum field theory which in this context is [10],

β(g) := R(g) − g (3.61)

In Fig.8 we have plotted the beta function for the ITF model we are analyzing. A fixed point of the
transformation occurs at values of g which reproduce themselves under the RG-iteration, i.e., they are
the zeroes of the beta function:

β(gc) = 0 (3.62)
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There are 3 fixed points for besides the two zeroes at g = 0 and 0.39, g = ∞ is also a fixed point for it
cannot be reduced by further iterations.

There is additional qualitative information which can be extracted from the shape of the beta
function β(g). In particular, the sign of β(g) is responsible for the stability character of the fixed point.
When β(g) < 0 (> 0) this means that g decreases (increases) after one iteration and the resulting g′

lies to the left (right) of the g we started with.
The outcome of this RG-analysis can be summarized by saying that the fixed points g∗ = 0,∞ are

stable fixed points while gc = 0.39 is an unstable fixed point.
Given the RG-transformation Eq. (3.57) we can compute several critical exponents and compare

them with the exact results in order to check the accuracy of the method.

Correlation Length Exponent ν. It gives the behaviour of the correlation length in the vicinity
of gc

ξ ∼ (g − gc)
−ν (3.63)

Under the RG-transformation (3.57) ξ → ξ′ = ξ/2 which leads inmediately to an expression for ν in
terms of the derivative of R(g) evaluated at the critical point,

1

ν
=

lnR′(gc)

ln 2
(3.64)

From Eq. (3.57) we can evaluate R′(gc) as a function of ac = a(gc) and a′c = da
dg |c ,

λT := R′(gc) = 1 + 2gc(
1 − ac

1 + ac
)2 + 4

a′cgc
√

1 − 2gc

(1 + ac)2
(3.65)

In Table 2 we show the value of ν obtained for different choices of the function a(g).

Dynamical Exponent z. At the critical point where g′ = g holds, the Hamiltonian changes by an
overall factor which in turn defines the dynamical exponent z

Hc −→ H ′
c =

1

2z
Hc (3.66)

In order to get z we notice that

1

2z
= (

J ′

J
)c = (

Γ′

Γ
)c (3.67)

Hence

z =
ln(J ′

J )

ln 2
= 1 +

ln
[

(1 + a2
c)/(1 + ac)

2
]

ln 2
(3.68)

It follows from Eq. (3.68) and the positivity property of ac (3.56) that z is always less than the
exact value,

z ≤ zexact = 1 (3.69)

10



Magnetic Exponent β. This critical exponent is defined through the spontaneous magnetization
Mz in the ordered phase,

M =< σz
j > (3.70)

Above ac but close to the critical point we will have

M ∼ (g − gc)
β (3.71)

Gap Exponent s. Using scaling arguments satisfied by the BRG method, the gap G behaves like

G ∼ (g − gc)
s (3.72)

with

s = νz (3.73)

Equation (3.46) relates the magnetization M and the one obtained after the RG-transformation

M =
1 + a

√

2(1 + a2)
M ′ (3.74)

Combining Eqs.(3.74), (3.71) and g′ = R(g) we arrive at,

M ′

M
=
[

R′(gc)
]β

= 2β/ν =
1 + ac

√

2(1 + a2
c)

(3.75)

Using Eq.(3.68) we are able to relate the critical exponents β, ν and z through the following scaling
relation,

β =
1

2
zν (3.76)

This relation is valid for any choice of the function a(g) and therefore it is characteristic of using a
block containing two sites. Observe that the exact exponents of the ITF model never satisfy this scaling
relation (3.76). This shows the limitation of the block method when using a two-site block.

4 Density Matrix RG Method: Analytic Formulation

The Density Matrix RG-method (DMRG) is an improved version of the real-space renormalization group
methods introduced by White [1] as a further elaboration of the ideas concerning the Combination of
Boundary Conditions method [5].

The fundamental difficulty of the BRG method lies in choosing the eigenstates of the block Hamilto-
nian HB to be the states kept. Since HB contains no connections to the rest of the lattice its eigenstates
have inappropiate features at the block ends. The CBC method of White and Noack is a first attempt
to solving this intrinsic problem. The rationale of this method was that quantum fluctuations in the
rest of the system effectively apply a variety of boundary conditions to the block. The CBC method
proved to be very effective for the simple single-particle problem studied by White and Noak, but it
happens to be ill-suited to interacting systems. The importance of the CBC method relies more on the
lessons we can learn from it rather than the specific technicalities pertaining the simple case where it is
applied successfully. There are two main ideas in order to proceed towards density matrix RG-method,
namely:
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• The block is not isolated.

