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Abstract: In this study, a device based on patient motion capture is developed for the 

reliable and non-invasive diagnosis of neurodegenerative diseases. The primary objective 

of this study is the classification of differential diagnosis between Parkinson's disease (PD) 

and essential tremor (ET). The DIMETER system has been used in the diagnoses of a 

significant number of patients at two medical centers in Spain. Research studies on 

classification have primarily focused on the use of well-known and reliable diagnosis 

criteria developed by qualified personnel. Here, we first present a literature review of the 

methods used to detect and evaluate tremor; then, we describe the DIMETER device in 

terms of the software and hardware used and the battery of tests developed to obtain the 

best diagnoses. All of the tests are classified and described in terms of the characteristics of 

the data obtained. A list of parameters obtained from the tests is provided, and the results 

obtained using multilayer perceptron (MLP) neural networks are presented and analyzed. 
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1. Introduction 

Many diseases have become growing problems in aging societies. Several neurodegenerative 

diseases, such as Parkinson’s disease (PD), Alzheimer’s disease, and sclerosis, can affect patients for 

long periods of time. Furthermore, the increase in life expectancy has resulted in the emergence of 

other natural (non-degenerative) disorders, such as essential tremor (ET), which cause severe 

movement disorders. Numerous studies have been conducted to measure or estimate the incidence and 

prevalence rates of both PD and ET (Table 1).  

Table 1. Range of prevalence and incidence rates from different European studies [1–3]. 

 PD ET 

Prevalence 1.8% to 2.6% 4.05% to 5.00% 

Incidence (hab./year) 5/100,000 to 346/100,000 18/100,000 

PD and ET are difficult to diagnose because there are many known movement disorders that can be 

confused with each other. The clinical manifestation of a disease may change because of previous 

treatment, the age of the subject (i.e., possible dementia), the stage of the disease, the time of day, or 

drinking habits (i.e., alcohol consumption). The correct diagnosis of patients with PD or ET can 

improve initial treatment and enable the tracking of a disorder in its initial stages.  

Although neurodegenerative diseases can affect a great number of people for long periods of time, 

the increase in life expectancy can also lead to other degenerative disorders that are not as disabling  

as ET. 

Different tests have been developed to evaluate the clinical manifestations of tremor. Unfortunately, 

although some of these tests have become established and are widely used in medical fields associated 

with the disorder, these tests are often based on unreliable evidence. Moreover, these tests are typically 

supervised and evaluated by various people and therefore depend strongly on the particularities of the 

subjects. The experience, level of training, and preconceptions of medical advisors can play an 

important role in the outcome of the evaluation. Thus, the age of the patients, their physical and 

psychological states, the duration of the disease, and the specific evolution of the disease are factors 

that directly affect the reliability of the assessment. In addition, most of these assessments are based on 

a score combining many elements that is used to quantify the developmental stages of the disease. A 

drawback of these tests is that a low-resolution scheme is used to rate the results, i.e., the evaluator can 

only choose among 4 or 5 scoring levels.  

Therefore, the diagnosis of PD remains a challenging task. For this reason, we present advances in 

automatic decision-making systems that can reduce diagnostic error. The most prevalent disorder  

in misdiagnoses of PD is ET. Nevertheless, other diseases can also be misdiagnosed, such as  

pseudo-Parkinsonism, vascular disease, and Alzheimer’s disease. The primary objective of this study is 

to improve the differential diagnosis between PD and ET. 

Following this brief introduction, we summarize the primary aspects of a clinical diagnosis of 

tremor. The most common alternatives that have been used to date are presented in Section 2. In 

Section 3, the DIMETER system is described in terms of the hardware and software used, the proposed 

tests, and a detailed description of the patterns involved in these tests. 
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2. Clinical Diagnosis of Tremor 

Over the past several decades enhancements in the ability of computers to store and manage large 

amounts of information have enabled computing techniques to be gradually integrated into medicine, 

where these technologies can enable medical staff to initiate a particular sequence of actions, set 

strategies, and determine the consequences of decisions from moment to moment.  

Unfortunately, these decisions can have unintended consequences because of the medical 

practitioner’s inexperience with similar situations, leading to incorrect diagnoses and inappropriate 

treatments. Thus, decisions should be made by considering optimization criteria, which may 

occasionally involve taking serious risks that have a very low probability of occurrence. 

It is estimated that in the United States between 44,000 and 98,000 deaths were caused by 

preventable medical errors. Although most of these errors were related to therapy, including 

medication and surgical errors, a significant number of these errors resulted from misdiagnoses [4]. 

Computers are also used in drug delivery. Thus, decision analysis can be based on modeling and 

simulations, thereby facilitating the management of a patient’s individual data. These techniques can 

be used for dosage adjustment and to determine the best time to administer a drug based on the 

patient’s individual needs [5]. 

Computing technologies are useful tools for medical decision making. There are well-known 

systems [6–11] that have harnessed these types of technologies for the diagnosis, characterization, and 

assessment of PD. 

Actigraphs and teleactigraphs (TAGs) are instruments that monitor the activity of the human body 

by measuring the patient’s gross motor activity [12]. An actigraph is typically placed on the wrist, 

similarly to a wristwatch. The unit continuously records the patient’s wrist motion, and the resulting 

data can be downloaded into a computer for analysis. The teleactigraph is generally used for larger 

movements and is worn on the shoulder of the dominant arm. This instrument contains a 3D sensor 

rather than a 1D sensor and has a high sampling frequency and typically a high memory capacity. 

