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Nonlocal edge state transport in topological insulators
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We use the N -terminal scheme for studying the edge-state transport in two-dimensional topological insulators.
We find the universal nonlocal response in the ballistic transport approach. This macroscopic exhibition of the
topological order offers different areas for applications.
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I. INTRODUCTION

A topological insulator is a quantum phase of matter with
gapless electron states on the surface and gapped ones in the
bulk. In two-dimensional systems, conducting electron states
propagate along the edge of the topological insulator. These
states have a linear Dirac dispersion and their spin is locked to
the momentum.1–3 The edge or the surface electron states are
topologically protected. The time-inversion symmetry leads
to the topological protection of each Kramers partner and as
a result to suppression of the backscattering. Therefore, the
topological protection against moderate structural disorder is
the base for many technological applications of topological
insulators.

The features of topological insulators are presented in
nanoscale samples. Actually, the topological order in topologi-
cal insulators belongs to the phase state, which is called a short-
range order created by the entangled quantum states.4 By this
term we mean that this phase state is formed on the scale of the
order of the lattice constant. The topological phase, which is
formed on larger scales—the so-called long-range topological
order—belongs to a fundamentally different class4 of the
entangled quantum states. One of its features is nonlocality in
the Hilbert space. The fact is that the total quantum state is not
equal to the product of the local electron states. In other words,
there are long-range correlations of topological excitations in
this state. Usually the topological order affects the collision
frequency.5 The geometrical Berry phase of quantum states
in topological insulators resulting in interference phenomena
leads to the weak-antilocalization effect.6

In this paper we consider the universality of the trans-
port characteristics in two-dimensional topological insulators,
which exhibit nonlocal topological order. The existence of
nonlocality in the three-dimensional case follows already from
the representation7 of the topological invariant. The nontrivial
value of this Hopf invariant, being equal to unity, means that
the two loops are linked. We focus on the significantly nonlocal
response that was found in the recent experiments.8,9

II. NONLOCAL RESPONSE

The features of electron states in two-dimensional topologi-
cal insulators are exhibited in the quantum spin Hall effect.10–13

When studying the degree of nonlocality, we use the approach
of Refs. 8 and 14. The main distinction here is that we employ
the general N -terminal scheme. It is convenient to use the
ballistic Landauer-Bütticker approach15 writing the current Ii ,
injected through the terminal i into a sample, as

Ii = e2

h

N∑
j=1

(TjiVi − TijVj ). (1)

Here Vj is the voltage on the terminal j ; e is the electron
charge; h is the Planck constant; h/e2 is the resistance unit,
which we will equate to unity; Tij is the matrix element of
transmission from the terminal i to the terminal j ; and N is
the total number of terminals.

The edge electron modes in topological insulators propa-
gate in two directions. We take the transmission coefficients
between neighboring terminals to be equal to unity Ti+1,i =
Ti,i+1 = 1 and other probabilities to be equal to zero. The
N -terminal scheme implies the use of the periodic boundary
conditions TN+1,N = T1,N and TN,N+1 = TN,1 in both direc-
tions of the edge-state propagation.

Let us consider the number of terminals N as a tuning
parameter. The labels of terminals, whose voltages we will
measure, will contain information about the influence of
the edge-state current between the terminals, through which
the current flows about the voltage distribution on other
terminals. This distribution will define the degree of the
response nonlocality. For example, in the case of N = 4,14

if the current flows from terminal 1 to terminal 4, we may
be interested in the resistance between these terminals and
the nonlocal response, expressed in terms of the resistance
between terminals 1 and 2, 2 and 3, and 1 and 3. It is evident that
with the increase in the number of terminals N , the resistance
between terminals 1 and N , through which the current flows,
will tend to unity. As regards the adjacent terminals such as 1
and 2, the measured resistance will tend to zero according to
a certain law decreasing with the increasing number N .

Let the current I1N flow through terminals 1 and N (see
Fig. 1) and the voltage be measured on all other terminals.
In this case, the equation that determines the voltage on the
contacts has the form

AV = I, (2)
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FIG. 1. (Color online) Distribution of edge states in a two-
dimensional N -terminal insulator.

where the matrix A equals Aij = 2δij − δi,j+1 − δi,j−1 −
δi,1δj,N − δi,Nδj,1, δij is the Kronecker delta, 1 � i, j � N ,
V = (V1,V2, . . . ,VN−1,VN ), and I = I1N (1,0, . . . ,0, − 1).
We are interested in the difference between the voltage on
the terminals. Since the vector V is invariant with respect to
the constant value shift, we may assume that VN = 0.