• The eigenstates retained are not eigenstates of a unique block Hamiltonian HB.

The DMRG method is in a sense an evolution of the CBC method in which we “let the system” to
choose the best boundary conditions. White suggests that for a system which is strongly coupled to the
outside “universe” (the rest of the lattice), it is much more appropiate to use eigenstates of the block
density matrix to describe the system (block), rather than the eigenstates of the system’s Hamiltonian
HB. White’s proposal can be stated by saying:

• Choose to keep the nB most probable eigenstates of the block density matrix.

It is possible to show that keeping the most probable eigenstates of the density matrix gives the most
accurate representation of the state of the system as a whole [1]. This is the basis of the Density Matrix
Renormalization Group (DMRG) method.

For the sake of completeness we present a brief introduction to the DMRG method. A superblock
is called to a large block which contains several smaller blocks, one of which is the block to be used in
the blocking procedure of the BRG method. Let us suppose that we have diagonalized a superblock
and thereby obtained one particular state |ψ〉 which is called the target state and probably will be
the ground state. Let {|i〉, i = 1, . . . , l} be a complete set of states of the the block B which we call
“the system”. Let also {|j〉, j = 1, . . . , J be a complete set of states of the superblock which we call
“the universe” (see Fig.5). Now we proceed to decompose the target state |ψ〉 into its system- and
universe-parts according to the following equation,

|ψ〉 =
∑

i,j

ψij|i〉|j〉 (4.77)

Next we want to devise a procedure to produce a set of states of the system denoted by

|uα〉, α = 1, . . . , nB with |uα〉 =
∑

i

uα
i |i〉 (4.78)

which are optimal for representing the target state |ψ〉 in a sense to be specified below. The number of
states kept is such that nB < l so that |ψ〉 is represented approximately, that is,

|ψ〉 ≈ |ψ̃〉 :=
∑

α,j

aα,j |uα〉 |j〉 (4.79)

where aα,j are components to be determined by demanding that the following distance to be a minimun:

D := ||ψ〉 − |ψ̃〉|2 (4.80)

This minimization problem requires to vary over all aα,j and uα subject to the condition,

〈uα|uα′〉 = δαα′ (4.81)

White has proved that the solution to this minimization problem is given by the optimal states uα being
eigenvectors of the reduced density matrix of the system as part of the universe whose eigenvalues are
the nB largest in magnitude [1].
The reduced density matrix for the system depends on the state of the universe which in this case is a
pure state |ψ〉. Therefore, the density matrix for the system is given by,

ρii′ =
∑

j

ψijψi′j (4.82)
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To summarize, when the entire lattice is assumed to be in a pure state, the optimal states to be kept are
then nB most significant states of the reduced density matrix of the block, say B.

Next step in putting density matrix RG ideas at work is to devise an efficient algorithm based upon
these developments. A density matrix algorithm is defined mainly by two features, the same as the
standard BRG algorithm is, namely, according to the form of the superblock and the manner in which
the block are enlarged, e.g., doubling the block B’ = B B (Kadanoff) or adding a single site B’ = B +
site (Wilson in Kondo).
As far as computer power is concerned, generally is more efficient to enlarge the block by adding a single
site rather than doubling the block. The reason for this is that the diagonalization of a superblock
composed of say p identical blocks is difficult for a many-particle interacting system for the dimension
of the Hilbert space of states goes like np

B, assuming that nB states are kept per block.
This has led White to propose a variety of density matrix algorithms for both finite and infinite size
systems which rely on Wilson’s method for enlarging the system. Thus, they are intrinsically one-
dimensional methods.
In this paper we are presenting two new DMRG methods (Variational and Fokker-Planck) which are
based on the blocking procedure of reducing the system size as the standard Block Renormalization
Group method ot the previous section. This makes them potentially well-suited to address higher
dimensional systems.
Moreover, the DMRG algorithms introduced by White are intrinsically numerical for they are based
upon Wilson’s procedure of enlarging the system size. On the contrary, the BRG study of the ITF
model carried out in the previous section was done in an analytical fashion mainly because it is a
blocking procedure. We shall present hereby a new treatment of the ITF model along the lines of the
density matrix RG method which is analytical.
To this purpose, we have incorporated the block method in the DMRG algorithm. In addition, we shall
incorporate another ingredient for the algorithm to become analytical: we shall choose the target state
(ground state) using a variational method or a Fokker-Planck method, and then compare the results
obtained in these two fashions with the standard BRG results of the previous section.

