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Abstract

We analize instanton generated superpotentials for three dimensional N = 2
supersymmetric gauge theories obtained by compactifying on S1 N=1 four dimen-
sional theories. For SU(2) with Nf = 1, we find that the vacua in the decompact-
ification limit is given by the singular points of the Coulomb branch of the N = 2
four dimensional theory (we also consider the massive case). The decompactifica-
tion limit of the superpotential for pure gauge theories without chiral matter is
interpreted in terms of ‘t Hooft’s fractional instanton amplitudes.
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1 Introduction.

Some of the deepest dynamical problems in gauge theories, such as the confinement prob-
lem, appear as tractable issues once we pass from four to three dimensions [1]. Recently,
the study of N =2 supersymmetry in three dimensions has began to shed some light on
the more difficult dynamics of four dimensional N = 1 theories [2]. Moreover, the inter-
play between N=2 in three dimensions and N=4 in four dimensions is the one existing
between M and F-theory compactifications on Calabi-Yau fourfolds.

Using elliptically fibered Calabi-Yau fourfolds, the Coulomb branch of an ADE N=2
gauge theory in three dimensions can be defined by means of the resolution of the corre-
sponding ADE singularity [3]. Instantons defined in terms of aritmetic genus one divisors
[4] of the resolved fourfold provide an R-dependent superpotential [3], with R determined
by the class of the elliptic fiber [4]. The R → 0 limit reproduces the known results in
N =2 three dimensional theories [5], while the R → ∞ limit defines a superpotential in
four dimensions, with N = 1 supersymmetry, compatible with the tr(−1)F computation
[6], and the cluster derivation of gaugino condensates [7, 8]. The main interest of this
four dimensional limit is that it can not be trivially described directly in four dimensions
or, equivalently, in the F-theory compactification on the fourfold, where the absence of
Coulomb branch forbids the resolution of singularities. Thus, the R →∞ limit provides
some information on the strong infrared dynamics taking place in the confinement regime
of the uncompactified theory.

In this letter we study the case of SU(2) with 1 flavor. For 1 flavor, we find an R-
dependent superpotential on the Coulomb branch of N = 2 in three dimensions, which
in the R → ∞ limit provides a set of minima in agreement with the result arising from
soft breaking (N = 2 to N = 1) the exact solution [9] for the Coulomb branch of four
dimensional N =2 with Nf = 1. The other issue we consider is the direct interpretation
of the R→∞ limit of the pure N=1 four dimensional superpotential in terms of ‘t Hooft
[10] fractional instanton amplitudes [11]. In fact, for SU(NC) gauge theories, the topol-
ogy of the residual gauge transformations compatible with the set of twisted boundary
conditions representing the non-vanishing ZNC -magnetic flux [12], boundary conditions
compatible with the confinement phase, reproduce in the four dimensions context the
Dynkin structure [3] of the singularity resolution used in the definition of the Coulomb
branch of three dimensional N=2.

2 M-theory Instantons.

We will consider M-theory compactifications on a Calabi-Yau fourfold X, which lead to
three dimensional N=2 supersymmetry. If X admits an elliptic fibration,

E −→ X
Π
−→ B, (2.1)
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we can define F-theory compactifications on X which lead to four dimensional N = 1
supersymmetry. If we assume that on a codimension one locus C ⊂ B the elliptic fiber is
degenerate, of ADE type in Kodaira’s classification, then we obtain an N=1 ADE-gauge
theory in four dimensions. This N=1 four dimensional theory results from compactifying
on C the 7-brane worldvolume. The bare coupling constant is then given by [3]

1

g2
4

= VC . (2.2)

Through further compactification on S1, we recover the N =2 three dimensional theory
defined by the M-theory compactification on X.

Denoting by ε the class of the elliptic fiber, E, we can relate, by a chain of dualities,
M-theory compactified on X with type IIB compactifications on B×S1, where the radius
of S1 scales like 1

ε
. The decompactification limit ε → 0 (R → ∞) corresponds to the

F-theory compactification, while the ε→∞ (R → 0) limit does correspond to M-theory
compactification.

