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Plane-wave based electron tunneling through field emission resonance states
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Field emission resonances (FERs) on Cu(100) surface are investigated by means of tunneling regime
simulations performed with a plane-wave based transport calculation method. FERs are located near the surface
and decay into the vacuum, and their accurate simulation requires a faithful description of vacuum states. This type
of simulations is thus not possible using the popular transport methods based on atom-centered localized basis
sets and the use of plane waves becomes important. We introduce a procedure to treat self-consistently (SC) the
finite bias nonequilibrium problem in tunneling regime. Image potential effects are included in a semiempirical
way within the SC calculation. Tunneling through FERs is studied following a practical strategy to approximate
the inelastic transmission for states lying in the band gap of the surface. As our approach permits the use of
any tip geometry, tip effects on the energy and wave functions of FERs are explored. The method reported here
provides an ideal tool for the simulation of FERs aimed at the understanding of experimental STS (scanning
tunneling spectroscopy) observations.
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I. INTRODUCTION

The investigation of electron processes at surfaces is an
extremely active field, since such knowledge permits the
understanding of many physical phenomena, such as electron
scattering or electron transport.1,2 These phenomena are
intimately related to the performance of electronic devices and,
hence, they are vital in the development of future electronic
technology.

Experimentally, scanning tunneling spectroscopy (STS) is
a powerful tool to probe the surface electronic structure and
electron dynamics. In most cases, STS are recorded at low
applied bias voltages, where the influence of the applied
electric field is not so relevant. However, STS can also be
operated in the field-emission regime, i.e., at bias voltages
larger than the tip work function. Under these conditions, STS
can be used to investigate image potential states. The image
potential is caused by the interaction of electrons with the
surface polarization induced by the electron itself, and due
to its long-range character, the resulting quantized electronic
states form a Rydberg-like series.3–5 In field emission-regime,
image-potential states are Stark-shifted and become field-
emission resonances (FERs).

In STS experiments, FERs can be detected using z-V spec-
troscopy, that is, operating the experimental setup in constant-
current mode. Within this operation mode, the feedback loop
is left on and, thus, the tunneling current I is kept constant
while scanning the bias voltage V . This way, the derivative of
I with respect to V , ∂ V I (V ), as well as the varying tip-sample
separation z(V ), are acquired simultaneously. Under these
experimental conditions, every time a new FER is available for
tunneling a jump in z(V ) and a peak in ∂ V I (V ) are observed.6,7

Over the past years, a renewed interest on FERs
has emerged and many experimental studies have been
reported.8–19 The theoretical interpretation of FERs is com-
monly done using simple one-dimensional (1D) models for

the description of the surface potential.14,20–23 However, there
are many drawbacks using model effective mass theory with
1D model potentials that can be overcome with an atomic-
scale description of the effective potential in which electrons
propagate: the description of states near the surface accounting
for corrugation and, in particular, the different dispersion of
surface states from those located in the bulk and vacuum
regions. In this work, we describe a density functional theory
(DFT) based calculation method that treats the full system
under nonzero bias voltage and solves the potential of the
tip-sample system self-consistently.

Nevertheless, the well-known shortcoming of DFT to
describe the asymptotic behavior of the image potential
towards vacuum has prevented its use for the analysis of
image states. Different strategies have been proposed to
restore the correct imagelike behavior outside the surface.24–26

In this work, such DFT limitation has been overcome by
applying a matching procedure23,27,28 to enforce the correct
imagelike potential tail within our DFT-based self-consistent
approach. The inclusion of the image potential, together with
the self-consistent treatment of the finite voltage drop across
the system, enables the quantitative analysis of FERs.