The way to combine the above tools is as follows. We first set up a variational ground state for the
whole chain whose energy is determined by solving the corresponding minimization equations. Next
we use this state to construct a block density matrix ρ for a block having two sites in the philosophy
of the BRG method. This ρ turns out to be (see below) a 4 × 4 matrix whose two largests eigenvalues
denoted by |A〉 and |B〉 are kept to construct the intertwiner operator T0 as in sections 2 and 3. Once
we make contact with the blocking method, the iteration procedure goes over and over. The important
point now is that we can keep the DMRG study at an analytical level.

It is worth noticing that we are introducing two new features in this fashion. In the original DMRG
method of White the target state selected comprises just a few sites of the chain while now we are
using the whole chain. On the contrary, in doing so we have to resort to variational or Fokker-Planck
methods to handle the problem, while in the numerical DMRG the target state selected is exact for the
particular size of the superblock chosen.

4.1 Variational DMRG.

In reference [7] a new method based on the combination of perturbative and variational techniques
was presented to study quantum lattice Hamiltonians. The general ideas of this method are illustrated
in the example of the Ising model in an transverse field. The method relies on the choice of an
exponential ansatz ψ(λ) exp[U(λ)]ψ0, which is a sort of generalized lattice version of a Jastrow wave
function. Perturbative and variational techniques are used to get successive approximations of the
operator U(λ). Perturbation theory is used to set up a variational method which in turn produces
nonperturbative results. This method allows one to associate to the original quantum-mechanical
problem a statistical-mechanical system defined in the same spatial dimension. In some instances these
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statistical-mechanical systems turn out to be integrable, which allows one to obtain exact upper bounds
to the energy. We shall briefly review this method hereby but for a detailed account we refer to [7].

Let us suppose that we are given a hamiltonian of the form H(λ) = H0 + λH1, where H0 has
a nondegenerate ground state ψ0 and λ is a coupling constant. In reference [7] it was proposed to
construct the ground state ψ(λ) of H(λ) as

ψ(λ) = exp(
∞
∑

n=1

λnUn) ψ0 (4.83)

Solving perturbation theory in λ to order ν implies the knowledge of the collection of operators
{Un}n=1,...,ν . Each operator Un consist in fact of a sum of “irreducible” operators VI ,

Un =
∑

I

pn,IVI (4.84)

Hence inserting (4.84) into (4.83) and interchanging the order of the sums one arrives to a “dual”
description of the ground state

ψ(λ) = exp(
∑

I

αI(λ)VI) ψ0 (4.85)

where αI(λ) =
∑

n λ
npn,I .

This expression suggests an alternative approximation to the ground state ψ(λ) which consists in
choosing only a class of irreducible operators VI whose weights αI are determined variationally. This
was precisely the approach applied in [7] to the Ising model in a transverse field.

According to the perturbative-variational (PV) method [7] we must first determine the form of
the set operators {Un} by inserting the exponential ansatz (4.83) in the Schrodinger equation for
H. Then these operators serve us to construct variational wave functions by inserting them back in
the exponential ansatz. The perturbative equations that determine the Un for the lowest order in
perturbation theory obey the equations,

order λ: ([H0, U1] +H1)ψ0 = E(1)ψ0 (4.86)

order λ2: ([H0, U2] + [H1, U1] + 1/2([[H0, U1], U1]))ψ0 = E(2)ψ0 (4.87)

where E(1) and E(2) are the perturbative energies to first and second order.
A solution of equations (4.86) and (4.87) in the case where H0 = −∑j σ

x
j and H1 = −∑j σ

z
jσ

z
j+1 is

the following,

U1 =
1

4

∑

j

σz
jσ

z
j+1 (4.88)

U2 =
1

16
{
∑

j

σz
jσ

z
j+2 +

∑

j

σz
j (σ

z
j+1 + σz

j−1)} (4.89)