For arbitrary N , the solution of Eq. (2) has the form
Vi = I1N (1 − i

N
). Therefore, the resistance (V1 − VN )/I1N

between terminals 1 and N equals R1N,1N = (N − 1)/N . The
nonlocal resistance Rkl,ij=(Vi − Vj )/Ikl at k = 1 and l = N

when measuring the voltage between the terminals i and j is

R1N,ij = j − i

N
. (3)

In Eq. (2) we implied that the current was conducted
through the first and the last terminals. Thus Eq. (3) is valid
only in this case. We may also conduct the current through
terminals 1 and 4 or terminals 1 and 3, for example, in the
same way it was realized in the experiment8,9 at N = 6. To
find the voltage distribution in the situation when the current
flows from terminal 1 to terminal k, on the right-hand side of
Eq. (2) we have to use the equation for the current in the form
of I = I1k(1,0, . . . ,−1, . . . ,0). Here −1 is located in the k

place. The exact solution of Eq. (2) in this general case has the
form

Vi = I1k

(
1 − i

N
(1 − k + N )

)
(4)

if 1 � i � k and

Vi = I1k

(
1 − i

N

)
(1 − k) (5)

if k � i � N .
The values of the resistance R14,14 = 3/2 and R14,23 =

1/2 calculated with the use of Eq. (4) coincide with the
experimental results.8 When the current flows from terminal 1
to terminal 3, the experimental resistance8 equals R13,13 = 4/3
and R13,56 = 1/3. This can be obtained from Eq. (5) at k = 3
and N = 6.

III. DISCUSSION

The chiral edge states in the quantum Hall effect propagate
only in one of the two possible directions. The matrix elements
Tij of the transmissions for such states in Eq. (1) are not
equal to zero for terminals with indices j > i: Ti,i+1 = 1
and Ti+1,i = 0. Therefore, the resistance R1N,ij appears to
be equal to zero. In other words, the nonlocal resistance in
systems with broken time-reversal symmetry is absent. We
should emphasize that the main feature of the considered
situation, which governs the obtained results, is the existence
of the time-reversal symmetry. This symmetry manifests at the
macroscopic level in the form of nonlocal effects, caused by the
existence of the helical edge states. The form of responses and
the universal character of the obtained numbers depend on the
experimental conditions, for example, on temperature, which
determines the contribution of the inelastic backscattering
processes to the conductivity. The experimental data8 show
a high degree of universality. The universality of R1N,1N =
(N − 1)/N , R1N,ij = (i − j )/N , and Eqs. (4) and (5) can be
verified in the experimental setups appropriate for studying
the quantum spin Hall effect by varying the total number of
terminals and indices of current-carrying terminals.

If the time-reversal symmetry is broken by magnetic im-
purities and the condition of the absence of the backscattering
is weakened, the matrix elements Ti,j can be written as
Ti+1,i = 1 + k1 and Ti,i+1 = k2.16 Here k1 < 1 and k2 < 1 are
constants and the unity in the matrix element Ti+1,i means
the existence of the chiral edge mode. In this quasihelical
edge state,16 the voltage distribution on the terminals when the
current flows through the voltage leads 1 and N has the form

Vi =
(

1 − rN−i

1 − rN

)
I1N

1 + k1
, (6)

where r = k2/(1 + k1).
In this paper we focus on the universal exhibition of

topological order in the transport properties of ideal two-
dimensional topological insulators in the most straightforward
and representative form. The study of the transport charac-
teristics of the so-called ideal topological insulator SmB6

revealed9 that in the three-dimensional case the transport
properties significantly depend on the geometry of samples and
terminal assignments. A deviation from the universal behavior
takes place also in two-dimensional systems. It occurs due
to metal droplets inside real contacts. This phenomenon can
be described in terms of an additional terminal. The effect of
this and other factors such as the finite width of the terminal,
reflections from the internal interfaces, and other conditions
on amplitudes of the transitions between current and voltage
terminals was studied in Ref. 17.

Let us clarify the role played by the contacts in the
edge-state transport following the approach and the main
conclusions of Refs. 8, 17, and 18 in more detail. First of
all, we note that a contact is not a time-reversal symmetry-
breaking potential that mixes counterpropagating edge states
with opposite spins. Contacts are finally an electron degree
of freedom reservoir that incoherently populates both edge-
state channels. An ideal contact populates both edge-state
channels with equal weight by injecting spin-up and spin-down
electrons with equal probability.8 This is the origin of the
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additional resistance produced by the contacts. A contribution
of such a dephasing reservoir into an additional longitudinal
resistance can be negligible under the condition L < Lc ∼ 1/η.
Here L is the characteristic linear size of a contact, Lc is
the dephasing length, and η is the dephasing strength of the
self-energy part.8 Note that the self-energy should not break
the time-reversal symmetry. Decoherent behavior arises due to
the existence of the dephasing reservoir with the distribution
function included in the so-called lesser self-energy of the
leads.8