The DFT based theoretical description of the FERs intro-
duced here is based on a quantum transport calculation proce-
dure which solves the scattering states using a plane-wave basis
set.29–31 From the scattering states, one can straightforwardly
calculate the transmission coefficients and the electronic cur-
rent of the system. As shown in Ref. 32, this plane-wave based
method provides a very accurate description of the scattering
states in the vacuum region. FERs have a maximum outside the
surface of the metal. The higher the order in the Rydberg-like
series, the further the maximum of the FER state is from
the surface and into the vacuum region. Therefore a precise
description of vacuum wave functions is key for a proper
treatment of such states. Within this scenario, our plane-wave
based method provides a very useful tool to characterize FERs.
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A relevant issue regarding FERs is their dependence on tip
properties. FER states are unavoidably Stark-shifted due to the
electric field induced by the tip. Thus different tips can provide
significantly distinct FER spectra.15,16 Clearly, this tip effect is
specially relevant in the case of FERs with n > 1, as they are
located closer to the tip. Nevertheless, since the tip properties
are very difficult to control in the experiments, the analysis of
higher n states poses serious difficulties, and the discussion of
experimental observations is often restricted to the n = 1 FER
state.15 Most of previous descriptions of FERs have been based
on the use of 1D model potentials that restrict the treatment
to planar tip geometry only.14,16,23,33,34 With our approach, in-
stead, any tip geometry can be used, which opens up the possi-
bility of understanding the influence of different tips on FERs.

With the aim of demonstrating the potential of our method,
we study a well-established system, the Cu(100) surface. On
this surface, a projected band gap exists around �̄ point, which
together with the tip-field effect gives rise to FERs.14,16,19,35,36

The influence of the electric field, fixed by the applied
voltage and surface-tip distance, is investigated. We also study
tunneling through FERs and we introduce a procedure to
calculate the inelastic transmission for the FERs lying in the
band gap of the �̄ point electronic structure of the receiving
electrode into the lower energy electrode states. Inelastic
processes might occur, for example, via phonon emission or
electron-electron interaction. As a first attempt, the tip shape
has been approximated by a flat surface. Next, the influence
of the detailed atomic structure of the tip is investigated by
including an atomically sharp tip.

The paper is organized as follows. In Sec. II A, we
describe the computational method used for the transport
calculation through FERs, including a brief description of the
formalism introduced in Refs. 29 and 30. We also introduce the
procedures employed to incorporate the image potential and
simulate inelastic transmission. In Sec. III, the main results of
our calculations for a Cu(100) model system are presented and
discussed. Concluding remarks are summarized in Sec. IV.

II. CALCULATION METHOD

A. Transport method for finite bias voltage

For the calculation of the scattering states, we consider the
system as sketched in Fig. 1(a), consisting of a central part
connected to bulk semi-infinite left and right electrodes. The
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z 

Left electrode
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FIG. 1. (a) Full model system used in the calculation method
described in this work. (b) Modified central region used for the SC
calculation of the potential.

current across the system is given by

I = 2e

h

∫ μR

μL

T (E)dE, (1)

where μL and μR are the left and right electrode chemical
potentials, assuming that the current flows from right to left.
T (E) is obtained from the scattering states of the full system of
Fig. 1(a), which are the solution of the following Schrödinger
equation:

Hψsc(r) = Eψsc(r), (2)

where H = [− 1
2∇2 + V (r)] is the single-particle Hamilto-

nian, and satisfying the corresponding scattering state bound-
ary conditions. In order to solve Eq. (2), auxiliary periodic
boundary conditions are imposed on the system, which
turns the open boundary problem into a conventional closed
boundary problem. Details of the method can be found in
Refs. 29 and 30.

For large voltages, the coupled charge/potential problem
must be solved self-consistently, in order to adequately
describe the nonequilibrium state of the system. Previously, we
introduced a self-consistent (SC) algorithm for the calculation
of the system potential under finite bias voltage.37 In that
method, the self-consistent DFT potential for zero applied bias
is calculated for the central region of Fig. 1(a). Then, to include
the effect of the external bias voltage, an initial guess for the po-
tential in the central region is built based on a sinelike potential.
This central potential is matched to left and right bulk electrode
potentials shifted by −Vb/2 and +Vb/2, respectively, where Vb

represents the applied voltage. Taking the potential for the full
system constructed this way as an initial guess, a SC iteration
is carried out by occupying the calculated scattering states by
the left and right electrode Fermi energies to yield the charge
density, and solving the Poisson equation satisfying the left
and right electrode potential boundary conditions.37 Finally,
the scattering states calculated with the converged potential
yield the final transmission coefficients. Although accurate,
such a SC can be computationally expensive depending on the
size of the system. For this reason, we have implemented a
novel approximated SC calculation approach to simulate the
nonequilibrium system.