In the following we shall make use of the simplest exponential ansatz based on the U1 operator only.
Now let us start searching for the block density matrix using the variational method. Recall that

the density matrix in Eq. (4.82) can be rewritten as a scalar product of two block states |ψ〉B and
|ψ′〉B′ given by their defining system-universe decompositon of the previous section:

|ψ〉B =
∑

i∈B

∑

j∈Bc

ψij |i〉|j〉 (4.90)
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|ψ′〉B′ =
∑

i′∈B′

∑

j′∈B’c
ψi′j′ |i′〉|j′〉 (4.91)

where i, i′ are system-indexes, j, j′ are universe-indexes, B, B′ are system-blocks and Bc, B′c are
universe-blocks. The density matrix ρ is given by the scalar product of these two block states:

ρ =B 〈ψ|ψ′〉B′ (4.92)

for upon substitution of Eqs. (4.90), (4.91) we arrive at

ρ =
∑

ij

∑

i′j′

〈i|〈j|ψijψi′j′ |i′〉|j′〉

=
∑

i′i

|i′〉〈i|ρii′ (4.93)

with ρii′ as in Eq.(4.82).
Now let us consider the following variational state ansatz for the ground state |ψ0〉1,2,3,...,N of the

ITF model in a lattice with N sites:

|ψ0〉1,2,3,...,N = exp(
α

2

N
∑

j=1

σz
jσ

z
j+1) |0〉1,2,3,...,N (4.94)

where α is a variational parameter which is determined by minimizing the vacuum expectation value of
the ITF Hamiltonian in this state, thereby making the parameter to become a function α = α(J/2Γ) of
the coupling constant of the model; and |0〉1,2,3,...,N = |0〉1 ⊗ . . .⊗ |0〉N with |0〉 being the ground state
of the σx matrix. This exponential-variational ansatz constitutes part of a method called Perturbative-
Variational method (PV) developed in [7] for spin systems and in [18] for fermionic systems. The PV
method is essentially a cluster method which combines perturbative and variational techniques. Using
Eq. (4.92) we construct the block density matrix out of this target state for a block containing 2 sites
as:

ρPV =
1

ZN (α)
1,2〈ψ0|ψ0〉1′,2′ (4.95)

where ZN (α) is a normalization factor being the norm of the state which can be interpreted as the
partition function of a certain associated statistical model [7]. As a matter of fact, in the large N limit,
it turns out to be simply:

ZN (α) = 〈ψ0|ψ0〉 = (coshα)N , N ≫ 1 (4.96)

Inserting the ansatz (4.94) into (4.95) we can express the density matrix in a more appealing form,
namely,

ρPV =
1

ZN (α)
1,2〈0| exp

α

2
(σz

1σ
z
2 + σ′z1σ

′z
2) Z

(0)
N−2(α, h, h

′)|0〉1′,2′ (4.97)

where we have defined the following quantities,

Z
(0)
N−2(α, h, h

′) :=3,...,N 〈0| exp
(α
∑N−3

j=3
σz

j
σz

j+1
+hσz

3
+h′σz

N
) |0〉3,...,N (4.98)

h :=
α

2
(σz

2 + σ′z2) (4.99)
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h′ :=
α

2
(σz

1 + σ′z1) (4.100)

For the time being, it is convenient to shift N − 2 → N in order to make expressions easier (at the end
we shall come back to the correct value).

It is possible to recast Z
(0)
N−2(α, h, h

′) into the following form,

Z
(0)
N (α, h, h′) =1,...,N 〈0| exp(α

N−1
∑

j=1

σz
jσ

z
j+1 + hσz

1 + h′σz
N )|0〉1,...,N

=
1

2N

∑

{σ1,...,σN}
exp(α

N−1
∑

j=1

σjσj+1 + hσ1 + h′σN ) (4.101)

Now we can recognize this equation as the partition function for the Ising model on an open chain of N
sites subject to an external magnetic field applied only at the ends of the chain. This partition function
can be worked out exactly using standard transfer matrix calculations yielding the result:

Z
(0)
N =

1

2N
{[cosh(h+ h′) + cosh(h− h′)](2 cosh α)N−1

+ [cosh(h+ h′) − cosh(h− h′)](2 sinhα)N−1} (4.102)