As it is well known [2], N =2 supersymmetric three dimensional pure gauge theories
posses a classical Coulomb branch of dimension equal to the rank r of the gauge group.
This Coulomb branch is parametrized , if we define the theory by compactifying the N=1
theory in four dimensions, in terms of the Wilson line in the internal direction. At the
classical level we have a set of r + 1 singular points corresponding to Wilson lines in
the center of the group. If fundamental fermions are absent, then these point represent
classical restoration of non abelian symmetry (see some comments on this issue in the last
section). In three dimensions, instantons are characterized by their monopole magnetic
charge. They generate non perturbatively a superpotential [5] of the type

W =
r∑
i=1

exp(−Φi), (2.3)

with Φi the r complex scalars used to parametrize the Coulomb branch. The existence
of this superpotential is mainly due to the fact that instantons in three dimensions have
only two fermionic zero modes, as superconformal invariance is absent.

The M-theory origin of the superpotential (2.3) has recently been presented in refer-
ences [4, 3]. In fact, instantons in M-theory are defined [4] wrapping the euclidean 5-brane
on a 6-cycle D, contained in X, satisfying

χ(OD) = 1− h3,0 − h2,0 + h1,0 = 1. (2.4)

Condition (2.4) is equivalent to the existence, in uncompactified spacetime, of two fermionic
zero modes, which implies the generation of a superpotential.

When X admits an elliptic fibration, vertical instantons, defined by a divisor D sat-
isfying (2.4), and such that Π(D) is codimension one in B, survive in the uncompactified
F-theory limit defined as ε → 0 [4]. In fact, through a chain of dualities the 5-brane
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instanton can be interpreted in the type IIB language as a 3-brane wrapping the four
cycle Π(D).

Let us now consider a divisor D with Π(D) = C ⊂ B, with C the codimension one
locus in B where the elliptic fiber develops an ADE singularity. We will also assume that
h1,0(C) = h2,0(C) = 0, which from the point of view of F-theory implies the absence of
adjoint matter in the four dimensional theory. Using Hirzebuch-Riemann-Roch theorem,
we get for this divisor

χ(OD) = C2(G), (2.5)

with C2(G) the dual Coxeter number. Clearly, this divisor D does not contribute to the
superpotential. In fact, to go to the Coulomb branch in three dimensions is equivalent to
performing the resolution of the singular elliptic fiber at C [3]. By this procedure, we get
a set of r + 1 irreducible components Ei satisfying Ei ·Ei = −2, with intersection matrix
defined by the corresponding affine Dynkin diagram. Each of these components can be
used in order to define a divisor Di, obtained by fibering Ei on C, with

χ(ODi) = 1. (2.6)

Moreover, as pointed out in reference [3], these divisors are constrained by the standard
relations between the roots of a Lie algebra. Denoting αi the roots of the Lie algebra, we
have, for a group of rank r,

r∑
i=1

aiαi = α̃, (2.7)

with α̃ the biggest root, which defines the extra point in the affine Dynkin diagram.
Moreover (see table),

r∑
i=1

ai = C2(G)− 1. (2.8)

An−1 α̃ =
∑n−1
i=1 αi C2(G) = n

Dn α̃ = α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn C2(G) = 2n− 2
E6 α̃ = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 C2(G) = 12
E7 α̃ = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 C2(G) = 18
E8 α̃ = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 C2(G) = 30

A set of r irreducible components Ei can be related to the roots αi, while the extra
one, that we will denote E0, can be associated to −α̃ 1, which defines the extra point of
the affine Dynkin diagram. Thus, we get the relation

r∑
i=1

aiEi + E0 = E, (2.9)

1Notice that the extra component does not contribute to the Picard group of the fourfold.
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with E · E = 0, the class of the elliptic fiber. The contributions of these divisors to the
superpotential are given by

W =
r∑
i=0

exp[−V (C) · V (Ei)]. (2.10)

Using (2.9), and for V (E) = ε(∼ 1
R
), the superpotential (2.10) becomes [3]

W =
r∑
i=0

exp[−V (C) · V (Ei)] + γexp[
r∑
i=1

ai V (C) · V (Ei)], (2.11)

with

γ = exp

(
−

1

g2
3 ·R

)
. (2.12)

The main interest of (2.11) is that it provides us with an R-dependent superpotential,
with well behaved limits both in the N = 2 three dimensional case and the N = 1 case
in four dimensions. In fact, the R → 0 limit leads to the N = 2 superpotential (2.3)
generated by instantons, and in the R → ∞ limit it gives a set of C2(G) minima, in
perfect agreement with the Witten index computation [6].