Within the new approach, we first calculate the self-
consistent potential of the central part. This is done by
employing a modified central region surrounded by vacuum on
left and right sides, as displayed in Fig. 1(b). The effect of the
applied bias is taken into account by redefining the occupation
of the central system in the following way:

ρC(r) =
∑

i

[|ψi(r)|2WL(r)f (εi − μL) (3)

+ |ψi(r)|2WR(r)f (εi − μR)], (4)

where μL(R) are the left and right Fermi energies given
by EF ± Vb/2, respectively, and f (εi − μL(R)) are the cor-
responding Fermi-Dirac distributions. WL(R)(r) are some
auxiliary mask functions, and WR = 1 − WL.

This procedure works well for tunneling cases, like in our
FER study, where the charge density at the barrier region
is very small. In such cases, the WL(r) is one at the left
electrode, then drops abruptly in the barrier region (at the
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point of maximum potential, or said minimum charge density)
to zero, and it remains to be zero at the right electrode.
Reference 38 shows that the charge density obtained in that
way is almost indistinguishable to the charge density obtained
by occupying the scattering states as described in Ref. 30.
As will be described in Sec. II C, in our SC calculation of
the biased central region, we have also included an image
potential (as an external fixed potential) on top of the local
density approximation (LDA) potential, to correct the LDA
error in the exchange and correlation potential.

Once the SC potential for the central region is obtained
following the new occupation procedure, it is matched to left
and right electrode potentials. From the resulting full system
potential, the scattering states are calculated following the
approach of Refs. 29 and 30. In this way, the scattering states
of the full system under bias voltage are achieved in a SC
manner.

B. Image potential

An appropriate description of the FERs requires to include
the correct imagelike behavior outside the surface in the SC
calculation of the potential for the central region. For this
purpose, we have developed the procedure described in the
following and schematically depicted in Fig. 2.

First, we consider a single surface and we calculate the
corresponding DFT potential VDFT under zero applied bias.
The potential in the vacuum region Vvac is given by VDFT far
away from the surface. Then, the image potential outside this
surface can be expressed as

Vim(z) = Vvac − 1

4 |z − zim| . (5)

zim represents the position of the image plane and is a
parameter, which can be determined from the center of the
static screening charge.39
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FIG. 2. (Color online) Planar averaged potential for Cu(100)
surface. V ∗(z) (black/thick solid) is obtained by connecting the planar
averaged DFT potential VDFT(z) (red/dashed dotted) at zim to the
image potential (blue/dashed) at zmatch. �V (green/thin solid) gives
the difference between V ∗ and DFT potentials. The zero of energy is
at the vacuum level. The gray area represents the solid system that
extends towards the left.

Next, using the DFT and image potentials introduced above,
the following modified potential is built:

V ∗(z) =
{
VDFT(z) if z � zim,

Vim(z) if z � zmatch.
(6)

Across the matching region [zim,zmatch], the V ∗(z) potential
is smoothly transformed from the DFT potential at zim to the
imagelike potential at zmatch, as follows:

V ∗(z) = VDFT(z)f (z) + Vim(z) [1 − f (z)] , (7)

where f (z) is defined as

f (z) = cos2 [(z − zim)π/2(zmatch − zim)] , (8)

in the same fashion as in Ref. 23. The final V ∗(z) potential is
represented by a solid line in Fig. 2.

Finally, �V (z) is defined as the difference between the
modified potential and the planar averaged DFT potential at
zero bias, i.e., �V (z) = V ∗(z) − VDFT(z). We observe from
Fig. 2 that this function is strictly zero inside the surface,
reaches its maximum magnitude near the surface in the vacuum
side and decays to zero far away from the surface into the
vacuum. �V (z) is first calculated in the zero-bias calculation,
then added as a fixed external potential in the single-particle
Hamiltonian when solving the SC potential of the finite bias
problem described in Sec. II A. This procedure ensures a
correct imagelike behavior of the final SC potential in the
vacuum region. Based on our self-consistent calculation, we
found that the changes on the surface charge density under
the different applied bias voltages considered in our study are
rather small. Thus we have used the same image plane and
image potential for all the applied bias voltages.