In the N → ∞ limit in which we are interested in, it further simplifies to:

Z
(0)
N→∞ =

1

2
(coshα)N−1[cosh(h+ h′) + cosh(h− h′)] (4.103)

Inserting now Eq.(4.103) in Eq.(4.97) we arrive at the following expression for the PV block density
matrix:

ρPV =
1

2(coshα)3 1,2

〈0| exp
α

2
(σz

1σ2 + σ′z1σ
′z
2)

× [cosh
α

2
(σz

1 + σz
2 + σ′z1 + σ′z2) + cosh

α

2
(σz

1 − σz
2 + σ′z1 − σ′z2)]|0〉1′,2′ (4.104)

This is a nice result. Observe that the piece 1,2〈0| exp
α
2
(σz

1
σ2) exp(σ′z1σ

′z
2) |0〉1′,2′ corresponds to a density

matrix of a pure state ρ = |φ〉1′,2′ 1,2〈φ| is the projection of the target state ψ0 onto the block (1, 2).
The extra terms in Eq.(4.104) are the novel features that the DMRG(PV) method brings about.
To proceed further and give ρPV a simple matricial form, it is convenient to change basis from eigenstates
|0〉, |1〉 of σx to eigenstates |+〉, |−〉 of σz. The notation is,

|+〉 =

(

1
0

)

, |−〉 =

(

0
1

)

(4.105)

|0〉 =
1√
2

(

1
1

)

, |1〉 =
1√
2

(

1
−1

)

(4.106)

In the new basis {|+〉, |−〉} the components of ρPV are:

ρPV
σ′1σ′2σ1σ2

=
1

8(coshα)3
exp

α

2
(σ1σ2 + σ′1σ′2)

× [cosh
α

2
(σ1 + σ2 + σ′1 + σ′2) + cosh

α

2
(σ1 − σ2 + σ′1 − σ′2)] (4.107)
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Now ρPV takes the following matricial form in the basis {++,−−,+−,−+}:

ρPV =
1

4(coshα)3











eα(coshα)2 eα coshα coshα
eα eα(coshα)2 coshα coshα

coshα coshα e−α(coshα)2 e−α

coshα coshα e−α e−α(coshα)2











(4.108)

We can readly check that ρPV is normalized:

trρPV = 1 (4.109)

Next step in the DMRG algorithm is to diagonalize the density matrix (4.108) and truncate to the
largest ones; in this case the truncation is to two states to be denoted by |A〉 and |B〉 and will play the
parallel role of the states |G〉 and |E〉 for the block Hamiltonian HB of Section 3.
We do not need to make a “blind” diagonalization of this 4 × 4 matrix for we may take advantage of
what we have learnt in Section 3 about the eigenstates of the HB in the ITF model. Then, the largest
eigenvector say |A〉 will be in the even sector {|00〉, |11〉}, while the next to the largest one, say |B〉,
will be in the odd sector {|01〉, |10〉}. According to this analysis, we may write those states as,

|A〉 = x00|00〉 + x11|11〉 (4.110)

|B〉 = x01|01〉 + x10|10〉 (4.111)

where x00, x11, x01, x10 are the components to be determined. Expressing the states |00〉, |11〉 . . . in the
basis of {|+〉, |−〉}, the diagonalization of the density matrix (4.108) yields the following eigenvalues:

w0 =
1

4(coshα)3
[coshα(1 + cosh2 α) +

√

cosh2 α(1 + cosh2 α)2 − sinh4 α] (4.112)

w1 =
1

4(coshα)3
[coshα(1 + cosh2 α) −

√

cosh2 α(1 + cosh2 α)2 − sinh4 α] (4.113)

w3 =
1

4(cosh α)3
eα sinh2 α (4.114)

w4 =
1

4(coshα)3
e−α sinh2 α (4.115)

For α small it is easy to see that the eigenvalues are sorted according to

w0 > w3 > w1 > w4 (4.116)

