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Abstract

The increasing availability of published evolutionary trees and phylogenetic methods has changed the way we tackle the study of 

evolution. In this sense, ruminants have become one paradigmatic object of study due to their ecological variety and well-known evoluti-

onary history. The last decades of ruminant research have benefited from diverse phylogenetic approaches, offering new perspectives on 

classic ideas and, sometimes, allowing to test previously untestable hypotheses. As a result, we now start to understand the complexity 

of the evolutionary responses of this clade to past global environmental changes. This is a brief review of some of the most outstanding 

and groundbreaking tree-based contributions to the research on the evolutionary ecology of this fascinating group of herbivorous ma-

cromammals.
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1. Introduction

Phylogenic trees represent evolutionary relation-
ships among taxa. They are the synthesis of the 
work of taxonomists and systematists aiming to put 
the tree of life in order (Smith 1994; Bininda-Emonds 
et al. 2007, 2008; Jetz et al. 2012). However, where-
as the resolution of evolutionary trees is the ultimate 
contribution of many academics, their precious work 
may be the starting point for the work of many other 
researchers, including (paleo)ecologists and evolu-
tionary biologists. In fact, the boom of phylogenetic 
methods and the increasing availability of published 
evolutionary trees have changed the way in which 
we study and understand biology and evolution (No-
rell 1993; Mooers & Heard 2002; Ronquist 2004).

Ruminants are exceptional in this context. With 
over 200 living species, they are the most diverse 
clade of herbivorous macromammals and represent 
broad ecomorphological diversity (Vrba & Schaller 
2000; Hernández Fernández & Vrba 2005; Wilson & 
Mittermeier 2011). They are distributed world-wide 
(naturally occurring in most continents; Cantala-
piedra et al. 2014a), inhabit all of the world’s terre-
strial biomes (Vrba 1999; Cantalapiedra et al. 2011). 
The fossil record of ruminants is rich, complete and 
ubiquitous, spanning the last 50 Myr and including 

more than 400 genera and more than 1200 species 
(McKenna & Bell 1997; Cantalapiedra et al. 2013). 
Their extensive fossil record and habitat sensitivity 
make ruminants the ideal group for testing hypo-
theses about the role of ecology and climate in mam-
malian evolution. Their phylogenetic relationships 
have been explored for decades (see references in 
Hernández Fernández & Vrba 2005), and new phylo-
genetic hypothesis are presented almost every year 
(Hassanin et al. 2012; Bibi 2013). Here we provide 
an overview about how the combination of phylo-
genetic trees and diverse methods has contributed 
to broaden our perspective on the biology, evolution 
and biogeography of ruminants.

2. Statistics and evolutionary relationships 
among ecomorphological variables 

Whether the length of their branches represents 
time or character change —chronograms or phy-
lograms, respectively—, evolutionary trees hold in 
their structure a paramount certainty: all species are 
hierarchically related to each other. Closely related 
species will tend to be more similar just because 
their independent history is shorter. In ruminants, 
this “phylogenetic signal” is widespread and affects 
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suggesting that the ecological shorting observed is 
rendered by evolutionary processes that acted at the 
basal radiation of tribes. In fact, relationships among 
the other variables were very weak within tribes, 
reflecting the strong phylogenetic signal of these 
traits among the African antelope. Overall, this work 
provides a good example of how phylogenetic ap-
proaches can help us to improve our understanding 
of ruminant ecology. 

For years, some ideas on ruminant and, more 
broadly, artiodactyl ecology based on ordinary methods 
have became a truism in the literature. Probably one 
of the most popular topics regards the study of oral 
morphology (e.g. hypsodonty or premaxillary shape) 
as a predictor of feeding mode (Janis & Ehrhardt 
1988; Pérez-Barbería & Gordon 1999). This corre-
lation is especially useful for academics aiming to 
infer the diet of fossil specimens and, in turn, past 
environmental conditions in which they lived (Solou-
nias & Moelleken 1993). But, again, both diet-related 
morphology and feeding behavior show a marked 
phylogenetic signal (see below). Furthermore, some 
traits like the increase in hypsodonty, apart from 
showing a pronounced phylogenetic inertia, have 
been reported to be virtually non-reversible (Damuth 
& Janis 2011). This means that closely related spe-
cies probably have a more similar hypsodonty de-
gree than expected based only on their phylogenetic 
relationships because the evolution of this trait does 
not follow a random walk through lineages probably 
due to morphological constrains.