Our procedure would allow the fitting of energy levels to
their corresponding experimental values, providing a way to
determine the model parameters zim and zmatch, which describe
the metal surface properties. However, as in this work our main
objective is the description of the calculation method and its
capabilities, we employ a minimal matching region scheme
and the position of the image plane reported previously by
Chulkov et al.40

It should be mentioned here that, as our main interest lies
on the analysis of the FERs belonging to the sample surface,
we have only included the image potential on that side of the
tunneling gap. For the high bias voltages used in this work,
the FERs will be very localized near the surface region. In
this state localization region, and due to the large tip-sample
distances we employ, the image potential of the tip will be
small and rather flat.41 Hence neglecting the tip image potential
will only introduce a minor energy shift in the energy of the
FERs. Furthermore, the image potential from the tip might
sensitively depend on the shape of the tip in a way which is
difficult to include in a simple model. All in all, including this
relatively small image potential might complicate our analysis
and, consequently, it has been neglected in our simulations.

C. Transmission through field emission resonances

As mentioned above, once the scattering states are known
the transmission coefficient can be calculated in a straightfor-
ward way. This transmission coefficient accounts for elastic
processes, where electrode states incoming from the right
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with energy E are transmitted onto electrode states of the
left side with energy E. Within this scenario, there would
not be any transmission through FERs, as they lie inside the
energy gap of the �̄ point electronic band structure. However,
inelastic processes of the incoming electrons with the surface
and also with the bulk states yield a nonzero transmission for
the FERs. These can be taken into account empirically by
including an imaginary potential Vi ,14,19,42,43 which is treated
as a phenomenological parameter accounting for inelastic
effects. Vi exists only inside the left surface and extends into
the left electrode. If the imaginary potential is treated as a
perturbation potential, the current through the FERs due to
inelastic effects can be written as

Iinel = e

h

∫
Vi(r)|ψsc(r)|2dr, (9)

where ψsc(r) is the scattering state obtained from Eq. (2) using
the unperturbed Hamiltonian H . This approximation is appro-
priate when Vi does not change the FER significantly, which
we assume to be the case here. In principle, one could choose
a value of Vi such that the experimental lifetimes of image
states are reproduced. Here, we employ a fixed value of Vi ,
as given in previous works.14 The use of a constant imaginary
potential is based on the so-called penetration approach, which
assumes that the lifetime of an image state is proportional to the
overlap of the probability density with the metal substrate.44,45

Neglecting the energy dependence of the imaginary potential
should not qualitatively change our conclusions.

From the knowledge of the inelastic current, we can
calculate the inelastic transmission. In our case, the inelastic
current Iinel is always much smaller than the current Iincoming

from the incoming wave of the scattering state. Note that
Iincoming is not the elastically transmitted current from the
right electrode to the left, rather it is the current of the
incoming electrode state inside ψsc, which in our case has
been reflected back completely to the right electrode under the
elastic approximation. In this case, the total transmission due
to inelastic scattering is simply

Tinel = Iinel

Iincoming
. (10)

In summary, the calculation of the tunneling transmission
across FERs is performed using a DFT based procedure to
obtain the SC potential for the full system under bias voltage
including image potential effects. Then, this SC potential
is used to calculate the corresponding scattering states ψsc.
Finally, from the knowledge of ψsc and including an imaginary
potential Vi to account for inelastic effects, the inelastic
transmission through FERs is achieved.

III. RESULTS

As mentioned in Sec. I, Cu(100) is a well-characterized
surface, which has been theoretically and experimentally
investigated for its FERs.14–16,19 Therefore we believe it is
an ideal candidate to test our procedure of the tunneling
through FERs. Figure 3(a) shows an atomistic illustration of
the model set up used in this work, which consists of two
facing (3 × 3)-Cu(100) surfaces. Calculations are performed
using norm conserving pseudopotentials and local-density
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FIG. 3. (Color online) (a) Atomistic illustration of the two-facing
(3 × 3)-Cu(100) surfaces used in the calculations. (b) and (c) The
band structure of (1 × 1)-Cu(100) and (3 × 3)-Cu(100) surface,
respectively, in the �̄X direction, where kz is the momentum in the
direction of propagation, i.e., perpendicular to the xy surface.

approximation (LDA). For the electrode and for the central
region under finite bias, the calculations are converged with
respect to the number of k points. For the scattering state
calculations, only the �̄ point in the (x, y) directions of the
supercell is included.