For arbitrary values of α, which in turn amounts to arbitrary values of the coupling constant g = J/2Γ
due to the variational equations to be given bellow, we have plotted these 4 eigenvalues in Fig. 6
observing that there are not level crossings in the whole range of variation of α and that the sorting in
Eq.(4.116) holds all over, not just for small α. It is very important for our DMRG(PV) method to work
properly that this property holds up, for when we truncate to the eigenstates of the largest eigenvalues,
w0 and w3, the physics will not change qualitatively when varying the coupling constant g.
Moreover, it is also possible to show that the eigenvectors |A〉 (of w1) and |B〉 (of w3) are given by:

|A〉 =
|00〉 + aPV |11〉
√

1 + (aPV )2
(4.117)
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|B〉 =
|01〉 + |10〉√

2
(4.118)

with the function aPV now the following function of the parameter α (after some tedious algebra),

aPV =

√

cosh2 α(1 + cosh2 α)2 − sinh4 α− 2 coshα

sinhα(1 + cosh2 α)
(4.119)

Notice that these states which now come from a DMRG(PV) analysis have the same form as the states
|G〉, |E〉 of the block Hamiltonian HB Eqs.(3.37)-(3.38), the difference being in the dependence of the
function a upon the coupling constant. This means that we have again the same structure as in the
BRG analysis where the intertwiner operator T0 was fully determined, and consequently the whole RG
procedure, by a single function a = a(g) of the coupling constant. To obtain aPV = aPV (g) we need
the variational equation relating g with α. This can be found in [7] and is given by,

g =
J

2Γ
= tanhα (4.120)

Observe that when J/Γ ≪ 1 then α = J/2Γ and thus aPV ∼ α/2 = J/4Γ. Now it is possible to
eliminate the intermediate parameter α between Eqs. (4.119) and (4.120) yielding the desired formula,

aPV (g) =

√

1 − g2 + g6

4 − (1 − g2)

g(1 − g2

2 )
(4.121)

Therefore we may appreciate that this function shares the same qualitatives properties as aBRG (3.42)
does, Eq.(3.56) ,namely it goes to zero linearly when g → 0 and it is bounded below 1, i.e., 0 < aPV < 1
for 0 < g < 1. It addition, it has a singularity at g =

√
2 which prevents the extension of this method

beyond that singular point. The origin of this singularity is due to the variational nature of the method
(see [7]). Nevertheless the critical region lies within the region of applicability of the PV method.
Furthermore, it is also possible to define a variational DMRG method valid for the whole range of
variation of the coupling constant. To do this, we simply recall that for small α the coupling constant
depends linearly on the variational parameter,

g ∼ α, for α small (4.122)

Thus, we may define another function say aPV ′

(g) by simply substituting α by g in a(α) (4.119),

aPV ′

=

√

cosh2 g(1 + cosh2 g)2 − sinh4 g − 2 cosh g

sinh g(1 + cosh2 g)
(4.123)

In this fashion, aPV ′

(g) shares the same properties with aBRG, without any singularity in the range of
g. In fact, aPV ′

(g) has a horizontal asimptota at 1 as aBRG does (see Fig 7).

4.2 Fokker-Planck DMRG.

This is another approximated version for preparing the target state to be projected onto the block-
system in order to construct another analytical DMRG method based upon a blocking procedure. The
details of how the Fokker-Planck (FP) method is applied to construct an approximate version of the real
ground state of the ITF model are given in the original paper [8]. Briefly stated, what the FP method
does is to start with an exponential ansatz as in the variational method Eq. (4.94), but instead the
parameter α is fixed by demanding that a certain Fokker-Planck Hamiltonian HFP (to be determined
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along the way) satisfies the eigenvalue equation to a certain order ν in the perturbative expansion of
the parameter α, that is,

HFP (α)ΨFP (α) = EFP (α)ΨFP (α) (4.124)

such that the exact ITF Hamiltonian HITF and its Fokker-Planck approximation version HFP (α)
differ in operators say VI which involve interactions between lattice sites a ν+1 distant apart or larger.
Squematically,

HITF −HFP (α) =
∑

I>ν

CI(α)VI (4.125)

Correspondingly, the FP-energy EFP (α), although incorporating non-perturbative effects, should agree
with the exact ground state energy up to order ν + 1 in α. In a sense, this gives the best “exact”
aproximation to the Hamiltonian HITF to order ν in perturbation theory [8].
It is possible to show that these conditions fix the relationship between α and g. To lowest order this
is given by [8],

g =
1

2
sinh(2α) (4.126)