Many studies based on traditional approaches 
have found a strong correlation between oral mor-
phology and dietary behavior. For instance, based 

many traits of interest including morphology (e.g. 
oral traits; Pérez-Barbería & Gordon 2001), behavior 
(e.g. diet, gregariousness; Brashares et al. 2000) or 
ecology (e.g. habitat preference; Barr & Scott 2013). 

Since species are non-independent elements with 
a shared history, the evolutionary information con-
tained in evolutionary trees is of major importance 
for exploring trait evolution (Ronquist 2004) and 
trait-dependent diversification (FitzJohn 2010; Can-
talapiedra et al. 2014b), modeling correlated evolu-
tion of traits (Pagel 1994), or removing phylogenetic 
effects on statistical tests (as exemplified in Fig. 1; 
Felsenstein 1985; Harvey & Pagel 1991). Studies on 
ruminant evolutionary ecology mainly fall in this last 
category, a body of research to which we will reserve 
most part of this article (a comparison of the results 
of various phylogenetically informed analyses ap-
plied to ruminant and ungulate diets can be found 
in Clauss et al. 2008a). The application of other me-
thods to the study of ruminant ecology and evolution 
will be treated in a second section.

Different combinations of outcomes from ordinary 
and phylogenetically controlled tests can yield valu-
able information on the evolutionary processes af-
ter the observed trait distribution (see Fig. 1; Clauss 
et al. 2013; Clauss et al. 2014). In a very illustrative 
work, Brashares et al. (2000) revisited classic hy-
potheses linking diet, antipredatory behavior, body 
size and group size in the African antelope (Jarman 
1974). They found that conventional analyses gave 
support to Jarman’s conclusions, but phylogenetic 
analyses were less consistent with the classic ideas. 
In particular, their results show that the relationship 
found in ordinary approaches is a result of variation 
among tribes rather than within them (see Fig. 1a), 

Figure 1: Schematic representation of some of the combinations of results from ordinary (OLS) and phylogeny-informed statistical analy-
ses (PGLS). Two clades and their respective datasets (black and grey) are depicted. Dashed grey line, fitted OLS model. Black solid line, 
fitted PGLS model. In (a), the relationship between X and Y exists at the scale of the whole tree, but does not apply within subclades (e.g. 
tribes), suggesting no convergence, as in Brashares et al. (2000). (b) Convergent evolution resulted in a within-subclade relationship that 
is not recognized by the OLS. Both PGLS and OLS may yield a significant result if only one subclade is analyzed, like in (c), where the 
relationship arises both at the scale of the whole tree and within more closely related taxa. Illustration after the original figures by Clauss 
et al. (2013), who also provide more examples and an extensive interpretation of the potential results.
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in ruminants, although they also reported peculiari-
ties under different feeding styles. Müller et al. (2013) 
questioned the extent to which digesta retention 
increases with body size among large herbivores, 
as posed by classic hypotheses. Using a 110 rumi-
nant species dataset, Zerbe et al. (2012) explored 
the causes of seasonal patterns of reproduction 
and proved they are connected to the latitude of the 
geographical range and were independent of body 
mass. They also reported that the gestation period 
is limited as an adaptation to ensure favorable con-
ditions.

The use of the comparative method also encompas-
ses many other interests. As two recent examples, it 
has been applied to construct model equations that 
predict body mass of fossil bovid species using se-
veral body measures (De Esteban-Trivigno & Köhler 
2011), or to identify preservation biases in the fossil 
record derived from differences in ecomorphological 
variables (Cantalapiedra et al. 2012).