Note, our �̄ point is the �̄ point of the 3 × 3 supercell, thus
it already includes the 3 × 3 (kx,ky) points of the primary cell
in our calculation. The band structure of the 1 × 1 primary
cell electrode at �̄’ point is plotted in Fig. 3(b). As we can see,
there is a ∼6 eV band gap, which provides the possibility for
the existence of surface states. On the other hand, as illustrated
in Fig. 3(c), the �̄ point band structure of the 3 × 3 supercell
electrode does not show any band gap, due to the band folding
in the x and y directions. This is consistent with our observa-
tion that, in practice, all the observed surface states of the 3 × 3
supercell come from the �̄’ point of the 1 × 1 primary cell.

A. Field emission resonance states

In constant current mode, the tip displacement is (on
average) approximately proportional to the applied bias volt-
age, except at particular values where the resonance appears
and steps in z(V ) are observed [correspondingly, peaks in
∂ V I (V )]. This global behavior can be mimicked by using a
linear z(V ) ramp that essentially corresponds to a constant
field (V/z) at the tunnel junction.

In this work, we have reproduced the experimental strategy
by investigating the field-emission resonance states for the fol-
lowing (zvac,Vb) set points (see Fig. 4): (9.6 Å, 5.0 V), (13.2 Å,
6.7 V), and (16.8 Å, 8.4 V). These set points correspond to a
field of ∼0.5 V/Å, which is slightly larger but still of the order
of the field values involved in STS experimental observations.
Therefore, despite the approximations contained in our model,
it should capture the main physical ingredients of the problem
under investigation.
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FIG. 4. (Color online) Full system potential for three different
(zvac,Vb) set points, as obtained non-self-consistently without image
potential (blue, dashed line), self-consistently without image potential
(red, dash-dotted line), and self-consistently including image poten-
tial (black, solid line). The gray area represents Cu(100) metallic
region. The position of the FERs at �̄ is also indicated (green,
horizontal solid lines). The zero of energy is at the Fermi level of
the left electrode.

In first place, we have tested the adequacy of our procedure
for the SC calculation of the system potential under applied
bias voltage. In Fig. 4, we compare the SC and non-SC
potentials corresponding to the set points given above. The
non-SC potential is obtained employing a sinelike potential
for the central region, as explained in Sec. II A. Given the size
of the system under investigation here and the large values of
the voltages needed for the simulation of the FERs, occupying
scattering states to calculate the SC potential as in our previous
work37 would be computationally very expensive. From Fig. 4,
it can be seen that the SC potential provides a larger bump and
barrier to the potential near the right electrode. Besides, as
expected, the field is very efficiently screened by the metal
leads and the average potential inside both leads is flat almost
up to the surface.

These potential differences between SC and non-SC cal-
culations seem small. In fact, the energies of the first four
FERs for the (16.8 Å, 8.4 V) summarized in Table I,46 do
not exhibit a remarkable influence of the self-consistency
calculation. However, the small differences between non-SC
and SC potentials can be important regarding confinement

TABLE I. Energy values in eV of the first four FERs of Cu(100)
corresponding to the (16.8 Å, 8.4 V) set point, as obtained non-
self-consistently (non-SC), or self-consistently with (SC + Vim) and
without (SC) image potential. These energy values are measured with
respect to the Fermi level of the left electrode (μL).

E (non-SC) E (SC) E (SC + Vim)

n = 1 6.16 6.02 4.81
n = 2 8.05 7.96 7.51
n = 3 9.76 9.79 9.73
n = 4 10.36 10.49 10.50

0

0,0003

0,0006

0

0,0003

0,0006

P
la

na
r 

av
er

ag
ed

 w
av

ef
un

ct
io

n 
sq

ua
re

 (
a.

u.
)

10 20 30 40

Z direction position (Å)

0

0,0003

0,0006

non-SC
SC
SC + V

im

n = 1

n = 2

n = 3

FIG. 5. (Color online) First three FER states of left Cu(100)
surface for (16.8 Å, 8.4 V), as obtained non-self-consistently without
image potential (blue, dashed line), self-consistently without image
potential (red, dash-dotted line), and self-consistently including
image potential (black, solid line). The gray area represents Cu(100)
metallic region.

of image states with high quantum number. The later extend
further into the vacuum and, thus, are more sensitive to the
exact shape of the barrier near the right electrode, i.e. near
the tip in STM experiments. This is illustrated in Fig. 5,
where we have represented the wave functions of the first
three FER states at �̄ for (16.8 Å, 8.4 V) as obtained
non-self-consistently and self-consistently.46 We observe that
the effect of self-consistency on the confinement of FERs
is more relevant for states with quantum numbers n > 1. In
particular, we observe that (i) for n = 2, the amplitude of the
non-SC planar averaged density is significantly lower than the
SC result, which is due to the fact that this state is right below
the bottom of the conduction band and, thus, tiny modifications
of its energy give rise to large differences in the degree of
localization; and (ii) for n = 3, the amplitude of the density
is similar but the state is more extended towards the right
electrode in the non-SC case.