Again we see that for small coupling constant α and g are equal as in the variational method.
In order to obtain the Fokker-Planck function, say aFP (g), we first notice that as in this FP method

we start with the same exponential ansatz (4.94) as in the variational method, the same function a(α)
in Eq. (4.119) is valid here. The new feature is that we have to use the relation (4.126) now to express
the function aFP (g) in terms of the coupling constant. After some tedious algebra we arrive at the
following expression:

aFP (g) =

√

(8 + 26g2 + 4g4) + (8 + 6g2)
√

1 + 4g2 − 2(1 +
√

1 + 4g2)

g(3 +
√

1 + 4g2)
(4.127)

This function contains all the information which upon inserted in the intertwiner operator T0 gives rise
to what we denote by a DMRG(FP) method. By looking at Fig.7 we notice again that aFP (g) has the
same qualitative properties as aBRG does.

In this section we have introduced 3 functions a(g) namely, aPV (g), aPV ′

(g) and aFP (g), related
to different analytical realizations of the density matrix RG ideas. It is our purpose now to check the
goodness of those methods by comparing their predictions for the critical exponents with the exact
values already found by the standard BRG method in Sect.3.

In Fig.7 we have plotted the 4 functions a(g) along with the universal function a(gc) introduced in
Eq. (3.58) whose cuts with the functions a(g) gives the predictions on the location of the critical point
gc for each method. Recalling that the exact value is gexact

c = 1/2, we see that the closest value to this
one is produced by the Fokker-Planck version of the DMRG method, even better than the standard
BRG. Nevertheless, we may appreciate from Fig.7 that the 4 methods lie rather close to one another
within the critical region, the major differences being present off criticality when entering the strong
coupling region. The particular values of gc are gathered in Table 2.

Another interesting function to be plotted is the beta function β(g) obtained for each method
according to the analysis of Sect.3, Eq. (3.61). We show these results in Fig.8 where we observe that
the 3 new beta functions introduced in this section by means of variational and Fokker-Planck DMRG
methods have the same qualitative behaviour as the standard BRG beta function of Sec.3. We know
that in particular this means that the unstable character of the fixed point gc is preserved by these new
methods. Moreover, we notice again that in the critical region the differences are small, namely, the
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cut with the g-axis and the slope at the corresponding gc. These two latter properties are related to
critical exponents.

As far as the critical exponents is concerned, we have collected in Table 2 the exponents computed
previously for the standard BRG method: correlation length exponent ν, dynamical exponent z, mag-
netic exponent β and the gap exponent s. Notice first that the 3 new DMRG methods also satisfy the
scaling relation,

β =
1

2
zν

which we know does not hold for the exact solution of the ITF model.
From Table 2 we arrive at the following conclusions,

• The best correlation length exponent ν is provided by the DMRG Perturbative-Variational
method.

• The best dynamical exponent z is provided by the DMRG Fokker-Planck method.

• The best magnetic exponent β is provided by the DMRG Perturbative-Variational method.

• The best gap exponent s is provided by the DMRG Fokker-Planck method.

From these results we may draw the conclusion that the RG methods based on block density matrix,
either variational or Fokker-Planck, provide an improvement respect to the standard BRG methods,
though it is not a major improvement. One of the reasons why this improvement is not as good as
the numerical results obtained by White [1] relies on the fact that we have just kept 2 states in our
analytical DMRG method while in the numerical treatment quite a lot states are kept.

5 Conclusions

We have presented in this paper an analytic formulation of the recently proposed Density Matrix RG
method [1]. This method was originally developed in a numerical fashion mainly because it relies on the
Wilsonian procedure of enlarging lattice sizes in the real-space RG. As this Density Matrix RG method
has become a powerful tool to compute static and dynamic properties of quantum lattice systems at
zero temperature, we find interesting to devise an analytic formulation of this method to be tested
against the old procedures based upon the standard Block RG method introduced by Drell et al. [10]
to study QCD.

The new feature of the DMRG method is its ability to take into account the unavoidable interaction
between the block selected for truncating states and the rest of the lattice. This feature is the more
relevant the more strongly correlated is the system under study, such as lattice QCD and strongly
correlated electrons in High-Tc materials.