These instruments can only be used for a few hours (i.e., for short-term use) and are used to determine 

problems related to walking and other physical disabilities. Other low-cost systems [13] use spectral 

analyses to measure tremor. Data are captured by an accelerometer, amplifier, and microcomputer with 

a data acquisition system. A fast Fourier transform (FFT) is used to transform the data. This 

technology can be used to identify several types of clearly identifiable and quantifiable tremors, i.e., 

physiological, essential, and other pathological tremor types related to the nervous system. The 

systems based on these technologies continue to evolve [14,15], and new techniques are being used to 

detect, classify, or quantify tremor [16,17]. 

Electromechanical devices can detect clinical manifestations of motor activity disorders by using a 

mechanical device to perform specified tasks [18].  

Other noninvasive technologies that can be used to record the behavior of the subject are based on 

the electroencephalogram (EEG), magnetoencephalogram (MEG), or electromyogram (EMG) [19]. 

The microelectrode recordings (MER) technique is used to record the activity of individual neurons, 

and requires a microelectrode for microstimulation to enhance its performance because the most 

appropriate targets can be detected for deep brain stimulation (DBS). One of the most surprising recent 

discoveries indicates that when two signals are obtained from the same patient by different methods 
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(e.g., MER and EMG), the signals can be quite similar in terms of one parameter (e.g., the frequency) 

but that no two signals are entirely consistent because of variations in the shape of the signal over time.  

This result suggests that tremor is caused in several places or decoupled from unknown sources. 

Gusev [20] developed a phase measure that was more precisely coupled. In [21], a method is presented 

for frequency tracking in which the extended Kalman filter (EKF) is used to estimate the instantaneous 

tremor frequency pulse trains detected by MER [21]. 

Other type of diagnostic systems has been developed for medical imaging. In [22], an automatic 

diagnostic assistance system is presented to differentiate Alzheimer’s disease from mild dementia with 

Lewy bodies using conventional axial positron emission tomography (PET). Various medical imaging 

techniques have been developed that can obtain extremely valuable information about diseases related 

to the nervous system. Being able to “see” regions of the brain in advance of the patient's death (i.e., 

without performing an autopsy) is an undisputed breakthrough in this field. Several studies of medical 

imaging reveal a pronounced loss of striatal dopamine carriers in patients with PD [23,24]. 

Experiments [25] have demonstrated that transcranial ultrasound imaging and single photon emission 

computed tomography (SPECT) are useful tools in diagnosing PD. Other studies [26] have 

demonstrated when these techniques (SPECT) are more appropriate for detecting pathological levels of 

metal accumulation over other neuroimaging techniques, such as computed tomography (CT) or 

magnetic resonance imaging (MRI). In patients with PD, the substantia nigra can be described as a 

well-defined echogenic area, thereby enabling an early diagnosis of these movement disorders. In [27], 

a SPECT-based method is presented for aiding decision making in the diagnosis of PD. 

Extensive studies on measuring general voice disorders have been conducted to diagnose PD. These 

studies consisted of standard speech tests in which recordings are made using a microphone. The 

recorded voice signals are analyzed using algorithms to detect certain properties. Recently, various 

measurement methods have been developed to assess the symptoms of dysphonia. Various methods for 

PD diagnosis using voice signals are compared in [28]. 

Advances have also been made to extract data from patients with PD using computer vision (CV) 

technologies and techniques. A measurement technique for analyzing a patient’s motions with a 

precision movement analyzer using markers and a CDD sensor camera is presented in [29]. In [30], the 

measurement system uses laser lines and a CMOS image sensor. The system detects the vibration of 

the back of the hand of a subject in two situations: when the hands are at rest and held in a specified 

position. In this system, the back of a hand is marked using a diode laser, enabling the detection of the 

shape, frequency, and relative frequency of the vibration waves of tremor. 

3. DIMETER System 

3.1. System Description 

DIMETER is a system that is used to objectively characterize tremor patterns by the application of 

virtual forces. This invention responds to a system of devices and procedures that objectively assess 

tremor in a person’s extremities (hands or fingers). The system records the 3D movements of a 

person’s limb (i.e., in terms of the position, velocity, and acceleration) while he performs a series of 

tasks that are specified by the system. The system can apply controlled virtual forces to modify the 
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movement to evaluate the effects of static friction or other forces, thereby providing morphological 

data and frequency criteria for tremor evaluation. 

The system consists of a haptic device, computer, and series of procedures that are used to 

accomplish several tests that are specifically designed to characterize physiological and pathological 

tremor (Figure 1). These tests are based on the patient’s performance during the execution of various 

motion patterns using his hand or fingers. The system uses motors to apply controlled forces to the 

patient’s upper extremity during the tests. The system also relies on sensors that are placed at the 

system’s joints (in contrast to other systems in which a great number of sensors are used) to record the 

spatial components of the motion to objectively quantify the specific magnitudes of tremor. 

Figure 1. System used for objective characterization of the tremor by applying virtual forces: 

the patient operates the PHANToM device, and the supervisor operates the computer. 