We have also studied the effect of the image potential based
on the comparison of the SC potentials as obtained with and
without taking into account the imagelike behavior of the
potential on the vacuum side. Within our model system, the
left and right Cu(100) surfaces resemble the sample and tip
of the STM set up, respectively. Therefore, since our aim is
to investigate the sample FERs, we have only incorporated
the image potential on the left Cu(100) surface, that is, on
the sample side. The corresponding full system potential is
shown in Fig. 4. The SC potential obtained without image
potential would also yield FERs, originated just by the tip
induced potential.14 However, the energetics of the FERs as
well as their confinement will be modified when incorporating
the image potential, as one can expect from the variation in the
SC potential observed in Fig. 4.

Regarding the effect of the image potential on the energetics
of FERs, this is expected to be more significant for FERs with
lower quantum numbers (smaller n values). FERs with higher
quantum numbers will be dominated by the tip-induced electric
field instead and, hence, will show weaker dependence on the
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image potential effects. For the sake of confirming that the
role of the image potential is less relevant for higher quantum
numbers, we have compared the energies of the FERs for the
(16.8 Å, 8.4 V) set point as obtained using self-consistently
with and without image potential. The results for the first four
FERs for the (16.8 Å, 8.4 V) are summarized in Table I. As
predicted, the effect of the image potential is crucial for the
energy of the first FER (n = 1) and is still significant for the
second FER (n = 2). For higher quantum numbers (n = 3,4),
the role of the image potential in the energy of the FERs is
almost negligible (∼1%).

On the contrary, the effect of the image potential on the
wave function of FERs is stronger for states with high quantum
number. This is confirmed by the FER states given in Fig. 5,
which show the importance of the image tail in determining
the spatial distribution of the states lying at high energies and,
therefore, more delocalized into the vacuum region. Whereas
the image potential does not modify significantly the n = 1
state [see Fig. 5(a)], the n = 3 state [see Fig. 5(c)] is trapped
closer to the sample surface under the influence of the image
potential.

All in all, after having investigated in detail the effect of a
self-consistent treatment of the nonequilibrium problem and
the role of the image potential, we believe that both ingredients
are desirable for a proper description of FERs. Consequently,
all the results reported in the following will correspond to
calculations done self-consistently and including the image
potential on the sample side.

In Fig. 6, we have represented the FERs corresponding to
the set points considered in this work, which have been chosen
to mimic the experimental mode used for the observation of
such states. Accordingly, our first set point (9.6 Å, 5.0 V)
allows us to reproduce the n = 1 FER, which is located very
close to the left surface and has an energy of 4.62 eV with
respect to the sample Fermi level [see Fig. 6(a)].16,47,48 Then,
increasing both the vacuum gap and the bias voltage, i.e.,
using the (13.2 Å, 6.7 V) set point, we are able to identify
both n = 1 and 2 FERs. As seen from Fig. 6(b), the second
FER is located further from the left Cu(100) surface and its
energy lies significantly higher, at about 6.89 eV from the left
Fermi level. Finally, we have looked at the FERs for the third
set point, (16.8 Å, 8.4 V). In this case, as shown in Fig. 6(c),
n = 3 and 4 FERs are also available, the maximum of their
density being located notably further from the left Cu(100)
surface. However, whereas n = 1 and 2 FERs decay smoothly
into the left electrode, the higher quantum numbers do not
exhibit a decaying behavior. This is due to the fact that the
energy of these states, 9.73 and 10.5 eV for n = 3 and 4
respectively, lies above the energy gap of the bulk Cu at the �̄

point. Hence these FER states couple to bulk electrode states
and are referred to as resonant local states.