The superpotential (2.11) generalizes the one obtained in reference [2], for the par-
ticular case of SU(2), to arbitrary gauge groups. The derivation in [2] starts with the
solution to the N = 4 theory in three dimensions, which is given by the Atiyah-Hitchin
[13] manifold

y2 = x2v + γx, (2.13)

where v = x − u, and γ is the dynamically generated scale, in adequate units. This
theory corresponds to the R → 0 limit of the N = 2 supersymmetric pure gauge theory
on R3 × S1. If we now softly break N = 2 to N = 1 by the addition of a superpotential
εu, the R dependent superpotential for the N=1 theory becomes

W = γ2λ(ỹ2 − x̃2v − x̃) + ε(γx̃− v), (2.14)

with γx̃ = x, γỹ = y. Now, an effective superpotential for x̃ can be written by solving
∂W
∂λ

= ∂W
∂ỹ

= ∂W
∂v

= 0,

W = ε

(
γx̃+

1

x̃

)
, (2.15)

which coincides with (2.11) when the identification [2] ε
x̃

= exp(−V (C) · V (E1)) is made2

2If we take the ε → ∞ limit, we can define a blow up through the double limit limε→∞,x̃→∞
ε
x̃

=
exp(−V (C) ·V (E1)). By interpretting the blow up parameters V (E1) in terms of x, we observe that their
definition implies x̃→∞, and γ → 0.
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3 The QCD case.

Let us now add flavors transforming in the fundamental representation. For simplicity,
we will consider the case of SU(2). The R-dependent superpotential can be derived using
the Atiyah-Hitchin manifold for massless Nf = 1 N=4 supersymmetric SU(2) theory,

y2 = x2v + γ1. (3.1)

In this case, the superpotential we obtain, following the same steps as in [2], is

W = ε

(
γ1x̃+

1

x̃2

)
, (3.2)

which for R→ 0, gives us the superpotential

W =
ε

x̃2
(3.3)

The minima, in the R → ∞ four dimensional limit, are given by the three roots of
unity, in agreement with the Z3 symmetric set of singular points of the Seiberg-Witten
solution for N = 2 four dimensional SU(2) gauge theory, with Nf = 1 [9]. In fact, the

minima of (3.2) are at the points 1
x̃

= Λe2πin/3

(2)1/3
, and therefore we get

ε

x̃
' e2πin/3Λε, n = 0, 1, 2, (3.4)

where γ1 ≡ Λ3, with Λ the scale of the N = 2 theory. In the ε → ∞ limit, the three
ground states of the Coulomb branch approach each other [9].

Using the mass deformed Atiyah-Hitchin manifold studied by Dancer [14],

y2 = x2v − i2mγ1x+ γ2
1 , (3.5)

we can derive the superpotential for the massive case,

W = ε
(
γ1x̃−

2im

x̃
+

1

x̃2

)
, (3.6)

which in the three dimensional R→ 0 limit leads to the superpotential

W = ε
(
−

2im

x̃
+

1

x̃2

)
. (3.7)

Now, we could consider the type of non perturbative effects able to generate, in the
N = 2 three dimensional theory with finite ε, the superpotentials (3.3) and (3.7). In
the three dimensional theory, we should use the Callias version of Atiyah-Hitchin index
theorem [15]. In the notation of [15], the index is given by

index = [j(j + 1)− {m}({m}+ 1)] · n, (3.8)
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for instanton number equal n. The 2n gluino zero modes correspond to j = 1 and {m} = 0
in (3.8). For fermions in the fundamental representation, j = 1

2
, and we get index = 1,

for {m} = −1
2
, and index = 0, for {m} = 1

2
3. In order to reproduce the mass term in

(3.6), we should consider {m} = 1
2
. The superpotential ε

x̃2 is however more difficult to
interpret. According to the power of the denominator, we might think of some sort of
2-instanton effect. Taking into account the powers of ε, and interpretting the instanton
effect as associated to ε

x̃
, we get an instanton effect of the type ε

x̃
, and other of the type

ε
x̃
·
(

1
ε

)
. Thinking of this second instanton effect in similar terms as the massive contribution

ε
x̃
(2im), we will get a net vertex λλλλψψ, which can generate the superpotential ε 1

x̃2 , if we
pair up λ and ψ zero modes, and lift them. This is only an heuristic way to interpret the
quadratic term in (3.2) for finite values of ε. This effect is supressed in the ε →∞ limit
[16]. For finite ε that any singularity of the four dimensional Coulomb branch leads to a
confinement ground state characterized by a vacuum expectation value for the monopole
fields. It would be interesting superpotentials of the type (3.2), for finite ε, with monopole
superpotentials.