 

Thus, the system can perform a high-precision 3D motion capture to evaluate tremor in hands or 

fingers without using inertial sensors (i.e., accelerometers and gyros). The user or patient whose tremor 

is being assessed moves the articulated mechanical system while holding the end of the 

aforementioned device. 

The electric actuators in the joints of the device are used to measure the effect of virtual forces or 

loads exerted on the limbs of the subject in different situations, such as in a rest or static position. 

These forces are applied while performing a spatial movement that is known a priori, (i.e., writing or 

drawing), trying to follow a 3D target or moving randomly or toward specific points. 

The tests consist of a series of visual patterns that are displayed on the computer screen. Each 

pattern is associated with virtual forces or loads that are artificially generated by a control computer. 

The system continuously records the 3D positions of the hand that correspond to the patient’s motion. 

The system also consists of specific software, which the supervisor can use to select the test pattern 

using different windows and menus that are easy to understand. The temporal evolution of the patient’s 

motion can also be tracked using this software. The software can be used to create different files for 

each session and to store data, such as the patient's personal identification data and the date and time of 

the test. 

Supplementary entries, such as the test conditions, the patient's condition and medication, and the 

time since the completion of the last test, are also considered to be important information and are 

therefore stored for each session. 
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DIMETER (Figure 2) uses a device known as PHANToM (Figure 3) manufactured by SensAble 

Tech (Woburn, MA, USA) that acts as a master. As previously mentioned, this device captures the 

spatial position and orientation of a solid under the action of different forces. 

Figure 2. Example of use of the DIMETER system. 

 

Figure 3. PHANToM device. 

 

3.2. Test Description 

The method presented in this work uses baseline information that was collected using the 

DIMETER system at two hospitals (Hospital La Princesa and Hospital Ramón y Cajal of Madrid, 

Spain). This method enables classification tests to be performed on a large number of subjects. The 

tests were performed on more than 50 patients. In addition, many tests were performed for each subject 

considered in this study, thereby increasing the number of samples used in the sorting process. 

Therefore, the results presented in this work are highly relevant in practice, in contrast to other 

experimental results that have been reported in the literature in which very good classification results 

were obtained but the set of subjects was small. 

Electromechanical devices, such as the DIMETER system, can also record the movement of a 

patient’s upper limbs accurately and reliably, primarily because this well-known technology has been 

developed in such areas as robotics. The aforementioned device has an accuracy of 0.03 mm, which 

provides a reliable record of the patient’s movements. 

An electromechanical device is more robust and easy to use than other systems that require 

calibration prior to use (e.g., inertial devices, voice recordings, or computer vision systems that require 
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camera calibration to accurately reconstruct the scene). However, systems dedicated to PD or ET 

(e.g., [12,13]) are typically focused on tremor evaluation instead of diagnosis. 

Thus, this study demonstrates the effectiveness of the DIMETER system for performing a 

differential diagnosis between PD and ET motion disorders, thereby making a contribution to the 

diagnosis field. Another significant advantage of DIMETER is related to its ease of use; the use of this 

system is neither invasive nor uncomfortable for the patient because substances (i.e., markers and 

radioisotopes) do not need to be administered to the patient to obtain a medical image. Thus, the user 

only needs to be seated before the system and to use his limbs to move the electromechanical device. 

DIMETER is also easy to transport because its size and weight are smaller than those of other 

technologies, such as medical imaging systems. DIMETER does not require any recalibration after 

transportation. The only issue with DIMETER that must be considered is that the reference system 

must be positioned relative to the recording device to properly accommodate the subject for testing. 

Nevertheless, these drawbacks are less cumbersome than those of systems that use computer vision, 

for example, which require an extremely precise location and orientation of the cameras involved.  

3.3. Test Procedure 

The test procedure is detailed below. 

 If the patient is being tested for the first time, a reference ID is created to identify the 

patient for further analysis and to track the evolution of the patient’s test results. If the 

patient has been previously tested, the existing patient “ID” is selected instead. 

 A brief medical examination of the patient is conducted. Comments that the doctor 

considers to be significant are included in the “Remarks” field to better understand the 

test results. 

 The patient must be correctly positioned relative to the system to be able to completely 

perform the movement required for the test. Thus, the coronal plane is formed by the 

X- and Y-axes of the reference system, with the Y-axis pointing upward. The sagittal 

plane is formed by the Y- and Z-axes, and the transverse plane is formed by the X- and 

Z-axes (Figure 4). 

 The end portion of the measuring system is coupled to the index finger of the patient. The 

patient's finger should be raised to his shoulder level to leave the field of action of the 

PHANToM free. The patient should maintain his hand orientation with respect to the 

reference system used during the test run. 

 Verbal instructions are given to the patient on how to perform the proposed test pattern. 

The objective for using each pattern, which is displayed on the screen and performed 

using a 3D structure, should be explained to the patient. 

 The patient is asked to perform several test exercises for the same pattern. Thus, the 

patient becomes familiar with the measurement system and all of the proposed 

exercises. In this manner, the patient becomes aware of the difficulty of the tests. 

 Finally, the patient performs the tests, and valid results are obtained (Figure 5).  
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Figure 4. Diagram showing the three major planes of the body. 

 

Figure 5. Example of movement test displayed on a computer monitor. 