B. Inelastic transport

We now turn our attention to the band structure and explore
in more detail the coupling of the FERs with electrode states in
the leads, which determines the electronic transport. With this
aim, the energies of the FERs for the (9.6 Å, 5.0 V) and (13.2 Å,
6.8 V) set points are aligned with the band structures of the
left (sample) and right (tip) electrodes in Fig. 7. The shaded
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FIG. 6. FER states of left Cu(100) surface, for three different set
points: (9.6 Å, 5.0 V) (top), (13.2 Å, 6.8 V) (middle), and (16.8 Å,
8.4 V) (bottom). The gray area represents the region over which
Cu(100) extends.

areas represent the energy gap of the bulk band structure of
Cu surface at the �̄ point. As mentioned before, electrode
states within this gap (solid black lines inside the shaded gray
area) in Fig. 7 appear due to the folding of the band states
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6.8 V) (bottom) set points. Dashed lines represent the Fermi levels
of the electrodes, whereas solid lines correspond to the energies of
FERs.
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in a (3 × 3)-Cu(100) supercell in the calculations. However,
with the flat tip, these additional states do not couple to the
FERs in Fig. 6 since they belong to the �̄’ point of the unit
cell. In the upper panel, we observe that for (9.6 Å, 5.0 V)
only n = 1 FER exists within the gap of the left electrode and
between the Fermi levels of left and right electrodes. For the
(13.2 Å, 6.8 V), shown in the lower panel, the first two FERs
are lying inside the gap and between left and right Fermi levels.
From these band alignments, we can also extract information
on the transmission properties of the system. For example, an
incoming electrode state from the right might inelastically
tunnel through FER states of the left surface into the left
electrode. For the chosen cases, incoming electrode states from
the right electrode lying below the right Fermi energy match
the energy of the FERs, thus can tunnel through them, and be
scattered into the left electrode states via inelastic processes. In
particular, the tip electrode states of (9.6 Å, 5.0 V) and (13.2 Å,
6.8 V) tunnel through n = 1 and 2 FERs, respectively. For such
states, the inelastic transmission can be calculated as described
in Sec. II C.

Here, we have calculated the inelastic transmission as
a function of the energy using an imaginary potential of
200 meV,14 which starts leftwards from one unit cell below
the Cu(100) surface in the left electrode. When the imaginary
potential is included, inelastic transmission through FER states
lying within the energy gap of bulk Cu can occur. Hence, every
time the tip Fermi level (μR) is close to the energy of a FER
(see Fig. 6), such state becomes available for tunneling and
the transmission is strongly increased. This situation will be
reflected as a sharp peak in the inelastic transmission at the
position of each FER.

In order to be able to compare our simulated transport
properties with experimentally measured FERs, one would
need to calculate the inelastic transmission for a large number
of bias voltage values given the sharp resonant feature of FER.
However, as such a procedure would be computationally very
demanding, we have pursued an alternative way to obtain
the transmission curve relevant to experiments. Specifically,
we have first calculated the inelastic transmission curves
as functions of scattering state energy E for the three set
points considered in this work. Based on these results, the
transmission curve at any bias voltage and at any scattering
state energy can be constructed using interpolation techniques.
Finally, since we are interested in what occurs at the tip
Fermi level, for each bias voltage value we have evaluated
the transmission at μR . The corresponding transmission curve
is shown in Fig. 8. The low and high lying energy peaks
in Fig. 8 correspond to n = 1 and 2 FERs, respectively. We
have focused on n = 1 and 2, which are the FER states most
sensitive to the surface potential of the sample and, thus,
carry essential information regarding its surface electronic
structure.9,49 Higher lying FERs lie further from the surface
and have a stronger influence by the tip. The transmission
results shown in Fig. 8 can only be obtained from scattering
state calculations. The width of the transmission peak is related
to how strong the FER state couple with the incoming electrode
from the right electrode.

As described earlier, the (Vb,zvac) values used for the
calculation of the inelastic transmission spectrum shown in
Fig. 8 have been chosen as to provide an approximately
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FIG. 8. Inelastic transmission through n = 1 and 2 FERs.

constant electric field scenario. Equally, when the STS set up is
operated in constant current mode, the electric field in the tip-
sample system is approximately constant. As a consequence,
the corresponding differential conductance spectrum ∂ V I (V )
closely follows the inelastic transmission spectrum evaluated
at the tip Fermi level.50 Therefore our simulated inelastic
transmission spectra, as given in Fig. 8, can, in principle, be
compared with experimental conductance spectra of FERs.