For N = 1 four dimensional SU(2) gauge theory, with one massless flavor, we get in
the instanton background six zero modes, four of them corresponding to superesymmetric
and superconformal transformations acting on the instanton configuration, and the other
two to the flavor fermionic zero modes. Using the technique of constrained instantons, it
was shown in [17] that a superpotential can be generated for Nf =1 by lifting four of the
zero modes which can be paired. To derive this superpotential in the F-theory approach,
we should consider the D-instanton defined fibering on C the degenerate elliptic fiber of
A1 type. Again, taking into account the existence of an SU(2) gauge connection on C,
with topological number 1 =Nf , we get for this D instanton aritmetic genus equal one
[18]. Notice that this four dimensional instanton has been directly defined in the F-theory
context, where no resolution of the singularity is allowed.

4 Fractional Instantons.

After the previous discussion on the superpotential a natural question arises, namely how
to interpret the R→∞ limit of the superpotential (2.11) directly in terms of topologically
non trivial configurations in four dimensions. The more natural guess would be to think
on some kind of “fractional instanton”, created by strong infrared dynamics: ordinary
instantons in four dimensions posses too many zero modes to generate a superpotential. In
fact, in the four dimensional F-theory context, where we can not perform any resolution of
the singularity, the divisor D, with Π(D) = C, is of aritmetic genus C2(G). The fractional
instanton should be thought as the M-theory 5-brane, formally wrapping D 1

C2(G)
times

[4]. A different approach is the use of ‘t Hooft fractional instantons [10] to generate the

3{m} is the largest eigenvalue of φaT a, with φ (the Higgs field in the adjoint) smaller than the fermion
mass.
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R→∞ limit of the superpotential (2.11). In the context of twisted boundary conditions
on four dimensional spacetime [12], a contribution in pure N =1 supersymmetric Yang-
Mills to the superpotential can be expected from a “toron” (topological number 1

NC
)

amplitude [11]. Following the notation of reference [12], this amplitude in the infinite
volume limit, will be given by

< e,m = 1|λλ|e,m = 1 >=< m = 1|λλ Ω(k = 1)|m = 1 > e2πie/NC = Λ3e2πie/NC (4.1)

where the electric flux e can take values e = 0, . . . , NC − 1, and where the state |m = 1 >
corresponds, in the temporal gauge A0 = 0, to a fractional magnetic flux configuration, of
magnetic flux 1

NC
in the third direction. The gauge transformation Ω(k = 1) is part of the

residual gauge symmetry, compatible with the twisted boundary conditions corresponding
to the existence of the magnetic flux |m = 1 >. The phase factor in (4.1) comes from the
definition of invariant states with respect to this residual symmetry:

|e,m >≡
1

N3
C

∑
k

e2πike/NCΩ(k)|m > . (4.2)

The fractional Pontryagin number corresponding to the tunnelling amplitude in (4.1)
is given by

P =
1

NC

. (4.3)

Now, it is easy to observe that

Ω(k = 1)NC = T, (4.4)

where T is a periodic gauge transformation on S3, with Π3 = 1. Taking into account that
the non abelian instanton is defined by fibering the elliptic fiber E on C, relation (4.4)
becomes the analog of the exponentiated version of Dynkin relation (2.9) for SU(NC).
Defining the instanton action as exp − 1

g2
4
, the sum of contributions of type (4.1) to the

superpotential produces, by means of (4.4), the desired result (2.11). Moreover, the
minima for SU(NC) of the superpotential (2.11) reproduce exactly the phases in (4.1),
which come from the definition of electric flux through (4.2). Notice that the minima of
(2.11) are parametrized by the Wilson loop in the internal direction, which is precisely
the meaning of e in (4.1). The fact that < λλ > is given in four dimensions in terms of e,
comes in the toron computation directly from the the definition (4.2) of invariant states.
Thus, we conclude that fractional instantons effectively appear in the uncompactified
four dimensional limit. Notice that the Wilson loop in the internal direction, which
parametrizes the Coulomb branch, can take values, if flavors are absent, in the center
ZNC of the color group even when gauge invariance is restored. The discrete set of points
in the moduli corresponding to Wilson lines in the center, becomes the ground states in the
uncompactified limit. At these points, we have vortices instead of monopoles and torons
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as their twisted version, that survive in the four dimensional limit. The torons appearing
as the relevant topological configurations at these points. The crucial dynamics of torons
that provide the right counting of zero modes consists in avoiding the superconformal
zero mode modes of the instanton, without breaking supersymmetry; furthermore in the
infinite volume limit they have vanishinjg field strength. In summary, we believe that
fractional instanton effects in four dimensionalN=1 are the right ingredient to understand
the superpotentials derived through M-theory techniques, in the uncompactified limit.
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