3. Biogeography, community ecology and 
evolutionary models

Although phylogenetic information in ruminant 
and ungulate research has mostly been applied in 
phylogenetically controlled correlations, its applica-
tion extends far beyond. One of the most promising 
fields in community ecology regards the phylogene-
tic structure of species assemblages. This approach 
is based on asking whether the species that we 
found in a given place are more or less phylogene-
tically related than expected by chance, or whether 
they represent a random subset of a regional spe-
cies pool (Vamosi et al. 2009), yielding valuable infor-
mation on ecological and evolutionary perspectives 
behind assembly processes. Furthermore, combi-
ning phylogenetic structure metrics with multi-scalar 
perspectives can yield valuable insights into macro-
evolutionary and macroecological processes (Cardil-
lo 2011). Research tackling the phylogenetic struc-
ture of mammalian communities has usually been 
limited to tropical and subtropical clades (Heard & 
Cox 2007; Cardillo et al. 2008). Nevertheless, in a 
recent contribution, Cantalapiedra et al. (2014a) as-
sessed the signal of past evolutionary events — e.g. 
biogeography, adaptive radiations — in living rumi-
nant communities worldwide. Significantly, the study 
encompassed all the diverse biomes inhabited by 
ruminants: from the equatorial rainforest to the tun-
dra. Their results proved that the phylogenetic struc-
ture of ruminant communities is highly influenced 
by within-biogeographic realm radiations. Only as-
semblages located in extremely arid deserts harbor 
closely related species due to local habitat selection 
and within-habitat radiations.

Ruminant research has also drawn from evolu- 
tionary models (based on maximum likelihood; Pagel 
1994) to test the coevolution of traits. This method 

on traditional discriminant analyses (whose suitabi-
lity is discussed in Barr & Scott 2013), Mendoza et al. 
(2002) obtained a 100% of correct reclassifications 
of bovid diets based on their morphology due to the 
strong correlation of their variables (similar results 
are reported here: Mendoza & Palmqvist 2006a; 
Mendoza & Palmqvist 2006b, 2008). However, in a 
study encompassing ungulates, Pérez-Barbería and 
Gordon (2001) reported that, whereas all the nine 
morphological variables included in their study — in-
cluding muzzle width and dental height and volume, 
among others — correlated with diet in an ordinary 
analysis, only two of them — molar-row volume and 
M3 height — remained explicative after controlling 
for phylogenetic relationships and body size as a 
covariable. In fact, these authors found that body 
size alone provided a better prediction of feeding 
modes than any of the other seven morphological 
variables (Pérez-Barbería & Gordon 1999). Although 
the taxonomic scale of the two studies is not directly 
comparable (Clauss et al. 2008a), their results high-
light the need to incorporate the phylogeny to avoid 
misleading conclusions on the adaptive role of mor-
phology (Barr & Scott 2013). The relation between 
teeth features — hypsodonty, mesowear and enamel 
ridges— and dietary preferences in ungulates and 
ruminants has been also reconsidered using phylo-
genetic-informative tests (Kaiser et al. 2010; Kaiser 
et al. 2013).

The interest for diet-related anatomical traits ex-
tends further, and tests accounting for phylogenetic 
linkage have revealed strong associations between 
soft tissue anatomy and the percentage of grass in-
take in ruminants and other herbivorous macromam-
mals (Clauss et al. 2006; Clauss et al. 2008b; Hof-
mann et al. 2008; Clauss et al. 2009; Clauss et al. 
2010). Studies like these highlight the importance of 
phylogenetic methods to reinforce classic evolution-
ary scenarios. In fact, they signify the strong and 
complex relation between the multiple organs of the 
digestive tract and species ecology. Therefore, we 
envision future integrative studies, which will take a 
holistic approach in order to model the way in which 
these relationships shaped ruminant evolution.

Phylogenetic comparative methods have also 
been broadly applied in order to address questions 
regarding diverse ecomorphological parameters as 
well as social and behavioral ecology of ruminants. 
Bro-Jørgesen (2008) used bovids as study group to 
support the maneuverability hypothesis, which pre-
dicts that dense habitats select for smaller sizes. His 
study also revealed the connections of diet, latitu-
de and sexual dimorphism with the maneuverability 
hypothesis. The same author has applied the phy-
logenetic comparative method to prove the con-
nection between sociality and longevity as well as 
the significant effect of predation on the increasing 
sprint speed in bovids (Bro-Jørgensen 2012, 2013). 
Mysterud et al. (2001) found support for a general 
correlation between home range size and body mass 
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their diversification rates slowed down as tempera-
ture dropped towards the late Miocene. Interestingly, 
this view challenges the classic perspective, based 
in raw diversity patterns, that the great radiation of 
ruminants affected grazing forms and was rendered 
by the global cooling and aridification of the late Mi-
ocene (Cantalapiedra et al. 2014b).