 

All of the tests were carried out under the supervision of a team of medical doctors and engineers 

who were able to invalidate tests because of changes in the patient’s position, an increase in the 

patient’s anxiety, or a large disparity between the obtained results and those obtained previously. 

A brief resting period was taken after the conclusion of each test. During this time, the technical 

staff validated the data and made the necessary selections to prepare the pattern for the next test. If the 

patient became fatigued, the resting period was extended. The patient performed each test using both 

hands, always starting with the hand that displayed a greater impairment because of tremor. 

The tests were performed in the following order: static patterns, kinetic patterns, 3D patterns, and 

dynamic patterns. All of the tests were videotaped.  

To obtain more robust results, all of the tests were conducted in the morning, beginning at  

10:30 am. The average duration of the tests was 30 min. The tests that were carried out using the hand 

with a greater degree of tremor required a longer duration.  

3.4. Design of Test Patterns 

The objective of the DIMETER tests was to normalize and standardize the tests for tremor 

diagnosis; thus, the standard tests used in conventional clinical evaluations of patients were the bases 

for designing the patterns (e.g., following horizontal lines on paper, stretching the arm at the shoulder, 

flexion and extension movements of the arms, and monitoring sinusoidal lines). 
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The patient may not be proficient in using a computer because of tremor, which can make a mouse 

very difficult to use. Moreover, patients typically have poor spatial association between their hand 

movements and the corresponding representation on the screen.  

The group of initial basic tests was extended to utilize the dynamic features of PHANToM. Thus, 

three types of tests were designed: static, kinematic, and dynamic.  

The static tests required the patient to remain in a fixed position during the evaluation to assess 

postural tremor. The kinematic tests focused on evaluating tremor during movement. Finally, the 

dynamic tests were used to evaluate tremor when external constraint forces were applied. The two 

latter tests were used to evaluate intentional tremor.  

Various tests were designed without the use of the computer screen to evaluate tremor during 3D 

movements that required the use of several joints while ensuring that the patient remained comfortable. 

For example, the patient was required to follow a line that forced him to flex and extend his arm. 

In addition to prescribing the paths that the patient should follow, the effect of mechanical restraining 

patterns, such as constant forces or spring and viscous friction forces, on tremor were also evaluated. 

The application of restraining forces as a means of tremor suppression in patients has been 

extensively studied with positive results. Viscous friction forces are particularly effective for 

suppressing tremor and the inertial forces arising from tremor. Viscous friction forces are particularly 

effective at low frequencies. In this study, we investigated the combined effects of inertial forces and 

elastic and viscous friction forces.  

These parameters can be varied to obtain the specific mechanical impedance for each type of 

tremor, thereby tailoring the characterization and evaluation process to individual patients. Therefore, 

the filter implemented in the interface device for the computer must be tailored to each patient.  

Thus, an assessment based on these types of parameters and variables can be used to classify each 

patient in terms of his mechanical impedance. The staff can then use this parametric information to 

plan different daily activities for the patient. Table 2 summarizes the types of tests involved in a full 

diagnostic program, indicating the type of tremor that is evaluated in each case. The patterns that are 

used for the analyses are described in the following sections. 

Table 2. Pattern classification. 

Type Type of Motion Non-Dynamic Dynamic 

Static No motion Postural tremor and rest Postural tremor with external disturbances 

 

Kinetic 

Single joint Intentional tremor in simple 

movements 

Intentional tremor in simple movements 

with external disturbances 

Multiple joint Intentional tremor in complex 

movements 

Intentional tremor in complex movements 

with external disturbances 

3.4.1. 2D Patterns 

All of the patterns should be performed with the subject seated in front of the device with his arm fully 

stretched out in front of him/her at shoulder height. The patient should perform the test for both hands. 
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The following tests are performed (Figure 6): 

 Static type tests: 

o Pattern 1: the objective here is to keep the hand relaxed with the elbow on the table and 

with a 90° between the arm and forearm. The measurements recorded are the three 

positions, i.e., X, Y, and Z, over time. 

o Pattern 2: involves a target, i.e., a point on the screen. The objective is to keep the cursor 

fixed over a red area on the screen. The measurements recorded are the deviations in X and 

Y from this point with time. 

Pattern 1 is introduced to analyze the tremor at rest. Pattern 1 is included in the test battery because 

this type of tremor is very common in patients with PD. Pattern 2 was used to make the components of 

the postural tremor more evident while maintaining a fixed position with respect to the gravitational 

force during the test. Usually, this type of tremor implies that patients have severe functional 

limitations. This type of tremor usually appears when the patient adopts fixed configurations in his 

limbs to maintain a static position.  