C. Tip effects

In the following, the influence of the atomic structure of the
tip on FERs has been studied. In particular, we have examined
how the FERs of Cu(100) change when a sharp tip is employed,
as opposed to the flat tip considered above. As shown in
Fig. 9(a), we have modeled an atomically sharp tip by a
five-atom pyramid consisting of four basal atoms and one apex
atom. This pyramidal tip is periodically repeated in the plane
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FIG. 9. (Color online) (a) Atomistic illustration of the tunneling
junctions with flat (left) and sharp (right) tips. (b) Planar averaged full
system potential for (16.8 Å, 8.4 V), as obtained using a flat (black,
solid line) or sharp (blue, dashed line) tip. (c) Energy of the first four
FERs for the junction with flat (left) or sharp (right) tip. The zero of
energy in (b) and (c) is at the Fermi level of the left electrode.
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FIG. 10. (Color online) FER states (planar averaged) of left
Cu(100) surface for (16.8 Å, 8.4 V), as obtained using a flat (black,
solid line) or sharp (blue, dashed line) tip.

parallel to the (3 × 3)-Cu(100) surface, so tips from adjacent
unit cells are more than 7 Å away. In both flat and sharp tip
cases, the (16.8 Å, 8.4 V) set point has been used for the
simulations, where the tunneling distance is measured from the
most protruding tip atom to the left Cu(100) surface (sample).
Given the distinct shape of our tips, using the same set point
implies that the current flowing across the tunnel junctions
of Fig. 9(a) is different. However, FERs are known to show a
stronger dependence on the tip properties than on the current
at which the FER spectra are taken.16 Therefore, despite using
slightly different tunneling conditions, our results will permit
to extract valuable information about tip effects on FERs,
which can be of use for the understanding of experimental STS
spectra.

The full system potential (averaged along the xy plane), as
obtained with a flat or a sharp tip, is represented in Fig. 9(b).
The potential near the tip is, as expected, very different for
both tips. However, it quickly decays to the bulk potential, i.e.,
surface effects in the tip region are rapidly screened towards the
right electrode. Clearly, the potential near the sample surface
is also noticeably modified by the use of a tip with different
atomic structure. Mainly, the potential is widened (i.e., we
have a slightly smaller electric field in the junction) in the
case of the pyramidal tip, which causes the change of FER
energies shown in Fig. 9(c). We observe that, when a sharp tip is
employed, FER states are clearly shifted downwards in energy.
Besides, whereas the first three FERs shift almost rigidly by
∼0.48 eV, the energy shift is significantly smaller for n = 4
(∼0.29 eV).

The tip dependence of the FER states can be seen in
Fig. 10. The first FER (n = 1) is independent of the tip atomic
structure. Higher FER states, instead, are clearly affected by
the tip, and both their amplitude as well as their decay length
into the vacuum towards the tip region varies when a sharp tip
is considered. This will cause modifications in the coupling of
high FER states to bulk right electrode states.

IV. CONCLUSIONS

In this work, a novel approach to investigate FERs is
introduced. Special emphasis has been placed on the self-
consistent treatment of the finite bias nonequilibrium problem
in tunneling regime and on the effect of the image potential. A
precise simulation of FERs is possible thanks to the use of a
transport calculation method based on the use of a plane wave
basis set. Such a basis set allows numerically accurate calcu-
lations for the large vacuum space in the description of FERs.

Using this approach, we have simulated FERs of the
Cu(100) surface. The constant current operation mode has
been mimicked by calculating FERs for increasing values of
the vacuum gap distance and of the applied bias voltage.
In this way, we have been able to reproduce FERs with
different quantum numbers up to n = 4. The role of the image
potential is found to be essential for low quantum number
FERs, whereas for high quantum numbers, the FERs can be
influenced by the tip induced electric field. We have also shown
that within the range of bias voltages used in STS experiments,
a self-consistent treatment of the problem is desirable.

A practical strategy has been followed to simulate in-
elastic transmission through FERs, giving rise to differential
conductance spectra with sharp peaks at the position of
FERs. Furthermore, our procedure incorporates a full three-
dimensional treatment of the surface potential, for both tip and
sample. Hence it can be applied to any tip shape and permits
exploring tip effects on FERs, which can be of great interest
for the interpretation of experimental observations.
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