Today, we perceive the evolution of ruminants 
as an integrated process in which global climate 
changes modified the environments inhabited by 
ruminant assemblages, triggering various evolutio-
nary responses (Cantalapiedra et al. 2011). During 
the last 30 million years, different ruminant lineages 
have modified their behavior and the complex as-
sociated ecophysiology (i.e. diet, locomotion, social 
behavior) as a way to adapt to new environmental 
conditions (Cantalapiedra et al. 2014b; DeMiguel 
et al. in press.). Finally, this intricate process of ad-
aptation has been modulated by biogeography and  
historical factors that in turn influenced the raw ma-
terial — species pools — on which macroevolutiona-
ry processes acted (Cantalapiedra et al. 2011; Can-
talapiedra et al. 2014a).

4. Conclusions

During the last decades, diverse analytical me-
thods based on phylogenetics have brought a deep 
time perspective to the macroevolutionary research 
in ruminant biology. They have allowed researchers 
to test hypotheses that were virtually untestable in a 
straightforward way. Also, taking evolutionary relation- 
ships into account has helped to rule out certain 
ideas that were based on the study of species as if 
they were independent results of evolution. The cur-
rent view in which the interplay of climatic shifts, bio-
geography, historical contingency and ecology have 
driven ruminant — and mammalian — evolution has 
been strengthened to a large extent due to contribu-
tions based on phylogenetic approaches.
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simulates the evolution of two traits and generates 
two models where the traits evolve dependently and 
independently from each other. The best-fit model is 
selected based on the maximum likelihood scores 
(Pagel 1994). In a pioneer study, Pérez-Barbería et 
al. (Pérez-Barbería et al. 2001) tested the coevolu-
tion of feeding strategies — browser, mixed-feeder 
and grazer — and the occupancy of different habi-
tats — close, mixed and open habitats — in artio-
dactyls. According to their results, mixed diets evol-
ved before lineages occupied open habitats, which 
were inhabited occupied by artiodactyls before a 
pure grazer diet appeared. They also found that ha-
bitat use was more flexible than feeding style.

Pagel’s method has been recently used in combi-
nation with exhaustive phylogenetic and ecological 
data to test hypotheses linking habitat occupancy 
and locomotor adaptations in ruminant lineages (Al-
calde et al. 2013). In some cases both ordinary and 
phylogenetic approaches found support for clas-
sic associations like the coevolution of gallop with 
open landscapes — e.g. savannahs or deserts — or 
between zigzagging (sensu Caro et al. 2004) and 
dense forests. In others, the phylogenetic analyses 
challenged classic correlations, like the association 
of stotting to the occupation of savannas and open 
woodlands. This indicates that, although savanna 
ruminants perform stotting, its adaptive value is not 
well defined — there is no convergence — becau-
se stotting species inhabiting savanna only evolved 
once.

Eventually, in the last few years, evolutionary bi-
ologists have drawn from novel phylogenetic ap-
proaches to investigate the signals of evolutionary 
processes — i.e. speciation and extinction — in ca-
librated phylogenies (Morlon 2014). Such methods 
can be especially useful when studying the evoluti-
onary history of groups lacking a well known fossil 
record (Fordyce 2010), but also to explore the influ-
ence of a trait of interest in the diversification pattern 
of a group when that trait is only known for the living 
species of the clade — e.g. behavioral traits. This is 
achievable by fitting new evolutionary models — ba-
sed on Pagel’s — that now allow to add differential 
diversification rates to lineages with different states 
of a given trait (Maddison et al. 2007; FitzJohn 2012). 
For example, the combination of novel phylogene-
tic methods, an extensive dataset of dietary prefe-
rences and a paleoclimate proxy provides a useful 
framework testing the connections among climate, 
feeding behavior and diversification rates in rumi-
nants (see Cantalapiedra et al. 2014b). The results of 
this work pointed out that the appearance of mixed 
diets — i.e. eating both browse and grass — spurred 
the diversification of ruminants during the Oligocene-
Miocene transition, concomitant with high global 
temperature. The appearance of graze diets could 
have taken place along the late middle Miocene. 
Also, both grazer and mixed feeder lineages under-
went higher diversification than browsers, although 
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