 Kinematic tests: 

o Pattern 3: consists of a horizontal line on the screen. The objective is to move the cursor 

along a “path” (i.e., a horizontal straight line) between the starting and ending points of the 

line. The measurements recorded are the deviation from the path (i.e., the distance from the 

cursor position to the nearest point of the line). 

o Pattern 4: the path is a sloping line. The path starts at the bottom point of the line, which 

forces the patient to perform a down-up transversal movement. The stored data are the same 

as for the previous test. 

o Pattern 5: is similar to pattern 4 except that the respective movement is up-down; therefore, 

the starting point is the highest point of the path. 

o Pattern 6: is a down-up vertical line.  

o Pattern 7: is an elliptical line on the screen. The objective is to move the cursor along the 

circular path. The measurement recorded is the deviation from the ideal path of motion (i.e., 

the central circumference). 

o Pattern 8: is a spiral on the screen. The objective is to follow the spiral beginning from the 

outside (following the central line as closely as possible). The recorded variables are the X 

and Y positions on the screen. 

o Pattern 9: is a similar, but narrower, spiral path than Pattern 8. The objective is to follow 

the spiral. The recorded variables are the X and Y positions on the screen. 

o Pattern 10: is a sinusoidal curve. The objective is to follow the line from its starting point 

to its ending point. The X and Y positions on the screen are recorded. 

o Pattern 11: is a graph with variable amplitude. The objective is to trace a path from the 

outside to the inside of the graph. The X and Y positions are recorded. The patient can be 

asked to perform more precise movements simply by varying the amplitude of the angle 

between the two borders. 
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Figure 6. (a) pattern 2, (b) pattern 3, (c) pattern 4, (d) pattern 5, (e) pattern 6, (f) pattern 7, 

(g) pattern 8, (h) pattern 9, (i) pattern 10, (j) pattern 11. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

  

(i) (j) 

The paths and shapes of the kinetic patterns are used to simulate the effect of intentional tremor in 

the tests. Different paths have been created to allow for further analysis, e.g., if there is a significant 

difference between the paths depending on the primary direction of the motion or if there are 

differences among simultaneous movements in a plane (2D motion). Thus, patterns 3–6 allow a 

primary direction to be fixed for a task, which allows the impact of a simple objective to be studied for 
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the tremor. However, patterns 7–11 allow an action that combines two primary directions. These tasks 

are more difficult than the other tasks but introduce the effect of combined movements into the study. 

Moreover, pattern 9 tests dexterity to evaluate patients whose movements are less restricted by tremor. 

Intentional tremor becomes important and can be fairly restrictive in ET patients when they try to 

achieve a certain position (i.e., pick up a small object) with high precision. 

3.4.2. 3D Patterns 

The 3D patterns are a series of straight lines in real space: following these lines requires movement 

along three axes using the base platform shown in Figure 7. The 3D patterns used in the test are 

straight lines and are defined below: 

o Pattern 12: is a line parallel to the coronal plane of the subject. The objective is to follow 

the line from its start to end point. The recorded measurement is the spatial deviation from 

the ideal path. This line is 40 cm long.  

o Pattern 13: is similar to pattern 12 but is parallel to the sagittal plane of the patient. This 

line is 20 cm long. The patient must extend and flex his arm at shoulder level during  

this test. 

o Pattern 14: the subject must perform a movement in all planes in space. The objective and 

the recorded variables are the same as for the previous patterns. This line is 48 cm long.  

The 3D patterns are used to include a depth component in the kinetic study while trying to simulate 

daily activities more accurately. The primary dysfunctions and disabilities of patients become evident 

during these activities. The use of tangible 3D objects enables doctors to observe tremor characteristics 

in response to real stimuli that the patient can touch (i.e., beyond the computer screen). This approach 

introduces more difficulties into the tests but is more realistic than a computer-based scheme.  

Figure 7. Platform for 3D patterns. 

 

3.4.3. Patterns of Virtual Forces 

Tests can be conducted using the previously described patterns where mechanical constraints are 

applied using forces to facilitate patient classification. The forces act as disturbances during the test. 

The following types of forces are applied. 
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 A constant force is applied consistently during the test. A force up to 5 N (which 

corresponds to a 500 g force) can be applied in any of the three spatial directions. 

 A spring force is applied according to the classical spring model that is governed by the 

following equation: 

XKF   (1) 

where F is the force in N, K is the spring constant expressed in N/m, and X is the displacement with 

respect to the equilibrium point of the spring (e.g., the distance to the target or path) in m. These types of 

forces are used to quantify the effort exerted by the patient during the test. Thus, the patient must apply a 

stronger force to correct the deviation as the deviation from the ideal trajectory becomes greater. 

These forces can be progressively applied during the tests to increase the elastic spring constant 

values within defined limits to obtain a value for K that minimizes the tremor amplitude. The value of 

K in the tests ranged between 0 and 0.0005 kg/s
2
. The inertial forces and viscous friction forces can be 

simulated using the model illustrated in Figure 8: 

Figure 8. Model of forces exerted on the test mass. 

 

which is governed by the equation given below: 

)(
)()(

)(
2

2

tKx
dx

tdx
B

dx

txd
MtF   (2) 

where B denotes the viscous friction coefficient (kg/s) and K (N/m) denotes the spring constant. X(t) is 

the displacement of the mass. This equation has three components. The first component represents the 

inertia of the mass; the second component is the friction force, which depends on the speed; and the 

third component is the elastic force, which is proportional to the displacement. 

These factors combine to produce a viscous sensation and a slight sense of inertia that prevent the 

range of motion from being increased, whereas the motion is not restricted in any specific direction but 

adjusts to the movements. The value of the applied force in the tests corresponded to the inertia of a 

mass of 0.05 kg and a viscous friction coefficient of 0.0015 kg/s. 