However, there are sharp dips in the conductance even for
small values of ηL. They can be strong enough to completely
block coherent transport at one of the edges.8 Therefore,
even a small dephasing region can equally affect a probe
terminal. The experimental value of the maximal resistance
for the six-terminal device is 1/7 instead of the theoretical
prediction 1/6. Such a result is consistent with the existence
of the additional dephasing region. Dephasing regions can also
exist due to an inhomogeneity of the sample. The experimental
results have shown8 that a change in the gate voltage also
affects the homogeneity of the device due to trap state charging
at the semiconductor-insulator interface. This leads to an
inhomogeneous potential in the gated area and to the creation
of the metallic islands that exist when most of the gated regions
are insulating ones. In other words, a metallic island can lead
to the effect similar to an additional probe. The experimental
situations when the coherent transport is observable in the
whole sample are discussed in Refs. 8 and 17.

There are two different methods to suppress the nonlocal
transport. The first approach is to make the device scale suffi-
ciently small so as to induce backscattering in the channels of
the edge states. Backscattering occurs when the wave functions
for opposite spin orientations overlap.19 This happens for a
device width of about 200 nm. Therefore, if the width W1 of the
central device strip is rather large, the deviation T ′

1N from the
ideal value T1N = 1 is negligibly small.17 The same condition
W > W2 for the absence of the tunneling between the edges
of the individual terminal is valid for the terminal width W2.
Measurements of the nonlocal resistance17 in devices when
they are in the quantum spin Hall effect states show the
values expected for the nonperturbative nonlocal edge-state
transport. The numerical simulations of the scattering matrix
at the metal–topological-insulator interface has confirmed the
negligibly small value of T ′

1N for the employed samples.
The second method to suppress the edge-state contribution
to nonlocal transport is to choose such nonlocal configurations
that imply the edge channel transport over distances longer
than the inelastic length.18 This means that the maximal
number of terminals N < Nc = L1/(W2 + L2) can be roughly

estimated as 10 for the real experimental parameters. Here L1

is the characteristic sample size and L2 is the distance between
terminals.

Let us consider the regime of the quantum spin Hall state
when the renormalized voltage V ∗

g = 0 and the resistance is
maximal. The Fermi level in the bulk is located now at the
center of the energy gap. In this case, the assignments of the
current and voltage terminals determine the following values
of the resistance:

R1k,ij =

⎧⎪⎨
⎪⎩

j−i

N
(1 − k + N ), 1 � i, j � k

j−i

N
(1 − k), k � i, j � N

j−i

N
(1 − k) + (k − i), 1 � i � k, k � j � N.

(7)

One can easy verify that after the interchange of the current
(1k) and voltage (ij ) probe indices and the shifts k → j −
i + 1, j → k − i + 1, and i → N − i + 2 these equations
satisfy the Onsager-Casimir symmetry relations Rmn,kl =
Rkl,mn (Ref. 20) for the nonlocal resistances Rmn,kl . We would
also like to mention the fact that topological universality of the
ballistic transport due to the edge states under ideal conditions
is determined by the topological properties of the electron
quantum bulk states. Therefore, the considered phenomenon
in a trivial insulator is absent.

IV. CONCLUSION

We have described here the universal distribution of the
resistances studying the edge-state transport in the two-
dimensional topological insulators in the ballistic transport
regime. It is of interest to extend the problem of macroscopic
manifestation of the topological order to similar topologically
ordered systems. Another way of copying the letter H in the
vertical direction as it is done in the ladderlike structures21

corresponds to the four-terminal case. This is because the
distribution of edge degrees of freedom will be equivalent
to the distribution taking place in the system with one letter
H. To model the distribution of the degrees of freedom in the
systems with a long-range topological order, we have to use
Y-shape contacts as building blocks.
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Kane, M. Büttiker, and S. V. Eremeev for useful remarks and
suggestions. This work was supported in part by the RFBR
Grant No. 13-02-12110.

*alprot@appl.sci-nnov.ru
1M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
2X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
3J. E. Moore, Nature (London) 464, 194 (2010).
4X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138
(2010).

5D. Culcer, E. H. Hwang, T. D. Stanescu, and S. Das Sarma, Phys.
Rev. B 82, 155457 (2010).

6J. H. Bardarson and J. E. Moore, Rep. Prog. Phys. 76, 056501
(2013).

7J. E. Moore, Y. Ran, and X.-G. Wen, Phys. Rev. Lett. 101, 186805
(2008).
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