We have been able to devise an analytic formulation of the DMRG method by combining the idea of
“interacting blocks” (that is,“non-isolated”) with two other approaches. One approach is the old idea of
blocking “a la Kadanoff” instead of the Wilsonian procedure. To this end we have presented an unified
formulation of the old BRG method (sect.3) in terms of what we call the intertwiner operator. This
facilitates the task of bringing together the Kadanoff blocking with the DMRG. The second approach
has been to devise an analytical method to produce “target states” which are the basic ingredients in
the DMRG calculations. To this purpose we have used two recently proposed methods to deal with
quantum lattice Hamiltonians: the Perturbative-Variational method [7] and the Fokker-Planck method
[8]. We have coined the names DMRG(PV) and DMRG(FP), respectively, for the density matrix RG
methods coming out of these two approaches 2.

2After we finished this work we have been aware of references [17] where those authors also propose new extensions of
the DMRG method.
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In order to facilitate the task of testing these two new DMRG methods, we have chosen the simple
ITF model where previous work with the BRG method is available. The results of computing several
critical exponents are described in Sect.4 where we have seen that either of the new DMRG methods
perform better than the old BRG, although the improvement we get is not as good as White’s numerical
DMRG for we keep a much lower number of states during the truncation among other reasons.

In addition, there is another line of work in order to improve our analytical DMRG methods. This
is via the exact diagonalization of the block density matrix corresponding to 4 lattice sites (starting
from the exact ground state for 4 lattice sites) and then to proceed in the usual fashion to construct
the corresponding new a(g) function which would allow us to carry the blocking method. We leave this
posibility open for future work.

Another reason to seek analytical formulations of the DMRG method is the possibility of general-
izing the current one-dimensional algorithms to higher dimensions. We consider our DMRG(PV) and
DMRG(FP) methods as a first attempt at this goal. As a matter of fact, it is possible to use them to
prepare 2-dimensional target states in the ITF model and to proceed with a DMRG analysis. Moreover,
as far as fermion systems is concerned, it is also possible to apply the new density matrix methods using
the perturbative-variational techniques described in [18].

Finally, the renormalization group method is one of the basic concepts in several branches of Physics
and we believe that we are currently facing a reconsideration of the old renormalization group ideas
which will certainly have implications in areas such as Field Theory, Statistical Mechanics and Con-
densed Matter.
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Table captions

Table 1 : Block Renormalization Group Method BRG1 (nB ,k′).
Table 2 : Critical exponents for the ITF model according to different RG methods and exact

solution.
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Figure captions

Figure 1: Pictorical decomposition of the Hamiltonian H into single-site part HS and two-nearest-
neighbour-site part HSS.

Figure 2 : Block decomposition of the open chain into blocks with nB = 3 sites.
Figure 3 : Pictorical representation of the block Hamiltonian HB and the interblock Hamiltonian

HBB for the ITF model.
Figure 4 : Pictorical representation of the truncation procedure for the block and interblock

Hamiltonians in the ITF model.
Figure 5 : Lattice decomposition into “system”- and “universe”-parts.
Figure 6 : The 4 eigenvalues w0, w1, w3 and w4 of the block density matrix corresponding to the

variational DMRG method.
Figure 7 : Plot of the functions a(g) according to the methods: BRG (solid line), DMRG(PV)

(grey line), DMRG(FP) (dashed line), DMRG(PV’).
Figure 8 : Plot of the beta functions β(g) according to the methods: BRG (solid line), DMRG(PV)

(grey line), DMRG(FP) (dashed line), DMRG(PV’).
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Table 1: Block Renormalization Group Method BRG1 (nB ,k′)

Steps of the BRG1 Method

1) Blocking Transformation: H = HB +HBB

2) Diagonalization of HB

3) Truncation within each block: T0

4) Renormalization of HB and HBB

H ′
s′ = T †

0HBT0

H ′
s′s′ = T †

0HBBT0

5) Iteration: Repeat 1) → 4) for H ′ = H ′
s′ +H ′

s′s′

Table 2: Critical exponents for the ITF model according to different RG methods and exact solution.

Method gc ν z β s

BRG 0.3916 1.4820 0.5515 0.4086 0.8173
DMRG(PV) 0.3790 1.4073 0.5353 0.3767 0.7534
DMRG(FP) 0.4011 1.5177 0.5647 0.4285 0.8570
DMRG(PV’) 0.3874 1.4579 0.5459 0.3980 0.7958

Exact Solution 0.5 1 1 0.125 1
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