The following dynamic patterns were tested, including the forces: 

o Pattern 15: which is equivalent to pattern 2 but was used with a constant force of 5 N in the 

Y-direction (i.e., downwards) 

o Pattern 16: which is equivalent to pattern 3 but was used with increasing values of K in the 

Y-direction (i.e., perpendicular to the movement) 
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o Pattern 17: which is equivalent to pattern 3 but includes inertia and viscous friction 

o Pattern 18: which is equivalent to pattern 8 but includes inertia and viscous friction 

o Pattern 19: which is equivalent to pattern 13 but includes inertia and viscous friction factors 

The dynamic patterns highlight and justify the use of a haptic element as the kernel of the system. 

Thus, the system can generate extreme forces to detect differences in the patient’s behavior (which 

depend on the tremor disorder) when external actuations are applied [31]. 

The disparities between a patient’s execution of a kinematic pattern and its corresponding dynamic 

pattern reveal symptoms that are relevant to the type of tremor because postural tremor or rest tremor 

can be attenuated by the presence of gravitational or viscous inertia in many cases. 

The tests that were conducted to define and select the patterns used in this work were performed in 

close conjunction with the medical staff of Ramón y Cajal Hospital, a world-renowned center for the 

treatment of PD, and the Hospital La Princesa, which are both located in Madrid. The help and support 

of the neurological and neurophysiological teams of the Hospital Ramón y Cajal were critical during 

the tests conducted in this facility. The neurological department of La Princesa Hospital played a 

fundamental role in defining the test protocols. 

The patterns were derived from actual protocols used in diagnosis: the variety of these protocols 

was increased, and the protocols were modified to utilize the capabilities of the haptic device, 

primarily performing 3D motion capture and receiving force feedback. 

4. Characterization of Human Tremor by DIMETER 

As previously mentioned, the primary goal of this study was to characterize each class of tremor: 

Parkinsonian tremor, ET, and physiological tremor. Tremor recognition is not as simple as many other 

automatic classification schemes that operate in highly structured environments. The primary difficulty 

is that tremor classification involves human beings (in this case, patients)  

The environment for manufacturing tasks and other similar actions is typically extremely rigid, 

primarily because industrial processes require this manner of operation. However, a non-static 

environment causes the difficulty of performing classification to increase enormously. This situation is 

encountered in tremor classification, where recordings of clinical manifestations of motion disorders 

may result from several diseases and may depend strongly on the state of the patient (i.e., age, state of 

mind, treatment received, other diseases, time of day, eating habits, and the stage and evolution of the 

disease) and the evaluator (i.e., the type and level of education and experience).  

Moreover, tremor can be observed in both healthy subjects and PD patients, and the state of the 

tremor changes throughout the day (i.e., because of freezing, rigidity, and bradykinesia). These factors 

explain the large numbers of misdiagnoses in PD, even when qualified expert personnel are involved 

in the diagnosis process. 

In this study, a large and complex set of parameters was used to obtain as much information as 

possible. These parameters contained statistical information on the motion test performed by the subject, 

such as the power spectral density (PSD) of the tremor and statistics associated with the trajectory.  

The device used in DIMETER enables a high-frequency positional sampling (100 samples per 

second), thereby measuring the patient’s movement with time along each spatial Cartesian axis with 

high accuracy.  
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The PSD measures the power distribution generated within the band of frequencies. This 

information is particularly relevant for classification. Thus, the calculated PSD [2] can be used to 

detect the bands that contain the most power. Important information can be obtained from the 

movement of the subject in parametric form. 

Table 3. List of 26 parameters obtained from each test. 

Parameter Description Formula 

1 Maximum PSD value max (PSD) 

2 Frequency corresponding to maximum PSD value fmax (PSD) 

3 First moment of PSD m1 (PSD) 

4 Second moment of PSD m2 (PSD) 

5 Fourth moment of PSD m4 (PSD) 

6 Number of spectrum samples with PSD values above 0.72% N0.72% (PSD) 

7 Number of spectrum samples with PSD values above 2.42% N2.42% (PSD) 

8 Number of spectrum samples with PSD values above 95.3% N95.3% (PSD) 

9 Fifth moment of PSD m5 (PSD) 

10 Sum of bispectrum diagonal values S (diagbisp) 

11 Sum of bispectrum values S (bisp) 

12 Sum of logarithms of bispectrum diagonal values S (log(diagbisp)) 

13 Sum of logarithms of bispectrum values S (log(bisp)) 

14 First moment of bispectrum diagonal m1 (diagbisp) 

15 Second moment of bispectrum diagonal m2 (diagbisp) 

16 First moment of logarithm of bispectrum diagonal m1 (ldg(diagbisp)) 

17 Maximum value of trispectrum diagonal max (diagtrisp) 

18 Normalized sum of trispectrum diagonal values Sr  (diagtrisp) 

19 First moment of trispectrum diagonal m1 (diagtrisp) 

20 Second moment of trispectrum diagonal m2 (diagtrisp) 

21 Third moment of trispectrum diagonal m3 (diagtrisp) 

22 
Number of samples of bispectrum diagonal with values above 

0.29% 
N0.29% (diagbisp) 

23 
Number of samples of bispectrum diagonal with values was 

above 4.3% 
N0.29% (diagbisp) 

24 
Number of samples of diagonal trispectrum with values above 

0.15% 
N0.15% (diagtrisp) 

25 
Number of samples of diagonal trispectrum with values above 

5.6  10−6%. 
(diagtrisp) 

26 Fifth moment of bispectrum diagonal m5 (diagtrisp) 

The choice of these parameters was inspired by time-series concepts. Physiological tremor in 

patients can often be modeled as a linear stochastic process [32,33], whereas tremor in Parkinsonian 

patients can be modeled as signals of a nonlinear chaotic nature [34]. The features of ET lie in between 

the two aforementioned tremors. 

Using previously stated assumptions, high-order statistics (HOS) were combined with conventional 

statistics and the PSD values (i.e., parameters from 1 to 9) to extract up to 26 parameters for each 
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series (Table 3). This method allowed vectors with 26 dimensions to be processed. The following table 

describes these parameters and the function or method used to obtain them. 

The trembling motion in PD is a signal that is characterized by non-stationary or transient features, 

such as tendencies, abrupt changes, and start and stop events. There many trajectories in which PD 

subjects exhibit rigidity or great changes during the performance of the test. In most cases, it is useful 

to apply a Fourier transform to the signal. Thus, in 1946, Denis Gabor modified the Fourier transform 

to analyze a small section of a short time interval (i.e., corresponding to a time window). This 

modification is known as a short-time Fourier transform (STFT) and transforms the signal into a  

bi-dimensional space in the time interval and frequency. However, this information can only be 

obtained with limited accuracy because of the length of the window that sets the resolution. 

5. Tremor Classification Using MLP 

In this study, we developed a classifier based on a multilayer perceptron (MLP) neural network to 

classify motion disorders. Therefore, the size of the parameter vector (in this case, 26) determined the 

dimension of the input. However, the dimension of the output layer was equal to the number of classes 

(i.e., class 1 was identified by the vector (1;0;0), corresponding to an ET patient; class number 2 was 

identified by the vector (0;1;0), corresponding to a PD patient; and class number 3 was identified by 

(0;0;1), corresponding to a healthy patient). 

The number of hidden neurons for the hidden layer was determined experimentally. The activation 

function selected for both the hidden and output layers was a hyperbolic tangent sigmoid (tansig). 

A total of 364 vectors were used to train the network, and 156 vectors were used to validate the 

network. The cases used in the test had the following distribution: 210 healthy patients, 34 ET patients, 

and 120 PD patients (as given by the medical records). Ten training simulations were conducted for 

each group of tests, as described below. 

A back-propagation algorithm was used in the training. The input vectors were previously 

normalized by applying the method of zero mean and a standard deviation of 1. Two hundred training 

epochs were selected, which was considered to be optimal because a larger number of epochs could 

have caused overtraining but a smaller number could not provide the necessary information for the 

interpolation.  

Several tests were designed in which a variable number of parameters were used following the 

classification given below. 

 Test group 1: Only the PSD parameters (i.e., parameters 1 to 9) were considered in this group. In 

this case, the network reached a minimum classification error of 19.4% using a group of 156 

vectors (which corresponded to different patient cases) for networks with 2 neurons in the hidden 

layer. Increasing the number of neurons stepwise increased the error by up to 24.0% for 10 hidden 

neurons. Figure 9 presents the mean value for the misdiagnoses as a function of the number of 

hidden neurons. Figure 10 presents the error distribution for each type of pathology using this 

group of parameters. 
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Figure 9. Diagnosis error (mean value) obtained using only PSD parameters. 

 

Figure 10. Error distribution for each type of pathology obtained using PSD parameters. 

 

 Test group 2: Only the HOS parameters (i.e., parameters 10 to 26) were used under the same 

conditions as for group 1. The minimum error was close to 24% (using 4 hidden neurons for the 

MLPs), which was higher than for the previous case. Considering only the error decomposition, 

most of these errors (86%) occurred for ET patients, primarily because very few ET cases were 

available for training, and only 8% of the error occurred for healthy diagnoses. Figures 11 and 12 

present the mean error that was obtained by varying the number of hidden layers and the error for 

each type of pathology. 

 Test group 3: All of the parameters (i.e., the 26 parameters) were used in this group. In this case, 

an error of approximately 24% was consistently obtained starting from 4 hidden neurons. In this 

case, 70% of the error cases occurred for ET patients. Figures 13 and 14 illustrate the results that 

were obtained in the same manner as for the previous cases. 
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Figure 11. Diagnosis error (mean value) obtained using HOS parameters. 

 

Figure 12. Error distribution for each type of pathology obtained using HOS parameters. 

 

In the first analysis, the mean values obtained from each test are compared to each other. Thus, 

similar mean values for the errors in diagnosis were obtained in all of the cases, especially for cases 2 

and 3, (e.g., 24% using 4 hidden layers). This conclusion indicated that the HOS and PSD parameters 

could be used to obtain the same results independently of each other, i.e., fewer parameters could be 

used to perform the diagnosis. Nevertheless, better results were obtained when a more detailed analysis 

was performed and the errors were categorized according to the respective pathology, particularly for 

ET (for which fewer cases were available for training). The error contribution from ET reached 70%, 

which was the lowest error obtained for all of the tests using this configuration. 
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These results motivate our next objective, to find the minimum number of required characteristics 

and hidden neurons that will produce an acceptable classification error. Decreasing the number of 

vector components and neurons in the hidden layer would accelerate the classification and produce a 

simpler simulation model that could be used to reduce the classification error in future studies using 

other methods. 

Figure 13. Diagnosis error (mean value) obtained using all parameters. 

 

Figure 14. Error distribution for each type of pathology obtained using all available parameters. 

 

Neurophysiologists, neurologists, and neurosurgeons are clearly interested in using a system that 

can improve the diagnosis of the diseases considered in this study while being scientifically based, i.e., 

a method that does not rely solely on personal perception and that is based on objectively  

quantified data. 
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6. Conclusions 

Current tests and diagnosis are based on qualitative scales that are highly dependent on the 

subjective perception of the individuals that oversee the diagnosis. Therefore, the main advantage of 

the diagnostic aid system developed in this study is its ability to produce repetitive and objective 

indicators of a patient’s state from several tests based on patterns that are specifically designed to 

evaluate each aspect of the tremor. 

As previously mentioned, a distinguishing feature of the DIMETER system compared to other 

tremor detection systems is its capability of introducing active forces into the tests. This characteristic 

improves diagnosis by enabling important behavioral features to be distinguished. 

Moreover, the system enables motions to be recorded for further analysis to compare results 

independently of external or subjective factors that can be highly variable.  

The system facilitates the diagnosis and enables the patient’s history to be more effectively 

monitored, thereby storing all of the available tests for evaluation upon demand. 

The results indicated that the evolution of a patient’s disease resulted in variable behavior for a 

given pathology. Therefore, the primary characteristics of a patient’s motion can conceal or even 

overlap with other pathologies.  

Methods based on PSD, HOS, and neural networks contributed an average classification error of 

only 20% (considering the proportion of vectors of each class) at the stage that validation information 

was not introduced into the training process. This error is admissible given the limited of number of 

feature vectors of ET. HOS enabled greater discrimination between ET and PD but did not decrease 

the error in differentiating between physiological tremor and pathological tremor.  

According to the Canadian Journal of Neuroscience, general neurologists treating tremor have a 

diagnostic error rate of 25%–35% [35]; therefore, the results obtained using the system developed in 

this study can be considered good, and the system in its current state would be a useful diagnostic tool. 

Unfortunately, the analysis of results indicated that the characterization brackets for the case studies 

were not far away from each other and often strongly overlapped, thus hindering classification. 

These results indicate that the information used to categorize a group of interest is not intrinsically 

contained in the individual characteristics but in the coupling between these characteristics. Therefore, 

the analysis of the covariance among these characteristics would yield better results. Thus, the authors 

envision multi-variable classifiers as the best way to address the problem. This conclusion motivates 

future research directions. 

Doctors with whom these results were discussed also reported that some patients were 

misdiagnosed because of short or imprecise clinical histories. These cases could introduce considerable 

error into the data and should be identified and removed from the training sets. This consideration of 

misdiagnosis has resulted in a new research direction that is based on the exogenous variability in 

patients and their clinical history. These datasets should be considered outliers that make the training 

less precise. Therefore, these datasets should be automatically detected and discarded from  

training sets. 

Finally, another factor that makes the classification difficult is the difference between the incidence 

and prevalence of the diseases. These findings demonstrate that it is very difficult to use the same 
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number of patients suffering from each pathology to train the classifiers (i.e., significantly fewer 

patients suffer from ET than from PD). 

In summary, DIMETER is an autonomous system from a facultative perspective. The system fully 

integrates the clinical tests and the results of the analyses to produce a diagnosis. DIMETER provides 

doctors with slightly better results than current procedures. However, the objective of the research is to 

improve data categorization by adding new multi-variable and outlier removal techniques.  

7. Future Work 

As previously mentioned, the detection of outliers is a prerequisite for improving classification and 

rapidly decreasing diagnostic failures. The use of multi-variable techniques is also expected to provide 

promising results. 

However, the results obtained using frequency component analysis indicate that wavelet analysis is 

the next logical step following the use of STFT. Wavelet analysis enables the use of variable-size 

windows: large time intervals for low-frequency data and small intervals for high-frequency data. 

However, working with vectors of 26 parameters may become challenging if conventional computers 

are used. 

Furthermore, pre-processing based on parameter selection may be difficult to execute because of the 

large number of possible combinations involved. In addition, the training process of a neural classifier 

may be computationally expensive when the dimensionality is high (i.e., many parameters are 

considered). This result is obtained because the training vectors must be introduced into the classifier 

many times to achieve a good learning process. This result strongly depends on the neural classifier 

and learning rules that are chosen for the training.  

In future work, principal component analysis (PCA) will also be considered with the following 

objective: we will analyze “t” tests of “n” variables to determine whether the available information can 

be adequately represented by constructing a smaller number of variables from a linear combination of 

the original variables. 

Another course of action would be to use typical techniques in pattern recognition together with 

discrete hidden Markov models (HMMs): here, a dissimilarity space based on the distances between 

samples (sequences) and HMMs is used to obtain feature vectors [36,37] that can be introduced into a 

neural network for classification. The use of this methodology will also be considered in the context of 

traditional feature-based classifiers, including linear and nonlinear support vector machines [38]. 
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